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Abstract
Polygenic risk models have led to significant advances in understanding complex diseases and their clinical presentation.
While polygenic risk scores (PRS) can effectively predict outcomes, they do not generally account for disease subtypes or
pathways which underlie within-trait diversity. Here, we introduce a latent factor model of genetic risk based on components
from Decomposition of Genetic Associations (DeGAs), which we call the DeGAs polygenic risk score (dPRS). We compute
DeGAs using genetic associations for 977 traits and find that dPRS performs comparably to standard PRS while offering
greater interpretability. We show how to decompose an individual’s genetic risk for a trait across DeGAs components, with
examples for body mass index (BMI) and myocardial infarction (heart attack) in 337,151 white British individuals in the UK
Biobank, with replication in a further set of 25,486 non-British white individuals. We find that BMI polygenic risk factorizes
into components related to fat-free mass, fat mass, and overall health indicators like physical activity. Most individuals with
high dPRS for BMI have strong contributions from both a fat-mass component and a fat-free mass component, whereas
a few “outlier” individuals have strong contributions from only one of the two components. Overall, our method enables
fine-scale interpretation of the drivers of genetic risk for complex traits.

Introduction

Heritable common diseases like diabetes and heart disease
are leading causes of death and financial burden in the
developed world [1]. Polygenic risk scores (PRS), which
sum effects from many risk loci for a trait, have been used
to identify individuals at high risk for conditions like can-
cer, diabetes, heart disease, and obesity [2–5]. Although
many versions of PRS can be used to estimate risk [6–8],
previous work suggests that a “palette” model which

decomposes genetic risk into pathways could better describe
complex disease [9]. Such a model would center common
components of disease over outlier events or black-box
genetic effects.

Meanwhile, recent methodological advances have
allowed researchers to further interrogate the molecular and
clinical underpinnings of common diseases. Of note are
methods to partition trait heritability across biological
pathways and cell types [10], and to leverage genetic
associations from multiple traits to identify and validate
disease subtypes [11]. In particular, these techniques have
offered key insights into the cellular mechanisms and shared
etiology of metabolic diseases (e.g., diabetes and coronary
heart disease) [10–13]—traits for which variability in clin-
ical presentation has been a long-standing challenge [9, 14].
Thus far, however, PRS have not explicitly considered
this within-trait diversity, even as the best-performing
scores have added sophisticated models of linkage dis-
equilibrium [15–17].

Here, we present a polygenic model based on latent trait-
related genetic components identified using Decomposition
of Genetic Associations (DeGAs) [18]. Where standard
PRS for a trait models genetic risk as a sum of effects from

* Manuel A. Rivas
mrivas@stanford.edu

1 Department of Biomedical Data Science, School of Medicine,
Stanford University, Stanford, CA, USA

2 Department of Pediatrics, School of Medicine, Stanford
University, Stanford, CA, USA

3 Department of Statistics, Stanford University, Stanford, CA, USA

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41431-
021-00813-0.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00813-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00813-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00813-0&domain=pdf
http://orcid.org/0000-0001-9069-6475
http://orcid.org/0000-0001-9069-6475
http://orcid.org/0000-0001-9069-6475
http://orcid.org/0000-0001-9069-6475
http://orcid.org/0000-0001-9069-6475
http://orcid.org/0000-0001-9759-157X
http://orcid.org/0000-0001-9759-157X
http://orcid.org/0000-0001-9759-157X
http://orcid.org/0000-0001-9759-157X
http://orcid.org/0000-0001-9759-157X
http://orcid.org/0000-0003-0754-6631
http://orcid.org/0000-0003-0754-6631
http://orcid.org/0000-0003-0754-6631
http://orcid.org/0000-0003-0754-6631
http://orcid.org/0000-0003-0754-6631
http://orcid.org/0000-0003-0553-5090
http://orcid.org/0000-0003-0553-5090
http://orcid.org/0000-0003-0553-5090
http://orcid.org/0000-0003-0553-5090
http://orcid.org/0000-0003-0553-5090
http://orcid.org/0000-0002-0164-3142
http://orcid.org/0000-0002-0164-3142
http://orcid.org/0000-0002-0164-3142
http://orcid.org/0000-0002-0164-3142
http://orcid.org/0000-0002-0164-3142
http://orcid.org/0000-0003-1457-9925
http://orcid.org/0000-0003-1457-9925
http://orcid.org/0000-0003-1457-9925
http://orcid.org/0000-0003-1457-9925
http://orcid.org/0000-0003-1457-9925
mailto:mrivas@stanford.edu
https://doi.org/10.1038/s41431-021-00813-0
https://doi.org/10.1038/s41431-021-00813-0


genetic variants, the DeGAs polygenic risk score (dPRS)
models risk as a sum of contributions from DeGAs com-
ponents [18]. Each DeGAs component consists of a set of
variants which affect a subset of the traits (Fig. 1). The
component’s genetic loading is a component PRS (cPRS)
that approximates risk for a weighted combination of rele-
vant traits. Instantiated cPRS values for an individual are
then used to create a profile that describes their disease risk
and informs subtyping for each trait.

As proof of concept, we compute DeGAs using summary
statistics generated from genome-wide associations between
977 traits and 469,341 independent common variants in a
subset of unrelated white British individuals (n= 236,005)
in the UK Biobank [19] (see “Methods”). We then develop
a series of dPRS models and evaluate their performance in
additional independent samples of unrelated white British
individuals (n= 33,716 validation set; n= 67,430 test set),
and in UK Biobank non-British whites (n= 25,486 extra

cPRS5

W
Variants

Tr
ai

t = U S VT

Trait singular matrix U: nxc
Singular value matrix S: cxc
Variant singular matrix V: mxc

cPRS1

cPRS2

A DeGAs

B cPRS

C dPRS

cPRSi = siV
T

i,*G

dPRSj = �iUj,icPRSi

dPRSj = �iUj,i siV
T
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Type 2 Type 3Type 1

Fig. 1 Study overview. A Matrix Decomposition of Genetic Asso-
ciations (DeGAs) is performed by taking the truncated singular value
decomposition (TSVD) of a matrix W (n ×m) containing summary
statistics from GWAS of n= 977 traits over m= 469,341 variants
from the UK Biobank. The squared columns of the resulting singular
matrices U (n × c) and V (m × c) measure the importance of traits
(variants) to each component; the rows map traits (variants) back to
components. The squared cosine score (a unit-normalized row of US)
for some hypothetical trait indicates high contribution from PC1, PC4,
and PC5. B Component polygenic risk scores (cPRS) for the ith
component are defined as SIV

T
I, *G (ith singular value in S and ith row

in VT), for an individual with genotypes G. C DeGAs polygenic risk

scores (dPRS) for trait j are recovered by taking a weighted sum of
cPRSI, with weights from U (j, ith entry). We also compute DeGAs
risk profiles for each individual (see “Methods”), which measure the
relative contribution of each component to genetic risk. We “paint” the
dPRS high-risk individuals with these profiles and label them “typical”
or “outliers” based on similarity to the mean risk profile (driven by
PC1, in blue). Outliers are clustered on their profiles to find additional
genetic subtypes: this identifies “Type 2” and “Type 3,” with risk
driven by PC4 (red) and PC5 (tan). Clusters visually separate each
subtype along relevant cPRS (below). Image credit: VectorStock.com/
1143365 (color figure online).
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test set). Here, we highlight results for body mass index
(BMI/obesity) and myocardial infarction (MI/heart attack),
motivated by their high prevalence among older individuals
in this cohort [20].

Material and methods

Study population

The UK Biobank is a large longitudinal cohort study con-
sisting of 502,560 individuals aged 37–73 at recruitment
during 2006–2010 [19]. The data acquisition and study
development protocols are online (http://www.ukbiobank.
ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.
pdf). In short, participants visited a nearby center for an in-
person baseline assessment where various anthropometric
data, blood samples, and survey responses were collected.
Additional data were linked from registries and collected
during follow-up visits.

We used a subsample consisting of 337,151 unrelated
individuals of white British ancestry for genetic analysis.
We split this cohort at random into three groups: a 70%
training population (n= 236,005), a 10% validation popu-
lation (n= 33,716), and a 20% test population (n= 67,430).
We used the training population to conduct genome-wide
association studies for DeGAs and the validation population
to evaluate dPRS model performance for various DeGAs
hyperparameters. We report final associations and perfor-
mance measures from the test population. An additional
cohort of unrelated non-British White individuals (n=
25,486, with self-reported white but not British ancestry)
was used as an extra test population. The “white British”
and “non-British white” populations were defined using
genotype PCs from UK Biobank’s PCA calculation and
self-reported ancestry (UK Biobank Field 21000) [19, 21],
with additional sample quality control and population
groupings as previously described [18, 19].

Genome-wide association studies in the UK Biobank

PLINK v2.00a [22] (April 2, 2019) was used for genome-
wide associations of 805,426 directly genotyped variants,
362 human leukocyte antigen (HLA) allelotypes, and 1815
non-rare (AF > 0.01%) copy number variants [23] (CNV) in
the UKB training population. We used the --glm Firth-
fallback option to apply an additive-effect model across all
sites. Quantitative trait values were rank normalized using
the --pheno-quantile-normalize flag. The following covari-
ates were used: age, sex, the first four genetic principal
components, and, for variants present on both of the UK
Biobank’s genotyping arrays, the array which was used to
genotype each sample.

Genotyped sites and samples have been subject to rig-
orous quality control by the UK Biobank [19]. Prior to use in
downstream methods, we performed additional variant quality
control on array-genotyped variants, including more stringent
filters on missingness (>1%), gross departures (p < 10−7) from
Hardy–Weinberg equilibrium, and other indicators of unreli-
able genotyping [24]. As with previous versions of DeGAs, we
further filtered variants by minor allele frequency (MAF>
0.01%), array-specific missingness (<5%), and LD indepen-
dence [18]. The LD independent set was computed with
“--indep-pairwise 50 5 0.5” in PLINK v1.90b4.4 (May 21,
2017). MAF and LD filters were applied within and across
each array-genotyped group. This process resulted in a set
of 469,341 variants (467,427 genotyped variants, 118 HLA
allelotypes, and 1796 CNVs) for our analysis.

Binary disease outcomes were defined from UK Bio-
bank resources using a previously described method
which combines self-reported questionnaire data and
diagnostic codes from hospital inpatient data [24]. Addi-
tional traits like biomarkers, environmental variables, and
self-reported questionnaire data like health outcomes and
lifestyle measures were collected from fields curated by
the UK Biobank and processed using previously described
methods [24, 25]. In all, we collected 977 traits with at
least 1000 observations (quantitative traits) or cases
(binary traits). These comprise most common traits in the
Global Biobank Engine [26], excluding imaging features
and traits which were subject to manual curation. A full
list of traits and their Global Biobank Engine IDs is in
Data S1. Summary statistics from all GWAS described
here are publicly available on the Global Biobank Engine
(Web Resources).

Risk modeling using Decomposition of Genetic
Associations (DeGAs)

Given GWAS summary statistics, we computed DeGAs as
previously described [18]. First, a sparse matrix of genetic
associations W (n ×m) was populated with effect size esti-
mates (or z-statistics) between the n= 977 traits and m=
469,341 independent common variants (see GWAS
“Methods” section). Only variants with at least two asso-
ciations were used (p < 10−6; Fig. S1 has additional cutoffs).
After filtration, rows of W were standardized to zero mean
and unit variance, to give traits equal relative weight.

Next, we performed a truncated singular value
decomposition (TSVD) on W using the TruncatedSVD
function in the scikit-learn python module [27, 28] to
identify the top c= 500 trait-related genetic components.
TSVD outputs three matrices whose product approximates
W: a trait singular matrix U (n × c), a variant singular
matrix V (m × c), and a diagonal matrix S (c × c) of
singular values si (Fig. 1A). W is approximated by U, S,
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and V as below:

W ¼ USVT

The matrices U, S, and V are then used to compute cPRS.
The cPRS for the ith DeGAs component can be written as
follows:

cPRSi ¼ Si;�VTG

for an individual with genotypes G (m × 1) over the
variants used in DeGAs. Here, Si,* is the ith row of S. With
cPRS, we define the dPRS for the jth trait:

dPRSj ¼
X

i

Uj;icPRSi

where Uj,i is the (j,i)'th entry of U. In terms of the matrices
U, S, and V, this can be rewritten as follows:

dPRSj ¼ Uj;�SVTG

For interpretability, the population distribution of dPRS
for each trait j is scaled to zero mean and unit variance,
independently of the distributions of dPRS for other traits.

We further relate individuals to traits via components
using a measure we call the DeGAs risk profile (dRP). An
individual’s DeGAs risk profile for a phenotype j is a vector
over the c DeGAs components, where the value for the ith
component is proportional to:

dRPj;i � maxð0; dPRSj � cPRSiÞ
with a denominator introduced for normalization so that
these values sum to one. Note we only consider component
scores, which have the same sign as the overall risk score
when estimating their contribution to an individual’s genetic
risk, hence the max operator. The DeGAs risk profile is
therefore a normalized measure which, for high-risk
individuals with positive dPRS, is the fraction of risk
owing to driving components. Analogously, for low-risk
individuals with negative dPRS, it measures the contribu-
tion from protective components.

Computing polygenic risk scores

As a baseline model for dPRS, we computed single-trait
PRS with a pruning and thresholding approach using the
same summary statistics which were input to DeGAs. As
DeGAs requires variants filtered on LD independence and
for p < p* based on a critical value p* (see above), we used
only the variants present in the DeGAs input matrix W in
each PRS. Specifically, PRS weights for trait j were taken

from the jth row of W. The PRS was then computed with
PLINK v1.90b4.4 (May 21, 2017) using the --score flag,
with the “sum,” “center,” and “double-dosage” modifiers.
These correspond to the assumptions that variants make
additive contributions across sites; that the mean distribu-
tion of risk is zero; and that alleles have additive effects.
These are the same assumptions used in our GWAS.

In a similar fashion, polygenic scores (cPRS) for all
DeGAs components were computed with PLINK2 v2.00a2
(April 2, 2019) using the --score flag, with “center” and
“cols= scoresums” modifiers. These modifiers correspond
to the same assumptions as in the PRS: that genetic effects
are additive across sites (this is the default genotype model
for --score); that each component is zero centered; and that
alleles make additive contributions. We then computed
dPRS and DeGAs risk profiles for each trait using the
formulas above.

In some analysis, PRS and dPRS were further adjusted
by age, sex, and four genetic principal components from
UK Biobank’s PCA calculation. Covariate adjustment was
performed by fitting a multiple regression model with dPRS
(or PRS) and covariates in the validation population (Sup-
plementary Methods). We also fit a covariate-only model
using the same procedure (without either polygenic score)
and used its performance as baseline for the joint models
(Fig. 2).

Classifying genetic risk profiles from DeGAs
components

In order to assess whether our method could identify sub-
types of genetic risk, we analyzed the DeGAs risk profiles
of high-risk individuals whose dPRS is driven by an “aty-
pical” combination of DeGAs components. We used the
Mahalanobis distance (DM) to identify outlier individuals
whose z-scored distance from the mean DeGAs risk profile
exceeded 1:

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� μÞS�1ðx� μÞT

q

where x is the DeGAs risk profile; μ is the mean profile; and
S is the identity matrix. Traditionally, S is taken to be the
covariance matrix for each of the features across all x.
However, for this measure, we treat each component as
having equal variance. This results in the above formula
reducing to the Euclidean distance between a profile x and
the mean profile μ, which can be used to identify “atypical”
individuals rather than statistical outliers.

We then intersected this set of outlier individuals with
the top 5% of dPRS to create the “high-risk outlier” group.
Here, we define the mean risk profile for a trait as the
component-wise mean across all individuals’ DeGAs risk
profiles in a high-risk set (top 5% of dPRS). To identify
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subtypes among high-risk outliers, we performed a k-means
clustering of their DeGAs risk profiles using the KMeans
function from the python scikit-learn module [28]. The
number of clusters k was determined by optimizing a sta-
tistic over putative values of k ranging from 1 to 20. Spe-
cifically, we used the gap-star statistic in the python “gap-
statistic” module [29, 30] as the statistic for selecting a
value k. We then evaluated which components drove risk in
each cluster by computing a mean risk profile for the group
(defined as above), which was then renormalized to one for
visualization.

Results

Genome-wide associations between 977 traits and
469,341 independent HLA allelotypes, CNVs [23], and
array-genotyped variants were computed in a training set
of 236,005 unrelated white British individuals from the
UK Biobank study [19] (see “Methods”). We applied

DeGAs [18] to scaled beta- or z-statistics from these
GWAS with varying p value thresholds for input
(Fig. 1A). We then defined PRS for each DeGAs com-
ponent (cPRS; Fig. 1B) and used them to build the dPRS
(Fig. 1C). The model with optimal out-of-sample predic-
tion (Fig. S1) corresponded to DeGAs on beta values with
significant (p < 10−6) associations.

To validate this model, we estimated disease prevalence
(or, for BMI, mean BMI) at several quantiles of risk in a
held-out test set of white British individuals in the UK
Biobank (n= 67,430). For all example traits, we observed
increasing severity (quantitative) or prevalence (binary) at
increasing quantiles of dPRS (Fig. 2A, B) adjusted for age,
sex, and the first four genotype principal components from
UK Biobank’s PCA calculation [19]. This trend was most
pronounced at the highest risk quantile (2%) for each trait.
At this stratum, we observed 1.40 kg/m [2] higher BMI
(95% CI: 1.14–1.67) and 1.73-fold increased odds of MI
(95% CI: 1.38–2.16), over the population average in the test
set (total n= 67,235 individuals for BMI; 2812 MI cases).

Fig. 2 Performance of dPRS. A, B Effect of increased risk (dPRS
or PRS) on BMI and MI. Beta/OR (left axis) were estimated by
comparing the quantile of interest (x-axis) with a middle quantile
(40–60%), adjusted for these covariates: age, sex, 4 PCs (see “Meth-
ods”). Trait mean or prevalence (right axis) was computed within each
quantile; error bars denote the 95% confidence interval of each

estimate. C Correlation between dPRS or PRS and covariate-adjusted
BMI. D Receiver operating curves with area under curve (AUC)
values for MI using dPRS, PRS, covariates, and a joint model with
covariates and dPRS. Models with covariates were fit in the validation
set; all evaluation was in the test set (see “Methods”).

Polygenic risk modeling with latent trait-related genetic components 1075



Furthermore, we found dPRS to be comparable to
prune- and threshold-based PRS using the same input data
(Fig. S2). Although there was some discrepancy between
the individuals considered high risk by each model
(Fig. S4 and Table S2), we observe similar effects at the
extreme tail of PRS as with dPRS. The top 2% of PRS for
each trait had 1.54 kg/m2 higher BMI (95% CI: 1.28–1.81)
and 1.72-fold increased odds of MI (95% CI: 1.38–2.16)
(Fig. 2A, B) using the same covariate adjustment as dPRS.
Population-wide predictive measures were also similar,
with BMI residual r= 0.21 and PRS AUC (not adjusted for
covariates) 0.54 for MI (Fig. 2C, D). We also note similar
performance for BMI dPRS predicting obesity (defined as
BMI > 30; Fig. S6), with OR= 1.7 at the 2% tail and AUC=
0.56. On balance, despite the reduced rank of the DeGAs risk
models—the input matrix W is reduced from ~1000 traits to a
500-dimensional representation—we achieve performance
equivalent to traditional PRS for these example traits and
observe a similar trend for the other traits (Fig. S2 and
Data S1).

However, we note that dPRS and PRS add little
population-wide predictive value over factors such as age,
sex, and demographic effects that are captured by genomic
PCs (Fig. 2C, D). At the population level, we found r=
0.12 between covariate-adjusted dPRS and residualized
BMI, and the area under the receiver operating curve (AUC)
was 0.55 for MI dPRS and 0.56 for obesity (using BMI
dPRS) without covariate adjustment. Adjusting for covari-
ates, the marginal increase in AUC is modest: only 0.005
for MI.

Characterizing DeGAs components

We describe the latent structure identified through DeGAs
by annotating each component with its contributing traits
and variants, aggregated by gene. The relative importance
of traits to components is measured using the trait con-
tribution score [18], which corresponds to a squared column
of the trait singular matrix U. The relative importance of
components to each trait is measured using the trait squared
cosine score [18], which is a normalized squared row of US.
The contribution and squared cosine scores are defined
analogously for variants and genes using the variant sin-
gular matrix V. For each example trait, we highlight five
components of interest (ranked by the trait squared cosine
score) and describe them by their respective trait contribu-
tion scores (Fig. 3) and gene contribution scores. The trait
and gene contribution scores for all components can be
found in Data S2 and S3, respectively.

BMI is a polygenic trait with associated genetic variation
relevant to adipogenesis, insulin secretion, energy metabo-
lism, and synaptic function [18, 31]. Here, the DeGAs trait
squared cosine score (Fig. 3) indicates strong contribution

from components related to body size and fat-free mass
(PC1; 23.6%), fat mass (PC2; 35.9%), as well as risk factors
for obesity like body size at age 10 and trunk fat percentage
(PC363; 4,5%). Components related to exercise (PC206;
2.4%) and diabetes (PC6; 1.7%) also contribute.

Genetic variation proximal to STC2 and MC4R con-
tribute strongly to both PC1 and PC2 (Data S3). STC2 is a
stanniocalcin-related protein most highly expressed in car-
diomyocytes and skeletal muscle. It has previously been
associated with lean mass traits in humans [32, 33] and has
been shown to restrict postnatal growth in mouse [34].
MC4R is a melanocortin receptor in the G-protein coupled
receptor family. It is primarily expressed in the brain, is
known to play a role in energy homeostasis and somatic
growth [35, 36], and has been associated with fat-mass and
obesity-related traits in humans [37]. Both components also
have contribution from variation proximal to FTO and
DLEU1, both of which associate with traits affecting body
size in adults [38, 39]. FTO is an alpha-ketoglutarate-
dependent dioxygenase whose causal role in BMI has been
questioned [40]; DLEU1 is a tumor-suppressing lncRNA
named for its frequent deletion in patients with chronic
lymphocytic leukemia [41]. These components reflect the
roles of adipogenesis and growth regulation pathways in
high BMI.

MI is a polygenic outcome with well-established risk
factors attributable to common and rare genetic variation
[5], age, sex, and lifestyle attributes like diet and smoking.
DeGAs components important to this trait are related to
measures of lung function, as well as usage of medications
for an array of conditions which are comorbid with MI
(Fig. 3). These medications include aspirin, ibuprofen, and
cholesterol-lowering medications (e.g., statins), which are
represented across PC12 (22.9%; also includes reticulocyte
measurements), PC32 (10.4%; also includes hearing pro-
blems and angina), and PC30 (6.4%; also includes head-
aches). A component related to blood pressure medications
also contributes (PC16; 5.8%). Another relevant component
(PC11; 13.4%) has contribution from measures of lung
function like forced expiratory volume in 1 s (FEV1), forced
vital capacity (FVC), and the ratio of the two (FEV FVC
ratio).

Two of these components, PC11 and PC12, have con-
tribution from variation proximal to the lipoprotein gene
LPA, at the 9p21.3 susceptibility locus (CDKN2B), and in
the brain-expressed solute carrier SLC22A3 [42] (Data S3).
Variation in these three genes also contributes to PC32, as
does variation proximal to the transcription factor STAT6
(which has been associated with adult-onset asthma and
inflammatory response to mosquito bites) [43, 44]. PC30
also has contribution from STAT6, as well as the phospha-
tase and actin regulator PHACTR1, which has been identi-
fied in prior coronary artery disease GWAS [45]. These
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components reflect the diversity of conditions and risk
factors which are comorbid with MI.

Painting DeGAs risk profiles

To further characterize the genetic architecture of these
traits, we “painted” the genetic risk profiles of each high-

risk individual (top 5% of dPRS). For this, we decomposed
each individual’s dPRS across DeGAs components into a
vector we call the DeGAs risk profile (see “Methods”). The
DeGAs risk profile is an individual-level measure over the
(in this case) c= 500 DeGAs components and is normalized
such that the entries in the vector sum to one. For indivi-
duals with above average risk (dPRS > 0), it describes the

Fig. 3 Top 5 DeGAs
components for each example
trait. Top 5 DeGAs components
for BMI (left) and MI (right),
ordered from top to bottom, as
ranked by their respective trait
squared cosine scores. Each
component is labeled with its top
10 traits, as determined by the
trait contribution score (squared
column of U), and with its
relative importance (squared
cosine score). Traits are
displayed for a component if
their contribution score for the
component exceeds 0.02.

Polygenic risk modeling with latent trait-related genetic components 1077



contributions from components, which contribute positively
to risk; for individuals with below average risk (dPRS < 0),
it describes the contributions from components which have
protective effects. As an individual rather than population-
level measure, the DeGAs risk profile can be used to further
examine the underlying genetic diversity among high-risk
individuals (Fig. 4A, B) in a way which complements the
trait and gene squared scores from DeGAs.

We therefore investigated the diversity of components
which drive risk among high-risk individuals, using their
DeGAs risk profiles. We used the Mahalanobis criterion
(see “Methods”) to find individuals in the test population
whose risk profiles significantly differed from average. We
then found high-risk individuals (top 5% of dPRS) among
these outliers (z-scored Mahalanobis distance > 2) to iden-
tify a group of “high-risk outliers”. For these individuals
(Fig. 4C, D), genetic risk is often driven by the same
components as for other high-risk individuals (Fig. 4A, B),
but the degree to which certain components contribute can
differ. For example, while the trait squared cosine score for
MI identifies PC11 and PC12 (lung function and cholesterol
medications) as the top components (Fig. 3), the DeGAs
risk profile suggests PC9 (immune function) can drive
genetic risk for some individuals with high MI dPRS

(Fig. 4B). This suggests that the DeGAs risk profile can
identify individuals with high genetic risk whose pathology
may differ from “typical”.

To better describe genetic diversity among outlying
individuals, we attempted to identify genetic subtypes of
each example trait in the high-risk outlier population. We
performed a k-means clustering of this group using DeGAs
risk profiles as the input; k was chosen by optimizing the
gap-star statistic across an array of potential values (see
“Methods”). We described each cluster using its mean risk
profile (Fig. 4A, B) and noticed that cluster membership
divides individuals based on cPRS for relevant components
(Fig. 4C, D).

For BMI, we identify two risk clusters (Fig. 4E): one
driven by the fat-mass component (PC2; 59.0%, n= 43)
and the other by the fat-free mass component (PC1; 70.4%,
n= 35). Some outlying individuals at risk for high BMI
have genetic contribution from the near exclusively fat-
related component (PC2), hence their deviation from
“typical”. However, other individuals are outlying due to
contribution from the lean mass component (PC1). Genetic
risk from this cluster comes mainly from variant loadings
related to fat-free mass-related traits like whole-body water
and fat-free mass. That this cluster is distinct from other

Fig. 4 Painting components of genetic risk. A, B Component-
painted risk for the 25 individuals or C, D 25 outliers with highest
dPRS for each trait in the test set. Each bar represents one individual;
the height of the bar is the covariate-adjusted dPRS, and the colored
components of the plot are the individual’s DeGAs risk profile, scaled
to fit bar height. Colors for the five most represented components in
each box are shown in its legend in rank order. E, F Mean DeGAs risk

profiles from k-means clustering of high-risk outlier risk profiles,
annotated with cluster size (n). Phenotype groups for selected com-
ponents in this figure include: PC1 (fat-free mass); PC2 (fat mass);
PC9 (leukocytes and viral antigens); PC11 (lung function); PC12
(aspirin and cholesterol medication); PC16 (blood pressure medica-
tion); PC32 (hearing, ibuprofen, and cholesterol medication) (color
figure online).
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outliers at risk for high BMI implies relevant differences
between individuals, which may suggest alternative pre-
ventative and therapeutic approaches across groups.

We also find five clusters of risk for MI, four of which
are driven primarily by components which were identified
as important via the phenotype cosine score (Fig. 3). These
were PC11 (lung function; 34.8%; n= 47), PC12 (high
cholesterol; 32.9%; n= 33), PC16 (blood pressure; 40.2%;
n= 31), and PC32 (hearing and cholesterol; 27.0%; n= 6),
all of which have additional contribution from medications
commonly used for conditions comorbid with MI (Fig. 4F).
The fifth cluster is driven primarily by PC9 (37.0%; n= 7),
which has high phenotype contribution from leukocyte
measures, vitamin B9, and an array of viral antigens. Its
genetic contribution is primarily from variants proximal to
the HLA genes, and other genes in 6p21.3 like the
butyrophilin-like protein BTNL2 and the testis sperm-
binding protein TSBP1. Though these clusters could offer
therapeutic insights for MI, the components are less clear to
interpret than those underlying risk for BMI.

Discussion

In this study, we introduce a new technique to model poly-
genic traits using components of genetic associations. We
build an example model using data from unrelated white
British individuals in the UK Biobank and show that our
method adds an interpretable dimension to traditional poly-
genic risk models by expressing disease, lifestyle, and
biomarker-level elements in trait-related genetic components.
Predicting genetic risk with these components led us to infer
disease pathology beyond variant-trait associations without
loss of predictive power from reducing model rank (Fig. S2).

For two phenotypes of interest (BMI and MI), we
showed that the DeGAs risk profile offers meaningful
insight into the genetic drivers of trait risk for an individual.
We then used this measure to identify clusters of high-risk
individuals who share similar genetic risk profiles for each
of the traits. We find, as in previous work [18], that genetic
risk for BMI can be decomposed into fat-mass and fat-free
mass-related components. We also show that while many
individuals have risk for BMI driven by a combination of
the two components, there exist “outlier” individuals who
have strong contributions from only one of them. Our
results further indicate that this diversity of contributory
genetic risk is not limited to BMI and MI (Supplementary
Results; Fig. S3). However, extracting biological insights
for other traits will likely require deeper phenotyping, or
other rich resources like single cell data.

We further demonstrated the generalizability of dPRS by
assessing its performance in independent test sets of white
British and non-British white individuals (Fig. S5; all traits in

Data S1) from the UK Biobank. Among non-British whites,
the top 2% of dPRS carries OR= 1.9 for MI (Fig. S5),
compared to 1.7 in the test set individuals (Fig. 2). Likewise,
the top 2% of dPRS risk has 1.63 kg/m2 higher BMI in non-
British whites compared to 1.40 kg/m2 in the test set. Though
dPRS performance is similar in these groups for these traits,
concerns about the generalizability of traditional clump-and-
threshold PRS across groups also apply to dPRS. This may
be compounded by our choice to LD-prune variants prior to
analysis with DeGAs instead of using clumping or fine-
mapping. One benefit of our approach is that it is agnostic to
fine-scale patterns of association within LD blocks, which
avoids the problem of having distinct (but highly correlated)
causal variants across traits within a locus. However, pruning
may leave dPRS more vulnerable to overfitting patterns of
LD in the GWAS population compared to approaches which
use fine mapped variants. This may be worth revisiting in
future work, especially as DeGAs is agnostic to choices in
input summary statistics. Here, we use GWAS effect sizes
and z-statistics—however, coefficients from linear mixed
models (e.g., BOLT-LMM [46]), regularized regression (e.g.,
bigsnpr [47], BASIL [8]), or polygenic risk models which
explicitly consider LD (e.g., PRScs [16], LDPred [7]) may
also be used, and would likely improve the predictive per-
formance of dPRS.

We also note that our analysis of subtypes may not be
robust to different choices of input traits or study population.
Taking MI as an example, our study finds four clusters of
outliers (Fig. 4F), two of which seem to measure clinical
biomarkers by proxy—namely, cholesterol and blood pres-
sure medications. However, residual confounding and reverse
causation (among other sources of bias) are always worth
considering when using data from observational studies such
as UK Biobank [20]. We therefore advise careful deliberation
when selecting analysis traits for DeGAs, and when inter-
preting trait risk associated with DeGAs components.
Although our trait selection in this work was deliberately
broad, so as to highlight the wide scope of application areas
for our method, we were sure to exclude traits that may have
noisy or confounded associations: specifically, rare conditions
(n < 1000 in the UK Biobank) or traits that correlate with
social measures like socioeconomic status.

In future work, more careful phenotype curation could
result in insights beyond those we describe here. Several
trait groupings may be of interest for follow-up, particularly
diseases with known biomarkers (e.g., blood lipids, pul-
monary anthropometry, and cardiovascular disease). Trait
groups need not be clinically established risk factors to be
informative—in particular, biological pathways and net-
works [48] or genetic correlation estimates [49] may pro-
vide sufficient prior evidence of shared biology to produce
meaningful findings with DeGAs. We encourage replication
efforts, and to facilitate further study we have made all
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DeGAs risk models from this work available on the Global
Biobank Engine [18] (Web resources).

Looking forward, we anticipate many potential applica-
tions of component-aware polygenic risk models like dPRS.
Since DeGAs requires only summary-level data, it is pos-
sible to build a component model of genetic risk without the
need to rerun genome-wide association tests. It is also
possible to build dPRS on GWAS from one cohort (even
several) and use it to assess genetic risk and identify trait
subtypes in another. Such analyses will help elucidate the
diversity of polygenic risk for complex traits across indi-
viduals and populations.

Web resources

Supplementary data, including weights for the final DeGAs
model, are available on the Global Biobank Engine [28]:
https://biobankengine.stanford.edu/downloads.
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