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Abstract
Human Leucocyte Antigen (HLA) testing is useful in the clinical work-up of coeliac disease (CD) with high negative but
low positive predictive value. We construct a genomic risk score (GRS) using HLA risk genotypes to improve CD prediction
and guide exclusion criteria. Imputed HLA genotypes for five European CD case-control GWAS (n > 15,000) were used to
construct and validate an interpretable HLA-based risk model (HDQ15), which shows statistically significant improvements
in predictive performance upon all previous HLA-based risk models. Conditioning on this model, we find two novel
associations, HLA-DQ6.2 and HLA-DQ7.3, that interact significantly with HLA-DQ2.5 (p= 2.51 × 10−9, 1.99 × 10−7,
respectively). Integrating these novel alleles into a new risk model (HDQ17) leads to predictive performance equivalent or
better than the strongest reported GRS (GRS228) using 228 single nucleotide polymorphisms (SNPs). We also demonstrate
that our proposed HLA-based models can be implemented using only six HLA tagging SNPs with statistically equivalent
predictive performance. Using insights from our model to guide exclusionary criteria, we find the positive predictive value of
CD testing in high-risk populations can be increased by 55%, from 17.5 to 27.1%, while maintaining a negative predictive
value above 99%. Our results suggest that HLA typing is currently undervalued in CD assessment.

Introduction

Coeliac disease (CD) is a chronic immune disease char-
acterised by small intestine damage resulting from ingestion
of gluten, the alcohol insoluble protein in wheat, barley and

rye [1]. CD is a common disease with a prevalence of
0.5–2% in Caucasian and Middle Eastern populations [2–4].
The current diagnostic gold standard for CD is the
demonstration of characteristic small intestinal inflamma-
tion and damage while on a gluten-containing diet [5].
Intestinal biopsies are obtained by upper gastrointestinal
endoscopy, a resource-intensive, invasive and inconvenient
process [6]. While non-invasive CD-specific serotyping of
antibody markers are a strong positive predictor of disease,
these tests are inaccurate in patients already on a gluten-free
diet or with other conditions such as liver disease,
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inflammatory bowel disease and type-1 diabetes [7].
Alternative, non-invasive risk stratification strategies are
desired to reduce unnecessary endoscopies and improve the
overall effectiveness of CD investigation [3].

One increasingly adopted strategy involves human leuco-
cyte antigen (HLA) typing based on the exceptionally strong
association of three major susceptibility alleles, HLA-
DQA1*05, HLA-DQB1*02 and HLA-DQB1*03:02 with CD
[8]. Over 99% of individuals with CD carry these risk alleles
as a part of the DQ2.5 (HLA-DQA1*05, HLA-DQB1*02),
DQ2.2 (HLA-DQA1*02, HLA-DQB1*02), DQ7.5 (HLA-
DQA1*05 without HLA-DQB1*02) or DQ8 (HLA-
DQB1*03:02) haplotypes [9]. However, the usage of HLA
typing has limited predictive value for CD due to the high
population frequency of these susceptibility haplotypes
(30–60%) [10, 11]. Thus, while HLA typing alone cannot
yield a diagnosis, the test is useful in selected clinical situa-
tions, such as assessing individuals already on a gluten-free
diet [12], individual’s whose biopsy results are ambiguous or
assessing first-degree relatives of CD patients where pre-
valence of the disease is 10%. In these scenarios, the strong
negative predictive value (NPV) of genetic testing can be used
to confidently exclude a diagnosis of CD [8] and thus remove
the need for ongoing clinical monitoring [8, 13].

HLA typing of CD currently excludes individuals from a
CD diagnosis if they only carry “low” risk haplotypes [6], i.e.,
DQ7.5 or any other HLA-DQ allele that is not linked to CD
risk, which we collectively denote DQX. However, there is
evidence that this approach may not have captured the
diversity in the relative risk of HLA variation. Firstly, recent
clinical guidelines recommend further refinement of HLA
haplotypes into six categories based on observed relative risk,
with the intent of more fine-grained stratification of high-risk
individuals [8]. Secondly, interactions between HLA haplo-
types in CD, particularly the DQ2.2 and DQ7.5 haplotypes,
were found to increase disease risk and better explain phe-
notypic variance [14, 15]. Thirdly, a logistic regression model
using a set of HLA tag SNPs improved prediction of disease
compared with coarse stratification even without accounting
for DQ7.5 attributable risk [16]. These insights suggest that a
more nuanced stratification of HLA-DQ alleles could identify
further factors that improve prediction of CD risk.

Independently, multiple groups have explored the use of
loci outside of the HLA region for improving prediction of
CD risk using genome-wide association studies (GWAS).
Romanos et al. demonstrated that a genomic risk score
(GRS) from known CD-risk haplotypes and an additional
57 non-HLA single nucleotide polymorphisms (SNPs)
could improve patient stratification over HLA haplotypes
alone [17]. Similar conclusions were reached by Abraham
et al., who used penalised regression models to construct a
GRS with 228 genome-wide SNPs and evaluated its per-
formance on six GWAS dataset from five European

populations [16]. While this GRS provides the best-reported
genomic prediction of CD to date, the role of this model and
the impact of non-HLA genetic information in clinical
practice is not yet well established, nor is genome-wide
SNP data routinely collected. Moreover, there are strong
limits to the biological interpretability of genome-wide GRS
as the number of included variants becomes large.

In this work, we sought to determine whether the use of
GRS methodologies could improve prediction of CD using
only HLA typing which is currently clinically collected.
Using five European CD case-control GWAS datasets, we
demonstrate that HLA-DQ genotype stratification has a
greater predictive performance than previously attributed
while remaining biologically interpretable. By conditioning
on this risk score, we identify two novel risk alleles, DQ6.2
and DQ7.3, that show significant, replicating interaction
effects with DQ2.5, and can be integrated into our proposed
risk score to further improve predictive performance. We
also demonstrate that our proposed HLA-based models can
be implemented using only six HLA tagging SNPs with the
minimal loss of predictive performance. Finally, we assess
the impact of shifting the CD exclusionary criteria, based on
insights from our novel models, demonstrating that it is
possible to substantially increase the number of individuals
excluded via genetic testing, with minimal impact on NPV.

Methods

Datasets

Five European CD case-control datasets were used in this
analysis (Supplementary Table 1) [18]. Genotypes for
528,969 SNPs (Illumina Hap550) were available for the
United Kingdom (UK2), Finland (FIN), Italy (IT) and The
Netherlands (NL) populations and a subset of 295,453
SNPs (Illumina Hap 300) for the United Kingdom (UK1)
cohort [18]. Data from these cohorts were accessed from
https://www.ebi.ac.uk/ega/studies/EGAS00000000057
under accession numbers EGAD00010000292 (UK1) and
EGAD00010000286 (UK2, FIN, IT, NL). Previous analysis
indicates population structure does not play a role in the
predictive capacity of models built on these cohorts [16, 18]
and hence correction for this structure has not been included
in our models. The same datasets were used for the con-
struction and validation of the GRS228 model [16], allowing
for a direct comparison of performance.

Imputation and grouping of HLA-DQA1 and HLA-
DQB1 alleles

The R package HIBAG (HLA Genotype Imputation with
Attribute Bagging) was used to impute four-digit HLA-
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DQA1 and HLA-DQB1 genotypes for each sample [19].
This tool has been shown to impute common HLA haplo-
types with an accuracy of 94–99.5% in European popula-
tions [19]. Median posterior probability of 0.99 was
observed for imputations in the UK2, FIN, NL and IT
populations and 0.92 for imputation in the UK1 dataset,
where the density of SNPs is reduced (Supplementary
Table 2). In-line with recommendations for the HIBAG
package, we excluded all samples where posterior prob-
abilities for imputed HLA-DQA1 or HLA-DQB1 alleles
were below 0.5, removing ~2.5% of samples from the
analysis. HLA-DQA1 and HLA-DQB1 genotypes were
combined to determine the presence of known CD-risk
haplotypes DQ2.5, DQ2.2, DQ8 and DQ7.5 haplotypes and
their complement, denoted DQX (Supplementary Table 3).
From these, we inferred 15 genotypes representing all
possible combinations of these haplotypes. Counts for each
of these HLA genotypes in cases and controls for each
population are detailed in Supplementary Table 4.

Existing CD-risk prediction models

We consider two HLA-based risk prediction models for
CD based on previously described risk stratification stra-
tegies. The first, the Romanos (ROM) model [17, 20],
groups HLA alleles into three categories of risk (low,
intermediate and high) according to the dosage effect of
the HLA-DQ2 molecule. This model has served as a
baseline for a number of evaluations of the predictive
contribution of non-HLA genetic variants [16, 17, 20].
The second model, referred to as the Tye-Din (TD) model,
is an adaptation of a recent clinically oriented six category
stratification of HLA-based risk [8] into a prediction
model. Both the ROM and TD models were constructed
by stratifying samples based on their HLA genotypes into
three or six categories, respectively, coded as integers
either 1–3 or 1–6 where lower numbers indicate greater
risk (Supplementary Table 5).

We also present a comparison against a genome-wide
SNP-based model by Abraham et al. [16], referred to as
GRS228, derived from an application of L1-penalised
support-vector machine to the UK2 cohort [16] and
implemented using the published scores. This model has the
highest predictive accuracy of CD risk published to date.

Proposed HDQ models

To explore whether fine-grain stratification of known CD-
risk HLA genotypes would improve risk prediction of CD,
we constructed two logistic regression models. The first,
HDQ15, is based on the 15 possible genotypes formed from
known risk haplotypes and the second, HDQ17, considers a
further 2 risk genotypes discovered in this work and using

the interaction analysis described in the next section. Gen-
otypes for both models are listed in Supplementary Table 5.

The HDQ models can be expressed as the following
logistic regression model:

log
P Y ¼ 1ð Þ
P Y ¼ 0ð Þ ¼

X
g2G αg½G ¼ g�; ð1Þ

where G denotes the genotype of the HLA-DQA1/DQB1
locus (covering 15 or 17 genotypes for HDQ15 and HDQ17,
respectively), Y denotes the binary phenotype, and [.] denotes
the Iverson bracket, used to highlight that genotypes are
mutually exclusive and defined as 1 if the genotype G of
HLA-DQA1/DQB1 locus is g and 0, otherwise. The generated
model weights αg are listed in Supplementary Table 5. Further
details are provided in the Supplementary Methods.

Identification of interactions between known and
novel HLA risk haplotypes

To determine if further HLA risk factors could be identified
beyond those used in the HDQ15 model, we systematically
evaluated trans interaction effects between four known CD-
risk haplotypes and HLA-DQA1 and HLA-DQB1 haplo-
types, which have no prior evidence of association with CD.
We considered only interactions which occur in more than
1% of the UK2 cohort, resulting in 15 candidate interactions
involving 6 previously unassociated HLA haplotypes.
Interaction effects were tested using the standard likelihood
ratio test with 1 degree of freedom, comparing the logistic
regression fit of the models with the interaction term:

log
P Y ¼ 1ð Þ
P Y ¼ 0ð Þ ¼ βh0 þ γh0h00 þ

X
g2G15

αg½G ¼ g�; ð2Þ

and without interaction:

log
P Y ¼ 1ð Þ
P Y ¼ 0ð Þ ¼ βh00 þ

X
g2G15

αg½G ¼ g�; ð3Þ

where Y denotes the binary phenotype, h′, h″∈ {0, 1, 2}
denote the dosage of haplotypes h′∈ℍknown and h″∈ℍnovel

with ℍknown and ℍnovel denoting 4 CD risk and 6
unassociated haplotypes, respectively, and the summation
is over the set G15 of 15 genotypes used in HDQ15. Further
details are available in the Supplementary Methods. This
test was repeated 15 times, once for each of the 15 candidate
interactions.

Identification of SNP tags for CD-risk HLA
haplotypes

Inferring CD-risk haplotypes using SNP tags is a well-
established technique [11], however, previously described
SNP tags for the DQ2.2, DQ8 and DQ7.5 haplotypes were

Improved HLA-based prediction of coeliac disease identifies two novel genetic interactions 1745



not available in the analysed datasets. To identify alternative
SNP tags, an exhaustive comparison of ~120,000 polygenic
HLA SNPs and each of the six risk haplotypes used in this
work (DQ2.5, DQ2.2, DQ8, DQ7.5, DQ6.2 and DQ7.3)
was performed in the 1000 Genomes EUR population and
T1DGC reference panel [21]. R2 between tag SNPs and
haplotypes was computed using PLINK [22] (using the—r2

flag). The best performing available tags are detailed in
Supplementary Table 6.

Samples were excluded from analysis if tag-SNP geno-
types were missing (0.5% of samples) or more than two
HLA-DQ haplotypes tagged (0.1% of samples). A set of
rules was manually derived to convert SNP genotype to
HLA-DQ genotype (Supplementary Table 7).

Constructing an ensemble classifier from HDQ17 and
GRS228

Given there are visual differences in the ROC curve shape
coming from the strongest risk prediction models, HDQ17

and GRS228, we explore whether a combination of these two
risk models leads to further improvements in CD prediction.
The HDQ17 model achieves higher AUC than GRS228 in all
cohorts using only 17 possible score levels, thus allocating
identical risks to many samples. Conceptually, we chose to
use GRS228, which has much finer risk scores, to act as a tie
breaker in ordering samples within each of the 17 risk
categories from HDQ17. Operationally, this is achieved by
taking a weighted sum of risk scores from both models,
giving a very high (e.g., 99%) and very low (e.g., 1%)
weights to scores from the HDQ17 and GRS228 models,
respectively.

In addition, in order to explore whether only a subset of
GRS228 SNPs are sufficient for combination model to
maintain strong predictive performance, we re-implemented
the ensemble using a reduced GRS228 made up of the
highest weighted SNPs in the model [16] that were outside
of the HLA-DQ region. The subset was determined by
starting with the SNP with the highest weighting in GRS228
and using a forward stepwise procedure to incrementally
add SNPs until no further improvements in predictive per-
formance were observed.

Measures of predictive performance

AUC values were used as the primary measure to quantify
predictive performance of all models. Significance of the
AUC differences was evaluated using a one-sided
DeLong’s test for paired ROC curves (calculated using
the R package pROC [23]). As a secondary analysis, we
evaluated the calibration of the most predictive models
(HDQ15, HDQ17 and GRS228) using Brier’s index [24] and
cross-entropy [25], a measure of calibration related to KL

divergence, to evaluate whether the resulting scores corre-
spond to empirically observed probability of risk. As the
risk score from GRS228, derived via penalised regression,
cannot be interpreted directly as a probability, we applied
Platt scaling [26] in these calibration analyses to convert the
risk scores to probabilities.

Data visualisation

All plots were derived using R (version 3.3.2) [27] using the
package ggplot2.

Results

Coeliac disease risk estimates from known risk
haplotypes can achieve predictive power greater
than previously indicated

The three category ROM model [17] has previously been
used as the HLA-attributed risk prediction baseline against
which several GRS models were compared [16, 17].
Examining the distribution of risk across 15 HLA-DQ
genotypes (Fig. 1, Supplementary Table 8) shows that while
the ROM “high” and “low” categories represent two clear
extremes of CD risk, the risk attributed by “intermediate”
categories are highly variable with odds ratios (OR) ranging
from OR= 2.43–7.37 for DQ2.5/DQX to OR= 0.06–0.28
for DQ2.2/DQX.

As these results suggested that stratification of patients
using the ROM model may not accurately represent HLA
mediated risk, we constructed a novel risk score, HDQ15,

Fig. 1 Effect sizes of known HLA-DQ risk genotypes. Each point
shows the odds ratios (OR) for an HLA-DQ risk genotype from one of
the five European CD case/control populations considered in this
study. Red, orange and green shaded areas indicate which genotypes
fall into the “high”, “intermediate” and “low” risk categories from
ROM model. Genotypes are sorted by average OR of each genotype
(horizontal bar). Points were omitted for DQ2.2/DQ2.2 in UK1 and
DQ7.5/DQ7.5 in FIN, NL and UK1 as they were not observed in any
CD carriers. All OR are available in Supplementary Table 8 (color
figure online).
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based on 15 HLA-DQ genotypes in the UK2 population.
Predictive performance of this model was subsequently
assessed using four remaining independent cohorts, in each
separately and all four combined. The performance was
compared to two previously reported HLA models, ROM
and TD, and the most accurate CD GRS to date based on
genome-wide SNPs, GRS228.

In all populations, the HDQ15 and GRS228 models had the
highest AUC with no significant difference observed
(Fig. 2, Supplementary Fig. 1A–D). In contrast, significant
improvements were observed against all other models
(Supplementary Table 9). For the combination of all four
test cohorts, the increased performance of GRS228 was sta-
tistically significant (AUC: 0.873vs0.879, for HDQ15 and
GRS228, p= 0.003). The performance of the ROM model
was much lower (~5%) than all other models in all

populations. The TD model, recently recommended for
clinical practice, performed only marginally worse than the
best performing models (~2%).

The HDQ15 model also shows greater calibration com-
pared to the Platt-scaled GRS228 across all datasets regard-
less of whether Brier index (0.13 vs 0.14 for HDQ15 and
GRS228, respectively, on the combined dataset) or cross-
entropy (0.40 vs 0.43) was used (Supplementary Table 10).

The DQ6.2 and DQ7.3 haplotypes modulate DQ2.5
risk and can improve CD prediction

Given the increasing evidence that interactions between HLA
alleles can improve risk stratification in autoimmune diseases
[14, 15], we sought to determine whether interactions
between known and novel HLA-DQA1/HLA-DQB1 risk

Fig. 2 ROC curves of the CD-risk models considered in this work
in four external validation cohorts, combined or individually.
Curves in (a) represent the performance of the HDQ15, TD, ROM and
GRS228 models over all validation cohorts combined. Curves on the
right represent performance of HDQ15 and GRS228 in the (b) FIN, (c)

IT, (d) NL and (e) UK1 cohorts, with models trained using the UK2
dataset. The AUCs for each model is shown in the legend of each plot.
Models that had the highest AUC were marked with an asterisk, while
those not significantly different from the best performing model are
marked with a cross.

Table 1 p values and odds ratios
for novel risk haplotypes DQ6.2
(HLA-DQA1*01:02-
DQB1*06:02) and DQ7.3
(HLA-DQA1*03:03-
DQB1*03:01) as additive effects
(top half) or interacting with
DQ2.5 (bottom half).

Discovery (UK2) Replication (Comb.)

Haplotype −log10 (P) OR −log10 (P) OR

Additive

DQ6.2 9.93 1.94 (1.60–2.35) 1.04 1.23 (1.02–1.47)

DQ7.3 9.34 0.33 (0.23–0.48) 12.34 0.22 (0.14–0.35)

Interaction with DQ2.5

DQ6.2 6.84 3.58 (2.17–5.88) 3.53 2.43 (1.46–4.04)

DQ7.3 8.16 0.12 (0.06–0.25) 3.23 0.21 (0.09–0.48)

Each analysis is further separated into the discovery phase from the UK2 dataset, and the replication results
from all remaining cohorts combined. −log10 (P) indicates the p value from the likelihood ratio test
(comparing Eq. (2) vs (1) to test the additive effect and Eq. (3) vs (2) to test the interaction effect) and OR is
the odds ratio (and confidence interval).
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haplotypes could be identified which further improve our
predictive model. Conditioning on HDQ15, we tested inter-
actions between known and novel HLA-DQ haplotypes,
finding that two HLA-DQ haplotypes, DQ6.2 (HLA-
DQA1*01:02-DQB1*06:02) and DQ7.3 (HLA-
DQA1*03:03-DQB1*03:01), show significant epistatic
interactions with DQ2.5 (Table 1, Supplementary Table 11).

DQ6.2 was found to increase risk when observed with
DQ2.5 (OR= 3.58 in UK2, OR= 2.43 in validation) and
DQ7.3 was found to decrease risk when observed with the
DQ2.5 haplotype (OR= 0.12 in UK2, OR= 0.21 in vali-
dation). These modulating effects could also be observed in
each of the four validation populations (Fig. 3a). Interest-
ingly, DQ7.3 also showed significant additive effects in
both the UK2 discovery and combined validation cohorts
(Table 1).

The DQ2.5/DQ6.2 and DQ2.5/DQ7.3 risk genotypes
were incorporated into the HDQ15 model to construct a
novel 17-category model HDQ17. This model shows the

strongest AUC in all cohorts and significantly outperforms
HDQ15 (AUC in the combined validation cohort was
0.873 and 0.882, respectively, for HDQ15 and HDQ17=
9.6 × 10−12) (Fig. 3b, Supplementary Table 9). However, no
statistically significant difference in AUC could be observed
between the HDQ17 and GRS228 on the combined validation
cohort (Fig. 3b). The HDQ17 model also shows greater
calibration in the combined validation cohort (according to
both Brier index and cross-entropy) than either HDQ15 or
GRS228 models (Supplementary Table 10).

Proposed HLA-based risk models can be
implemented using six tag SNPs

To ensure that the results observed in this work were not
driven by imputation error and given prior work showing
that CD-risk haplotypes could be tagged by SNPs [28], we
used data from the 1000 Genomes Project and T1DGC
reference panel to identify a set of six SNPs (Supplementary

Fig. 3 Effect size and impact on prediction of the novel interactions
of DQ7.3 and DQ6.2. a Effect size (OR) of the DQ6.2/DQ2.5 and
DQ7.3/DQ2.5 relative to the DQ2.5/DQX genotype, showing the
consistent deleterious and protective effects of these genotypes. The
DQ7.3/DQ2.5 is not present in cases in the IT cohort. b ROC curves of
HDQ17, HDQ15 and GRS228 on combined validation cohort, high-
lighting the predictive improvement of the two novel interactions in

HDQ17 compared with HDQ15. c The performance of HDQ17 when
implemented using tag SNPs compared with GRS228. d A small but
statistically significant improvement is obtained when the HDQ17 and
GRS228 are combined compared to the individual models. Across all
subfigures, models that had the highest AUC were marked with an
asterisk, while those not significantly different from the best per-
forming model are marked with a cross.
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Tables 6 and 7) that could be used to establish the presence
of HLA risk haplotypes. These six SNPs were then used to
re-implement the HDQ15 and HDQ17 models (Table 2,
Fig. 3c).

The predictive performance of the tag-SNP-based models
was not significantly different to corresponding models
implemented using imputed HLA genotypes, with only
HDQ15 in the FIN cohort showing a statistically significant
difference when using haplotypes compared to tag SNPs
(Table 2). These results provide further evidence of the
accuracy of imputation and the contributions of the novel
risk haplotypes.

Combining HLA and genome-wide models leads to
further statistically significant improvements in
prediction

Given that the ROC curves for the HDQ17 and GRS228
models show noticeable differences in the shape of their
ROC curves (Fig. 3b), we assessed whether predictive
performance could be further improved by combining these
two models. Using GRS228 to resolve ties in 17 risk cate-
gories generated by HDQ17 resulted in a combination model
HDQ17+GRS228 with the highest AUC across all valida-
tion datasets (Fig. 3d, Supplementary Table 9). The AUC of
the combination model significantly improved over either
constituent model alone in the combined validation cohort
(AUC: 0.887 vs 0.879 for GRS228 (p= 2.8 × 10−4) and vs
0.882 for HDQ17 (p= 1.62 × 10−26)).

We further examined the GRS228 to determine whether
the gains of the combined model were driven by only a
subset of the SNPs. Using a forward stepwise approach to
identify SNPs with the largest weight in GRS228 outside of
the HLA-DQA1 and -DQB1 genes, we found a combination
model with no significant drop in AUC (0.886, p= 0.99)
can be developed using only top six ranked non-HLA SNPs
that form GRS228 (Supplementary Table 12). Of these SNPs,
four lie within or close to the HLA region, possibly iden-
tifying further unresolved HLA risk factors. The remaining
two SNPs, near the CCR1 and LPP genes, were both

previous identified as significant risk variants in a previous
analysis of this dataset [18]. Adding these six top non-HLA
SNPs from GRS228 to the 6 HLA tag SNPs to create a 12
SNP model results in a lower AUC (0.879, p= 1.2 × 10−4

on combined cohort), comparable to that of the six HLA tag
SNPs model alone. These results highlight that while there
is an independent contribution of non-HLA loci to pre-
dictive performance, this contribution may be smaller than
has been previously characterised.

CD screening exclusionary criteria may be modified
to improve predictive value using insights from the
HDQ17 model

The improved risk stratification of the HLA-based HDQ17

model offers an opportunity to re-examine the current
exclusionary criteria used in CD genetic testing to deter-
mine whether the high NPV can be maintained while
improving positive predictive values (PPV). We system-
atically considered the impact of changing the current
exclusionary criteria (DQX/DQX, DQ7.5/DQX or DQ7.5/
DQ7.5 which have the 1st, 4th and 3rd lowest OR in UK2,
respectively) to also exclude individuals who carried gen-
otypes with the 2nd (DQ8/DQ7.5), 5th (DQ2.2/DQX) and
6th (DQ8/DQX) lowest OR from UK2 (Supplementary
Table 8). The resulting trade-off between PPV and NPV at a
CD prevalence of 1% (approximate frequency in the general
population) and 10% (approximate frequency in first-degree
relatives) is shown in Fig. 4.

At prevalence of 1% (Fig. 4a), the mean NPV above
0.999 was maintained even if the six HLA risk genotypes
with lowest OR were treated as negative for CD. In contrast,
PPV increased across all cohorts from a mean PPV of 1.9%
for the current exclusionary criteria to 3.3% for the six
lowest CD-risk genotypes. If 100,000 individuals from this
high-risk group were tested with the DQ8/DQ7.5, DQ2.2/
DQX and DQ8/X genotypes incorporated into the current
exclusionary criteria, the number of people for whom a CD
diagnosis can be excluded would be increased by 49%
(from 47333 up to 70707), while observing a relatively
small increase in the number of false negatives (from 18 to
65, Supplementary Table 13). The similar results are also
observed when using tag SNPs for screening (Supplemen-
tary Table 13).

A similar effect is observed at a CD prevalence of 10%
(Fig. 4b), where the usage of these six lowest risk genotypes
as an exclusion cut-off yields PPV improvement from 17.5
to 27.1% while maintaining NPV above 99%. Again, if
100,000 individuals from this high-risk group were tested
with the DQ8/DQ7.5, DQ2.2/DQX and DQ8/X genotypes
incorporated into the current exclusionary criteria, we
would correctly exclude 64,279 individuals from a CD
diagnosis.

Table 2 AUCs for the HDQ15 and HDQ17 models implemented using
either imputed haplotypes or a selection of six tag SNPs.

Model Version Combined FIN IT NL UK1 UK2

HDQ17 Haplotype 0.882 0.895 0.886 0.867 0.888 0.873

Tag SNP 0.879 0.891 0.876 0.862 0.887 0.869

HDQ15 Haplotype 0.873 0.893 0.875 0.86 0.878 0.862

Tag SNP 0.871 0.884 0.872 0.857 0.876 0.857

Italic font marks the only statistically significant difference between
“Haplotype” and “Tag SNP” implementations observed for the
HDQ15 model on the FIN cohort (one-sided DeLong’s test at
significance threshold 0.05/4= 0.013).
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Discussion

Despite the high positive predictive value of serological
testing and the high NPV of HLA genotyping, biopsy via
upper gastrointestinal endoscopy, a resourceintensive, inva-
sive and inconvenient procedure, remains the gold standard
for diagnosis of CD. There is a need for improved risk stra-
tification strategies to reduce unnecessary endoscopies and
improve the efficiency of CD investigation, particularly in the
screening of high risk, asymptomatic individuals. This work
demonstrates that CD-risk score models from known and
novel HLA risk haplotypes can lead to statistically significant
improvements in predictive performance compared to current
HLA stratification approaches. These models perform
equivalently to complex polygenic risk scores integrating
hundreds of genomic markers. However, the relatively low
number of variants in these novel models mean that they
remain biologically interpretable.

A potential clinical impact of this research is the mod-
ification of the exclusionary criteria for CD when using

genetic testing as a screening tool, especially for children at
high risk for CD due to family history, but who are cur-
rently asymptomatic. For these at-risk groups, recent Eur-
opean guidelines recommend HLA testing as an initial
screen alongside serological testing [29]. The results pre-
sented in this work indicate that altering the exclusionary
criteria (i.e., the set of haplotype combinations that indicate
no risk of CD), we may be able to dramatically increase the
number of people correctly excluded from a CD diagnosis,
and hence reduce the need for ongoing clinical monitoring
and number of invasive biopsies [8, 13]. While this shift in
exclusionary criteria leads to a small increase in the false
positive rate, it would be useful to explore whether this may
be mitigated by other sources of information such as further
monitoring or serological testing. As with varying the
inclusion criteria for serology testing [29], further studies
need to be conducted to better quantify the impact and cost-
benefit trade-off of any changes.

By conditioning on the HDQ15 model, two novel HLA
haplotypes which modulate HLA risk through HLA-DQ2.5

Fig. 4 PPV and NPV for varying CD exclusion criteria. Points
show the impact of altering the diagnostic exclusionary criteria for CD
diagnosis. The left-most points of the graph correspond to the current
exclusionary criteria of carrying no DQ2 or DQ8 risk alleles (e.g.,
those risk genotypes used to exclude CD in clinical practice which
corresponds to DQX/DQX, DQX/DQ7.5, DQ7.5/DQ7.5). Based on

their low OR in the UK2 cohort, we incrementally consider the
addition of DQ8/DQ7.5, DQ2.2/DQX and DQ8/DQX on top of
the current exclusionary criteria. PPV/NPV are computed at a disease
frequency of (a) 1% and (b) 10% (note the difference in scale on the y-
axes). Individual points within each category represent a different
cohort and horizontal lines represent the mean.
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were identified. Taken with previous studies [14, 15], these
findings provide further evidence that non-additive inter-
actions between HLA loci may be common. While addi-
tional independent SNPs within the HLA region have been
previously identified by CD GWAS [30], no study has
mapped this signal to associations with DQ6.2 or DQ7.3.
However, both haplotypes have been associated related
autoimmune conditions, with DQ6.2 showing associations
with multiple sclerosis [31], type-1 diabetes [32] and nar-
colepsy [33], while DQ7.3 has been associated with nar-
colepsy [34]. The effect size of these variants in their
interaction with DQ2.5 in the validation cohort is more
extreme than the strongest reported non-HLA variants and
their impact on risk prediction is statistically significant,
highlighting their potential importance for understanding
the underpinnings of CD. We note however that there is
clear variability across the different populations, especially
for DQ6.2, indicating the potential for other modifiers of
this relationship. Future study of the mechanism by which
these interactions modulate DQ2.5 risk will help inform
how HLA alleles mediate disease predisposition on the
molecular level.

Exclusionary typing for CD is now one of the most
common genetic tests performed in Australia [8], and if
this typing has already been performed, the HDQ17 model
may be applied at no additional expense to better under-
stand patient risk. An interesting area of relevant research
is point-of-care SNP genotyping [35, 36], where the small
panel of SNPs, combined with point-of-care serological
tools [37], may provide a pathway towards immediate,
confident CD exclusion at a low cost in the clinical set-
ting. The ability to implement the HDQ17 model using
either HLA genotype or SNP tags indicates that it may be
a more easily translatable alternative to existing GRS
approaches given that HLA genotyping is already in use
in routine CD diagnosis.

The HLA-only HDQ17 model performs equivalently to
the best-reported genomic prediction models using both
HLA and non-HLA information in all validation cohorts.
This has several implications for risk stratification in CD
and other autoimmune diseases. Firstly, the contribution of
non-HLA variation for CD-risk prediction is smaller than
has been previously characterised, given that previous
comparisons were against a baseline that did not make full
use of HLA risk variation [17]. Secondly, our SNP-based
implementation of the HDQ17 model is more parsimonious
than previously published CD-risk models which were
derived using statistical learning. This result is in line with
previous observations that many widely used regularised
machine learning models are unable to find the smallest
subset of features that yield the best predictive performance
[38]. Indeed, the minor improvements observed by com-
bining the HDQ17 and GRS228 models appear to be largely

driven by six additional SNPs, with only two of these
clearly independent of the HLA region. Finally,
these results may also indicate that HLA genotypes may
have been underutilised in construction of GRS for other
autoimmune conditions and that further exploration of high-
resolution HLA data may yield improved risk stratification
for other conditions.

There are several limitations to this study. The first is that
despite the widespread usage of HLA imputation, there may
be differences if HLA typing were to be used to determine
haplotypes. These differences are likely to be small, given
the similar predictive results observed when our models are
re-implemented using a set of six independently derived tag
SNPs, but these relationships would ideally be confirmed in
future studies with gold standard HLA typing. Furthermore,
there is a great deal of genetic variation in the HLA region
that is not considered as a part of this analysis, including
other loci in the HLA, rare variants and structural variation
(e.g., insertions, deletions) within the DQA1 and DQB1
genes. We believe that integrating this information, as well
as non-HLA variation and serological parameters, may lead
to further improvements in predictive performance to be
evaluated in future work.

In conclusion, this study demonstrates that improved risk
prediction of CD is possible by altering the way that HLA
haplotypes are analysed and through the incorporation of
genetic interactions. The proposed HDQ17 risk haplotype
model performs equivalently to the genomic risk model
with the strongest predictive results reported to date across
multiple distinct European patient cohorts, but only uses
information that is routinely collected in a clinical setting.
The improved understanding may be useful for refining the
HLA typing exclusionary criteria, especially in screening of
children at high risk of CD. These results may allow for a
more refined clinical pathway for screening and diagnosis of
CD and act as the foundation for the development of
improved genomic prediction models.
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