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Abstract
The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are
still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on
read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and
compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic
hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of
87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained
100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events
(exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4%
following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered
workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs
that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in
overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-
diag.fr/nc4gpm/canoes-centered-workflow.

Introduction

Copy-number variations (CNVs) are a major cause of
Mendelian disorders [1] as well as risk factors for common
diseases [2]. With the advent of next-generation sequencing
(NGS), a number of software tools have been developed to
detect CNVs [3–5]. Whole-genome sequencing (WGS) is
often presented as an almost universal technique allowing
the assessment of almost any type of variation, including
CNVs and other structural variations [6]. WGS may even-
tually be used as a first-tier diagnostic tool in the context of
genetically highly heterogeneous disorders. However, the
detection of structural variations from data generated using
the technology of short read sequencing is still associated
with a number of false positives. Such events can be
detected using a plethora of bioinformatics tools based on
different principles, including depth of coverage (DOC)
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information, relative position of paired reads, split reads and
De Novo Assembly [7]. Besides the development of WGS,
targeted sequencing of gene panel, and whole-exome
sequencing (WES) remain of primary use in many diag-
nostic and research laboratories. They are indeed still con-
sidered as more affordable and of easier access as they can
be processed using usual informatics facilities accessible to
most laboratories. Moreover, the input of WGS is ques-
tioning in disorders with low genetic heterogeneity and high
phenotypic specificity. Hence, gene panels and WES remain
largely used.

The detection of CNVs from exonic capture-based tar-
geted sequencing solutions primarily relies on DOC infor-
mation [8, 9]. Tools based on DOC information compare
one sample with a reference, and predict deletions or
duplications depending on the increase or decrease of the
DOC as compared with the reference (Fig. 1). As each tool
was set up and trained on a specific dataset, one of the main
challenges is to evaluate the specificity and sensitivity of a
given software tool on large datasets. Studies evaluating the
diagnostic performances of CNV detection pipelines are
scarce although they appear to be critical for their use in
routine procedures [10–12]. In order to optimize CNV
detection from NGS data, a classical approach consists in
running multiple tools in parallel and then aggregate the
results to keep a CNV as candidate only if multiple tools
called it [13]. As it is more effective to do so with tools
using different types of bioinformatics methods (DOC, split
reads, etc.), this combinatory approach is most adapted
when working on WGS, or at least if most of the intergenic

or intronic regions—where breakends are more frequently
found—are captured. Here, we decided to focus on one tool
using the DOC approach as it still remains the most adapted
one for exonic capture. In a precision workflow approach,
we developed a workflow based on the already existing
software tool CANOES [14]. To select this tool, we pre-
viously compared features of each tool that are related to the
definition of a reference for CNV detection. Indeed, defin-
ing the reference is critical [15], as calling candidate dele-
tions or duplications requires the comparison of DOC data
of each sample to the reference. Our main criteria con-
cerning the definition of reference were that (i) the tool
should take into account information from multiple samples
and that (ii) it should associate a Hidden Markov Model
(HMM) with a distribution model to represent the varia-
bility of coverage between samples and between each tar-
get. CANOES appeared as the best candidate as it adopts a
pooling strategy to build its reference model and it uses an
HMM associated to a binomial negative distribution. In
addition, CANOES defines the reference independently for
each sample, by selecting samples with the closest mean
and variance.

We performed a diagnostic performance evaluation of
this workflow regarding gene panel and WES data, in two
steps. First, we compared CNV calls with a reference
technique, namely a comprehensive assessment by quanti-
tative multiplex PCR of short fluorescent fragments
(QMPSF) [16] or array comparative genomic hybridization
(aCGH), regarding targeted gene panel and WES data,
respectively. Second, we implemented our workflow in our

Fig. 1 Principles of depth of coverage (DOC) comparison. Sche-
matic distribution of reads among three different samples over five
sequenced exons. a The absence of any CNV. b Duplication of two
exons (2 and 3). c Deletion of exon 4. In order to call those CNVs,
software tools have to establish a reference. Some tools compare

paired data from the same patient, e.g., tumor tissue against germline,
while others build their reference from a pool of samples and then
compare a given sample to this reference, as the CANOES tool used in
our workflow.
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routine procedures and performed an additional evaluation
of the positive predictive value of our CANOES-centered
workflow using targeted confirmation of CNVs using an
independent targeted technique.

Material and methods

Gene panel sequencing

In order to evaluate our workflow, we analyzed data from
three gene panels (for detailed information, see Supple-
mentary Table 1). Patients provided informed written con-
sent for genetic analyses in a diagnostic setting.

Panel 1 was set up to focus on genes involved in pre-
disposition to colorectal cancer and digestive polyposis or
Li-Fraumeni syndrome [17]. This panel was implemented in
two successive versions. V1 was used to sequence 11 genes
in 2771 samples. V2 was used to sequence 15 genes (same
11 genes plus 4) in 549 samples. In both versions and for all
genes, exons, and introns outside repeated sequences were
captured.

Panel 2 also has two successive versions and was designed
to focus on two clinical indications: (i) hydrocephaly (3
genes) and (ii) Cornelia de Lange syndrome and differential
diagnoses (24 genes in v1, 30 in v2). In total, 320 samples
were sequenced using this panel (240 with v1, 80 with v2).
For this panel, introns outside repeated sequences were cap-
tured only for two genes, namely L1CAM and NIPBL.

Panel 3 was designed to focus on genes involved in
nonspecific intellectual disability. It has been used to ana-
lyze 220 samples and is composed of 48 genes (coding
regions only). The list of genes is available upon request.

Assessment of CNV calls from gene panel data:
step 1

For the comparison with a reference technique, we used
data obtained from samples for which both NGS (panel 1,
v1) and comprehensive QMPSF screening data were
available (n= 465). This QMSPF assessment included all
60 exons of 4 genes from this panel (APC, MSH2, MSH6,
and MLH1) and was applied to all 465 samples.

Assessment of CNV calls from gene panel data:
step 2

Following step 1, we implemented our CANOES-centered
workflow in our routine diagnostic procedures on NGS data
from all three panels (n= 3311 additional samples in total).
We performed confirmations of candidate CNVs using
QMPSF or multiplex ligation-dependent probe amplifica-
tion (MLPA) only in samples with a CANOES call. Primers

used for QMPSF screening and validation are available
upon request.

Whole-exome sequencing

Patients provided informed written consent for genetic
analyses either in a diagnostic or in a research setting, fol-
lowing the approval by respective ethics committees.

Whole exomes were sequenced in the context of diverse
research and diagnostic purposes (Supplementary Table 1).
Exomes were captured using Agilent SureSelect Human All
Exon kits (V1, V2 V4+UTR, V5, V5+UTR, and V6)
(Agilent technologies, Santa Clara, CA, USA). Final
libraries were sequenced on an Illumina Genome Analyzer
GAIIX (corresponding to exomes captured with the V1, V2,
or V4UTR kit, n= 10), or on an Illumina HiSeq2000, 2500,
or 4000 with paired ends, 76 or 100 bp reads (Illumina, San
Diego, Ca, USA). Exome sequencing was performed in
three sequencing centers: Integragen (Evry, France) (n= 6),
the French National Center in Human Genomics Research
(CNRGH, Evry, France) (n= 1065) and the Genome
Quebec Innovation Center (Montreal, Canada) (n= 128)
[18]. Exomes were all processed through the same bioin-
formatics pipeline following the Broad Institute Best Prac-
tices recommendations [19]. Reads were mapped to the
1000 Genomes GRCh37 build using BWA 0.7.5a. [20].
Picard Tools 1.101 (http://broadinstitute.github.io/picard/)
was used to flag duplicate reads. We applied GATK [21] for
short insertion and deletions (indel) realignment and base
quality score recalibration. All quality checks were pro-
cessed as previously described [18].

Assessment of CNV calls from WES data: step 1

For the comparison with a reference technique, we analyzed
data from 147 unrelated individuals with both WES and
aCGH data available.

Array CGH analysis

Oligonucleotide aCGH was performed as previously
described [22]. Briefly, high-resolution aCGH analysis was
performed using the 1 × 1M Human High-Resolution Dis-
covery Microarray Kit or the 4 × 180k SurePrint G3 Human
CGH Microarray kit (Agilent Technologies, Santa Clara,
CA, USA), using standard recommended protocols. An in-
house and sex-matched genomic DNA pool of at least ten
control individuals was used as reference sample. Hybridi-
zation results were analyzed with the Agilent’s DNA-
Analytics software (version 4.0.81, Agilent Technologies)
or the Agilent Genomic Workbench (version 7.0, Agilent
Technologies). Data were processed using the ADM-2
algorithm, with threshold set at 6.0 SD or 5.0 SD.
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WES/aCGH comparison

Array CGH enables the detection of genome-wide rearran-
gements thanks to the measurement of the deviation of the
fluorescent signal of the patient as compared with a control
DNA. The number of probes depends of the type of chip that
is used (here, Agilent 1M or 180k). The threshold to con-
sider a deletion or a duplication was set to the deviation of
five or three consecutive probes, respectively. This restricts
the detection to CNVs of 8 or 20 kb for Agilent 1M or
Agilent 180k chips, respectively, on average. On the con-
trary, as CANOES analysis is based on WES data, it is
strictly restricted to CNVs covering exonic sequences, but it
can detect CNVs as small as one single exon.

In order to combine these approaches to evaluate the
sensitivity of our workflow, we filtered out CNVs located in
intronic and intergenic regions exclusively from the aCGH
data (and on X and Y chromosomes for the samples pro-
cessed without sex-chromosome CNV calling). Moreover,
as CANOES analysis is based on the calculation of a mean
and variance of coverage on a given genomic region, the
detection of polymorphic rearrangements is very uncertain.
For that reason, we also filtered out all polymorphic CNVs
from aCGH data. We defined as polymorphic a CNV that
overlaps at least at 70% with CNVs reported in the Gold
Standard section of the Database of Genomic Variants with
a frequency superior to 1% [23].

Regarding the evaluation of the positive predictive value
of our workflow, we restricted our analysis to candidate
non-polymorphic CNVs detected from WES data (i) that are
theoretically detectable by aCGH as they encompass at least
three or five probes, depending on the chip used and (ii) that
overlap with segmental duplication regions <50% of the
CANOES target regions. The segmental duplication regions
have been extracted from the UCSC Table browser [24]
(https://genome-euro.ucsc.edu/cgi-bin/hgTables).

As most aCGH data were processed using the hg18
genome as reference, we used the lift over tool from UCSC
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to establish
the correspondence to hg19. If there were no lift over pos-
sibility, we manually checked genes encompassing CNVs.

Assessment of CNV calls from WES data: step 2

Following step 1, we implemented our workflow in our
routine procedures. From additional 1056 WES (Supple-
mentary Table 1), we performed targeted confirmations
following the detection of candidate CNVs by CANOES
using QMPSF or ddPCR [25]. We focused our confirma-
tions on a list of 350 genes that belong to the so-called Aβ
network [26], as all the samples used at this step were
sequenced in the context of Alzheimer disease research.
This list of genes was built thanks to literature curation on

Alzheimer pathophysiology, independently of any genomic
information. Candidate CNVs were selected for targeted
confirmation if (i) they encompassed genes belonging to
this network, and (ii) they were not polymorphic i.e., with a
frequency below 1% in our dataset.

Primers used for QMPSF or ddPCR validation are
available upon request.

CNV calling from NGS data using CANOES

The CANOES software tool implements an algorithm dedi-
cated to the detection of quantitative genomic variations based
on DOC information. Basically, CANOES requires DOC data
for each target of the capture kit used for each of the sample
that are analyzed together. It also integrates the GC content
information of each target to reduce the background varia-
bility observed in high-throughput sequencing data [27]. The
read depth was calculated using BEDtools [28], and the GC
content was determined using the GATK suite.

CANOES builds its statistical reference model from a
subset of the samples included in the same analysis (at least
30 samples are recommended). To obtain the best possible
fit, CANOES selects the samples that are the most corre-
lated to the currently analyzed sample. This allows the
detection of small CNVs, but also reduces the detection
susceptibility of recurrent events. CANOES uses a Hidden
Markov Model to represent the variability of the DOC
distribution built from the selected samples. Then, it uses
the Viterbi algorithm to assign deletions, duplications or
normal regions. After the calling step, a “Not Applicable”
(NA) score is attributed to all CNVs from samples carrying
more than 50 rearrangements. Such samples are usually
characterized by higher or lower average read depth and
cannot be compared with the reference model. All CNVs
assigned with an NA score were thus removed from further
analyses. As CANOES used the capture kit definition to
detect CNVs, boundaries of events were defined by the start
position of the first target and the end position of the last
target detected as deviated in comparison with the model.

A CANOES-centered workflow

To optimize CANOES performances, we focused on two
different approaches, a methodological approach in sample
selection and a bioinformatics approach (Fig. 2).

As previously described, CANOES defines a statistical
model for a particular sample from a judicious selection of
other samples included in the analysis. The first step of our
workflow consisted in the implementation of rules to select
the samples that should better be analyzed together. In order
to get enough material to build an efficient statistical model
and following the CANOES recommendations, we always
worked with at least 30 samples. Importantly, we analyzed
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samples with the less technical variability from each other.
Practically, this consists in analyzing samples from the same
run, and not to merge multiple runs if not necessary. When
merging multiple runs was inevitable (e.g., sequencing of
<30 samples per run), we combined sequencing runs from
the same platform and processed using the same capture kit
and technical conditions, including the same number of
samples per lane in order to reduce read depth variability
from each sample. Of note, CANOES is not originally set
up for the analysis of CNVs on sex-chromosomes, but we
implemented modifications in the original script in order to
include sex-chromosomes in our analyses with a modifica-
tion into the output file, the copy number is replaced by a
GAIN or LOSS information. Hence, we ran our workflow
after gathering either N ≥ 30 males or N ≥ 30 females for the
analysis of gene panels 2 and 3 that contain X-linked genes
and for WES data.

Bioinformatics optimization

The first step consisted in the modification of the target
definition from the capture kit information. We decided to
merge close targets (<30 bp) if they covered the same exon.
The only exception to this rule is if a target is larger than
1 kb. In this particular case, targets are split. Concerning
gene panels that include introns, we decided to split large
targets that include both intronic and exonic regions. In this
case, we split targets at the intron/exon junction.

In order to gain flexibility in our analysis and to be able
to add or remove samples easily, we implemented a two-
step strategy consisting in (i) performing the read count step
for each sample separately, and then (ii) aggregating
selected samples before running CANOES. Doing so
allowed, for example, intrafamilial analyses including
patient–parent trio approaches, where cases can be analyzed
without taking related samples into account, preventing
biasing the statistical model. Finally, we removed non-
informative regions from our analyses. We considered a
region as non-informative if more than 90% of the samples
each had <10 reads on the target. Then, we called the CNVs
using CANOES, and annotated the results using AnnotSV
[29] in order to get additional information about the pos-
sible effect and populations frequencies.

Nextflow integration

In order to complete our optimization of processing and
analysis time, we integrated our bioinformatics pipeline into
Nextflow, a data-driven workflow manager [30]. This
software tool allows a quick deployment of new pipelines
on different kind of computational environments, from local
computers to a cloud environment. Another interest of
Nextflow is to increase the performance by distributing the
different steps of the workflow in regards to the computa-
tional resources available. The complete workflow, includ-
ing the specific adaption of CANOES to analyze sex-

Fig. 2 CANOES-centered workflow. File (square) with their format
in parenthesis, and process (rounded) constituting the workflow. From
the original capture kit definition, we merge closed target from the
same exon, then do in parallel the DOC and the GC content estimation.

We gather DOC individual files depending on the project, sequencing
batch, unrelated samples, and remove non-informative regions. The
last steps consist in CNV calling using CANOES and annotation with
annotSV.
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chromosomes, is available on https://gitlab.bioinfo-diag.fr/
nc4gpm/canoes-centered-workflow.

Interpretation of CNVs

The CNV detection workflow that is available on the above-
mentioned reference finally includes the whole code
required for both calling steps and annotation as a last step.
Hence, the output file is a tab-delimited file that can be
opened in a spreadsheet software to allow further filtration
or sorting. For CNV interpretation in a Mendelian context,
we prioritized CNVs based on (i) their frequencies in the
DGV, potentially refined by frequencies in Exac [31], (ii)
the inclusion or not of a gene from the OMIM morbid list
[32] and (iii) probability of loss-of-function intolerance
score (pLi) based on gnomAD database [33] and visualized
CNVs in the UCSC genome browser [34].

Results

After building a workflow centered on the CANOES tool,
we assessed its performances in the context of (i) gene panel
NGS data and (ii) WES data, both generated following
capture and Illumina short read sequencing.

Gene panel sequencing data

We first evaluated the performances of the CANOES tool
using targeted sequencing data of a panel of 11 genes (panel 1,
n= 465 samples). In parallel, all samples were assessed using
custom comprehensive QMPSF assessing the presence or
absence of a CNV encompassing any of the 60 coding exons
of four of these genes. We identified 14 CNVs by QMPSF (12
deletions, 2 duplications, size range: [1,556 bp–97 kbp]). All
of them were accurately detected by our CANOES-based
workflow from NGS data (Table 1). In addition, no additional
CNV was called by CANOES, allowing us to obtain a sen-
sitivity and a specificity of 100% (95% CI: [73.24–100]) for
those four genes. (see Supplementary Table 2).

To further assess the positive predictive value (PPV) of
our workflow in the identification of CNVs from gene
panels, we applied it to additional NGS data obtained from
three gene panels (2222 samples from panel 1, 320 samples
from panel 2, and 220 samples from panel 3). We detected
101 candidate CNVs in 98 samples and assessed their
presence using either QMPSF or MLPA (Table 2). We
validated 87/101 CNVs (86.13%, 95% CI: [77.50–91.94],
false-positive rate: 13.9%). Overall, the PPV of our work-
flow applied to gene panel sequencing data was 87.83%
(95% CI: [80.01–92.94]). True positive calls of our work-
flow were 71 deletions (size range: [391 bp–1.06Mbp]) and
16 duplications (size range: [360 bp–39.4 kbp]) (see

Supplementary Table 3). False positives were mainly
deletions (10/14) and five of them were monoexonic.

Whole-exome sequencing data

We then evaluated the performances of our workflow for
the detection of CNVs from WES data. We first applied our
workflow to the data obtained from 147 samples with both
WES (average DOC= 110×) and aCGH data available
(50 samples assessed with the Agilent 1M chip and
97 samples with the Agilent 180k chip). Overall, ten sam-
ples were removed due to a high or low number of rear-
rangements detected by aCGH or exome, mostly due to low
DNA quality or low coverage in WES.

From aCGH data, we detected 1873 CNVs over the
137 samples remaining, of which 102 were non-
polymorphic exonic CNVs. Our workflow accurately
detected 89 (87.2%) of them (Table 1 and Supplementary
Table 4). Among the CNVs that were missed by our
workflow, seven were large CNVs (from 14 to 80 kb) that
encompassed only one (n= 5) or two (n= 2) targets defined
by the capture kit (see Fig. 3).

In order to determine the PPV of our workflow from WES
data, we selected 223 CNVs called by our workflow and (i)
theoretically detectable by aCGH as encompassing at least
three (180k chips) or five (1M chips) probes and (ii) which

Table 1 Summary of step 1 evaluation of CANOES-centered
workflow.

Gene panel Whole exome

Gold standard Comprehensive
QMPSF/4 genes

aCGH data

Number of samples 465 147

Comparison to GPS-CANOES calls
(from panel 1)

WES-
CANOES calls

Number of gold
standard CNVs

14 102a

True positives 14 89

False negatives 0 13

Sensitivity 100% (CI:
[73.24–100])

87.25% (CI:
[78.84–82.77])

Number of
CANOES calls

14 223a

True positives 14 190

False positives 0 33

Positive
predictive value

100% (CI:
[73.24–100])

85.2% (CI:
[79.70–89.46])

aCGH array comparative genomic hybridization, CNV copy-number
variation, GPS gene panel sequencing, QMPSF quantitative multiplex
PCR of short fluorescent, WES whole-exome sequencing, CI
confidence interval.
aThe number of CNVs is different due to the selection of theoretically
detectable events from one method in regards to the other.
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did not overlap with segmental duplication regions for more
than 50% of the CANOES targets. Of them, 190 (85.2%)
CNVs were confirmed as true positives following aCGH data
assessment (Table 1 and Supplementary Table 5).

Of note, an additional set of 519 candidate CNVs were
detected by our CANOES-based workflow that overlapped
<50% of segmental duplication regions but encompassed <3
(180k chips) or 5 aCGH probes (1M chips). Hence, they were
not reported by the CGH analysis tool and would then have
been overlooked following classical aCGH data analysis (see
Fig. 4). We did not perform targeted confirmation of all these
candidate CNVs. Instead, with the aim to further assess the
PPV of our workflow regarding exonic non-polymorphic
CNVs of any size, we applied it to 1056 additional WES
performed in the context of Alzheimer disease research (with
no corresponding aCGH data). We selected non-polymorphic
CNVs targeting 355 genes belonging to the Aβ network
involved in the pathophysiology of Alzheimer disease [26],
whatever their size. We validated 111/125 candidate CNVs
(88.8%, false-positive rate: 11.2%) by QMPSF [35] or
ddPCR (Table 2 and Supplementary Table 6). True positive
calls of our workflow were 39 deletions (size range: [165
bp–24.2Mbp]) and 69 duplications (size range [166 bp–5.9
Mbp]). Interestingly, among the 125 candidate CNVs

obtained from our workflow, 78 were considered to be the-
oretically detectable by aCGH 1M, and 47 were considered
as not detectable by aCGH 1M. Among the ones theoretically
detectable by aCGH, 74 were true positives (94.9%). Among
the theoretically not detectable ones, 37 were true positives
(78.7%).

Overall, the PPV of our CANOES-based workflow was
86.49% from WES data after taking into account results
from step 1 and step 2 altogether.

Discussion

Multiple tools have been developed to detect CNVs from
NGS data. As long as such tools are being implemented in
diagnostic laboratories, there is a critical need to evaluate
their performances. Previous studies showed a large diver-
sity of performances, while a number was performed using
simulated datasets [5]. For example, from gene panel data,
the DeCON tool [11] reached an overall sensitivity of 93%
on a cancer gene panel sequencing of 94 genes, with a
100% sensitivity and 99% specificity on BRCA1 and 2
genes and, with a 96% PPV on the complete gene panel
after validation by MLPA. Another study on 60,000 sam-
ples focusing on a panel of 48 genes reached a 100% sen-
sitivity with a PPV of 63.2% compared with array CGH
and MLPA [36]. From WES data, a study analyzing
1017 samples with XHMM obtained 67% of sensitivity and
15.76% PPV on rare CNVs compared with SNP array [37],
while a comparative study of three tools [15] on 861 WES
samples revealed an important diversity of sensitivity (from
20 to 75%) and PPV (from 20 to near 100%).

After having defined a CANOES-centered workflow, we
applied it to three different gene panels and WES data.
Overall, we reached very high detection performances fol-
lowing the comparison with independent techniques.

From gene panel data, we obtained a 100% sensitivity
among a set of four genes, the copy number of all coding
exons of which having been assessed prior to NGS in
465 samples. In addition, we obtained a 87.83% PPV
among all genes with a CANOES call. Such high

Table 2 Summary of step 2 evaluation of CANOES-centered
workflow.

Gene Panel Whole Exome

Data source GPS-CANOES calls WES-CANOES calls

Number of samples 3311 1056

Comparison to QPMSF/MLPA QMPSF/ddPCR

CANOES calls 101 125

True positives 87 111

False positives 14 14

Positive
predictive value

86.13% (CI:
[77.50–91.94])

88.8% (CI:
[81.61–93.51])

aCGH array comparative genomic hybridization, CNV copy-number
variation, GPS gene panel sequencing, QMPSF quantitative multiplex
PCR of short fluorescent, WES whole-exome sequencing, CI
confidence interval.

Fig. 3 Example of a CNV detected by aCGH but missed by the
CANOES-centered workflow. A CNV (highlight region) detected by
aCGH encompassing multiple CGH probes (1M probes array, in gray)
but only one target from the SureSelect V5 capture kit. Of note, this

deletion would have been missed by using a 180k probes array CGH
(in black). View extract from UCSC genome Browser (https://genome-
euro.ucsc.edu/cgi-bin/hgTracks).
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performances have previously been reported for other tools
applied to small NGS panels [11]. Among 14 false posi-
tives, we observed recurrent events, which can be easily
reported as so and be ignored in further analyses. We also
observed false positive CNVs in regions homologous to
pseudogenes. In that case, it is possible to reduce false
positive calls by improving the design of the capture to
reduce the chance that probes target the homologous
regions, or by optimizing the alignment.

Of note, for all genes of Panel 1 and two genes of Panel
2, introns were captured in addition to exons. This might
have increased the chances to detect CNVs that can be
considered as small from an exon-only point of view but
that can actually be much larger at the genomic level. An
advantage of capturing introns might indeed be a gain in
statistical power for the normalization process: increasing
the number of targets may increase the robustness of the
model. Among 101 CNVs detected from NGS data from all
three panels, 75 CNVs encompassed one of these genes
with intronic-plus-exonic capture. Interestingly, only 18 of
these 75 CNVs encompassed a single coding exon. Such a
frequency of monoexonic CNVs is not unexpected regard-
ing mutation screens in MMR genes, in which monoexonic
deletions account for 26.92–46.27% of all pathogenic
deletions [38–40], or other rare diseases [41–44], for

example. We hypothesize that all other CNVs, encom-
passing multiple targets, would probably have been easily
detected, had the introns been excluded from the capture
design. Further analyses may be required to better assess the
performances of our workflow from single exon CNVs and
the effect of including introns or not in the capture design.
The observed higher rate of false positives in CNV calls
encompassing genes without introns captured (22.22%)
may also require further assessments,

We used here a precision workflow approach, focusing
on the optimization of one tool based on DOC. Interest-
ingly, as some of our genes included noncoding sequences
in gene panels, these specific exonic-plus-intronic captures
could provide us the possibility to apply complementary
tools using different approaches, like the ones developed for
WGS. This can indeed increase both detection perfor-
mances of CNVs and the spectrum of structural variants that
can be detectable in these data.

Of note, all our panels included multiple genes. We do
not expect that a design including a single gene, even with
its intronic sequences, would reach the sufficient number of
targets for CANOES to build a robust model.

We also applied our workflow to multiple WES datasets
and reached an overall PPV of 86.49% (95% CI:
[82.34–89.81]). As for gene panel CNV detection, a

Fig. 4 Example of CNVs detected by the CANOES-centered
workflow from WES data but missed by aCGH. a The highlighted
region represents the CNV called by the CANOES-centered workflow,
encompassing one exon of RHCE. b View of the same region from
DNA-Analytics (aCGH data 1M) in the same patient. This deletion

was not called following aCGH data analysis as the number of
deviated probes did not reach the threshold for calling. However, as
three probes (in white) were deviated, this allows the confirmation of
the deletion of the region. View extract from UCSC genome Browser
(https://genome-euro.ucsc.edu/cgi-bin/hgTracks).
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confirmation by an independent technique is hence still
required following the detection of a candidate CNV from
WES data, although the low false-positive rate that we show
here is expected to be associated with a limited number of
molecular confirmations. One of the major features usually
required to apply a new technique in a diagnostic workflow
is a high sensitivity as compared with a reference technique.
Here, we reached a sensitivity of 87.25% (95% CI:
[78.84–82.77]). It should be noted that, after visualization on
UCSC, five CNVs undetected by CANOES were located in
polymorphic regions according to DGV or DGV gold stan-
dard tracks but not excluded from our comparison. This point
can be explained by a different size between these CNVs in
DGV and the one we called, so the criterion of 70% overlap
required to consider them as identical was not fulfilled. Thus,
this criterion led us to include some polymorphic CNVs in
the comparison and hence could underestimate the sensitivity
of our workflow. We still chose to keep this parameter as
initially set up, because it is widely used in the literature and
remains essential for a standardized analysis. Although the
sensitivity was not 100%, it is important to notice that aCGH
is considered as reference here although the spectrum of
events that can be detected is still limited. When comparing
our results with aCGH data, it appeared that we missed fewer
events than the potential number of true positive CNVs that
were missed by aCGH itself. Indeed, from aCGH data, we
missed 13 CNVs, but our analyses called 519 candidate
CNVs from corresponding WES data and which were the-
oretically undetectable by aCGH (i.e., either small CNVs or
in regions with no aCGH probes coverage). Our PPVs
suggest that the vast majority are eventually true. There is no
reason to think that some of the CNVs detected by CANOES
only might not be as or more deleterious than CNVs detected
by both techniques or exclusively by aCGH. Knowing that
aCGH misses many CNVs, even using the high-sensitivity
chips such as the Agilent 1M one, and even if other chip
designs might increase aCGH performances on coding
regions, switching to a WES-only approach for CNV
detection in a diagnostic setting should not reduce the overall
diagnostic yield. Indeed, pathogenicity of CNVs cannot rely
only on the size of CNVs as the deletion of a single coding
exon in a gene can be sufficient to cause a Mendelian dis-
order. For example, we previously detected a single exon
deletion that was not detectable by array CGH and was
clearly pathogenic [42]. In addition, we expect that switching
to a WES-only approach for CNV detection could be asso-
ciated with reduced costs by skipping the CNV screen step
by array technologies, although we did not perform cost-
effectiveness analyses here.

As compared with aCGH, CANOES allowed the iden-
tification of CNVs of any size in regions not covered by
probes but also for small CNVs including few exons. In
addition, it is important to notice that the majority of

CANOES false negatives were also CNVs with only few
exons, which implies few targets for CANOES although
noncoding probes may help detect some of them by aCGH.
This decreased rate of detection of CNVs encompassing few
targets has already been shown in other datasets [4, 12] and
appears as a limitation inherent to DOC comparison
methods.

Interestingly, CANOES allowed the detection of two
mosaic rearrangements out of WES data: an SLC30A3
duplication and a 24Mb CNV corresponding to a chro-
mosome 20-long arm deletion (Supplementary Table 6).
QMPSF data indicated that both CNVs were indeed con-
firmed albeit with ratios outside the ranges expected for
germline events. Those examples highlight the capacity of
CANOES to detect mosaic rearrangements, although the
tool does not indicate such a feature, which can only be
identified following the use of a targeted technique. Of note,
the chromosome 20-long arm deletion was detected in a
healthy control. This kind of postzygotic rearrangement is
not rare in aging people (0.1% after 50 years old) [45].
Those examples highlight the capacity of CANOES to
detect mosaic rearrangement.

Beyond the above-mentioned limitations of CNV
detection tools from NGS data, somatic CNVs remain a
challenge, both for array-based technologies and for NGS-
based tools [10]. Among the CNVs detected by our work-
flow, at least one was considered as likely somatic, as
suggested by QMPSF data. However, the sensitivity of
DOC tools might remain low in this context [10].

Of note, it is possible to increase the detection of small
events or events in complex regions by using the “Geno-
typeCNV” function of CANOES. The aim of this function
is to look precisely at specific regions and call the genotype
of the sample for these specific regions, however it is
associated with an increase in false positive calls [42], as
well as an increase in time and computational resources
needed. In particular cases, when known core genes have
already been identified in a given disorder, it is possible to
combine our approach to call CNVs at the exome level and
focus on specific genes using the GenotypeCNV function
applied to every exon of these genes to increase the
detection performances in core genes at the same time.

In conclusion, we performed an evaluation of the per-
formances of a CNV detection workflow based on read
depth comparison from capture-prepared NGS data, one of
the most popular methods for NGS in research and diag-
nostic settings. We highlighted very high sensitivity and
positive predictive value, for both NGS gene panel and
WES. Although the sensitivity was not perfect for WES
data as compared with aCGH, a number of additional true
calls were not detected by the so-called reference technique.
This highlights the absence of a genuine gold standard up to
now. Overall, we consider that switching to an NGS-only
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approach is cost-effective as it allows a reduction in overall
costs together with likely stable diagnostic yields.
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