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Abstract
DNA sequencing is a widely used tool in genetic association study. Sequencing cost remains a major concern in sequencing-
based study, although the application of next generation sequencing has dramatically decreased the sequencing cost and
increased the efficiency. The choice of sequencing depth and the sequencing sample size will largely determine the final
study investment and performance. Many studies have been conducted to find a cost-effective design of sequencing depth
that can achieve certain sequencing accuracy using minimal sequencing cost. The strategies previously studied can be
classified into two groups: (1) single-stage to sequence all the samples using either high (>~30×) or low (<~10×) sequencing
depth; and (2) two-stage to sequence an affordable number of individuals at a high-coverage followed by a large sample of
low-coverage sequencing. However, limited studies examined the performance of the medium-coverage (10–30×)
sequencing depth for a genetic association study, where the optimum sequencing depth may exist. In this study, using a
published simulation framework, we comprehensively compared the medium-coverage sequencing (MCS) to the single- and
two-stage high/low-coverage sequencing in terms of the power and type I error of the variant discovery and association
testing. We found, given certain sequencing effort, MCS yielded a comparable discovery power and better type I error
control compared with the best (highest power) scenarios using other high- and low-coverage single-stage or two-stage
designs. However, MCS was not as competent as other designs with respect to the association power, especially for the rare
variants and when the sequencing investment was limited.

Introduction

DNA sequencing is a widely used tool in genetic associa-
tion studies, which aimed to identify potential genes or
regions that contribute to specific diseases and traits.

Sequencing cost remains a major concern in DNA
sequencing study [1], although the application of next
generation sequencing (NGS) has dramatically decreased
the sequencing cost and increased the sequencing efficiency
[2]. The main factor that determines sequencing cost is
sequencing depth/coverage, which is defined as the average
number of a nucleotide in the genome has been sequenced
in one experiment [1]. Here, we used the terms coverage
and depth interchangeably for the definition aforemen-
tioned, although coverage has also been used to indicate the
breadth of a sequenced genome.

A number of studies have been conducted to find a cost-
effective sequencing design that can achieve certain
sequencing accuracy using minimal sequencing cost [3–6].
The strategies previously studied can be classified into two
groups: single-stage design and two-stage design. The
single-stage design is to sequence all the samples using
either high (>~30×) or low (<~10×) sequencing depth. The
two-stage design is first sequencing an affordable small
number of individuals at a high coverage to create a refer-
ence panel, then followed by a large sample of low-
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coverage sequencing and perform dense imputation based
on the locally constructed reference. It has been shown that
using the local reference panel can help identify rare var-
iants that may be missed in other populations [7–9]. There
were plenty of studies focused on single-stage design. For
example, Flannick et al. [3] developed a statistical frame-
work to compare the sensitivity and specificity of low-
coverage (0.5–4×) sequencing and SNP (single nucleotide
polymorphism) array (100 k to 2.5 M) individually and
jointly. Pasaniuc et al. [4] studied the performance of
extremely low-depth (0.1–0.5×) sequencing in genome-
wide association study. In addition, Li et al. [10] system-
atically compared the performance of both low and high
depth (2–30×) sequencing for studies of complex traits.
Regarding the two-stage design, Xu et al. [11] simulated the
entire study process of sequencing-based association study
and showed that the two-stage sequencing was an effective
approach under certain conditions, such as for the discovery
of rare variants.

However, limited studies examined the performance of
medium-coverage (10–30×) sequencing for a genetic asso-
ciation study, where the optimum sequencing depth may
exist. There were several discussions in previous studies
indicating that medium-coverage may have a good perfor-
mance in NGS study. Shen et al. [5] demonstrated that
medium depth could achieve optimal detection power under
case-only sequencing design. Nielsen et al. [12] concluded
that under a large sample size, medium or low coverage
might be more cost-effective than the other study designs.
Xu et al. [11] specified a similar trend that the medium
depth may be the optimal design in real application by
comparing low-, high-coverage, and two-stage sequencing
in NGS study. Recently, Gilly et al. [13] compared the
genotype accuracy at depths 15×, 22.5×, and 30× by
downsampling reads from a cohort of 100 samples. Their
result demonstrated that the 15× was possible to achieve
near-perfect sensitivity and quality for rare SNP calling and
genotyping compared with 30× sequencing.

Given the lack of research on the performance of
medium-coverage sequencing (MCS) in genetic association
study, we comprehensively compared the medium depth
(10–30×) sequencing with high/low depth sequencing in
terms of variant discovery and association testing power
through a simulation study.

Materials and methods

Simulation data

We generated sets of MCS data using a simulation frame-
work published by a previous study [11]. Independent
case-control scenarios were considered having equally

distributed samples of European populations based on an
additive genetic model. Given a certain sequencing cover-
age and sample size, samples of sequencing data with SNPs
in a region of 100 kb were generated based on the reference
genome chromosome 22. The length of 100 kb spans long
enough to cover an LD block for European populations. The
commonly used Illumina pair-end sequencing reads with
125 bp read length were generated by ART [14]. SNPs with
minor allele frequency (MAF) ≥ 0.05, 0.01 ≤MAF < 0.05,
and MAF < 0.01 were defined as common, low-frequency,
and rare SNPs, respectively. Among the simulated SNPs, 15
causal SNPs were randomly selected with the effect size
(deleterious only) determined by controlling the variance it
explained to be ~1% respectively for each selected SNP. In
the generated simulation data, the actual variance explained
by all causal variants corresponded to 10.9%. We set the
disease prevalence to be 9.3%, which is similar to the
prevalence of type 2 diabetes in the United States [15]. The
disease associations for simulated SNPs were simulated by
Hapgen2 [16] and tested by PLINK (v1.07) [17], PLINK/
SEQ (v0.10, https://atgu.mgh.harvard.edu/plinkseq/), and
SKAT [18]. The procedure was repeated 1000 times for
each scenario. The complete simulation code is available at
https://github.com/xu1912/spS-Gas.

We considered 16 MCS scenarios, which are presented
in Table 1. We selected four levels of sequencing depth to
cover the typical settings for medium coverage: 12×, 16×,
20×, and 24×. The sample size ranged between 200 and
4000 to make the sequencing effort comparable with the
previously published results, which included 12 high-cov-
erage, 14 low-coverage, and 51 two-stage (high coverage to
impute in low coverage) scenarios.

The generated data were compared with publicly avail-
able results of high-/low-coverage sequencing scenarios,
which were produced by the same simulation framework
and settings. We kept all the parameters the same except for
the coverage and sample size. More details for the simula-
tion framework and settings can be found in the previous
article [11].

Model evaluation

We evaluated the various scenarios with respect to the
power, type I error, and FDR of variant discovery and

Table 1 Medium-coverage sequencing scenarios considered.

Depth Sample size

12 1000, 2000, 4000

16 500, 1000, 2000, 3000

20 200, 400, 600, 1200, 1600, 2400

24 500, 1000, 2000
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association under the constraint of study-wide sequencing
investment. Given the same length of sequenced genome
content, the sequencing investment can be represented by
the sequencing effort, which was defined as the product of
the sequencing coverage and sample size of that study
[10, 19]. The person depth (pd) defined as 1× coverage for
one person was used as the unit of the sequencing effort.
One kpd means a sequencing effort of 1000 pd. Among all
the scenarios, we picked several levels along the increase of
the sequencing effort at 4, 8, 12, 16, 24, 32, and 48 kpd.
Each effort level included multiple scenarios by different
combinations of the coverage and sample size. At each
level, we compared the highest power from medium-
coverage scenarios to the best (highest power) from the
other (low-, high-coverage, and two-stage sequencing)
scenarios by the optimum power ratio (
OPR ¼ max Power of MCdesignsf g

max Power of Other designsf g). Using the same scenarios
having the highest power, we computed the type I error
ratio (TR) of MCS and other sequencing options.

The power we evaluated contained two aspects: the
variant discovery power and the association testing power,
so did the type I error. The variant discovery power was
defined as the proportion of the identified variants among
the total variants. The variant discovery type I error was
defined as the proportion of the falsely identified variants
among the total non-variant sequences. The association
power was defined as the proportion of statistically sig-
nificant variants identified among the total true causal var-
iants. A logistic regression model was employed to perform
an association test of the variants with Bonferroni correction
for multiple testing. In addition, the rare variants were
examined by the region-based association test SKAT as
follows: We divided each of the simulated 100 kb sequen-
ces into nine regions with a length of 20 kb by a sliding
window of 10 kb. Only rare variants were considered for
each region. Multiple testing was adjusted by Bonferroni
correction. The test result for a specific region using SKAT
was checked against whether the region contained any rare
causal variants.

Results

We first assessed the performance of MCS in SNP dis-
covery using the proposed simulation methods and com-
pared it to single-stage high-coverage, low-coverage, and
two-stage scenarios. For MCS, with the same sequencing
effort, sequencing more subjects at a lower coverage usually
resulted in a higher discovery power, especially for the rare
variants (Table 2 and Fig. 1). For example, given the effort
of 48 kpd, the rare variant discovery power increased from
76.82% to 81.98% when the sample size increased from
2000 to 4000 and coverage decreased from 24× to 12×Ta
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(Table 2). Relative to the other types of sequencing cover-
age under the same sequencing effort, the MCS did not
exhibit greater advantage in the power for variant detection.
The MCS only led at effort level of 12 kpd by a narrow
margin (Fig. 1). However, we can find a two-stage scenario
(100@30+ 4000@2) reaching a higher power with less
sequencing effort than the MCS at 12 kpd. At other effort
levels, the medium-coverage resulted in detection power
close to the best (highest power) of other scenarios, most of
which were low-coverage as depicted in Table 3. We
defined optimum power ratio (OPR) to compare the best
power performance of MCS to other sequencing designs at
the same sequencing effort. In Table 3, most of the OPRs
are > 0.9 except at the 4 kpd scenario. Similar results were
observed for the detection of rare variants (Supplementary
Table 1). At 4 kpd, the maximum detection power of MCS
was only 68.30% of that using other coverages (38.35% vs
56.15% from low-coverage). On the other hand, MCS had a

better type I error control for most of the effort slices.
Especially, when the effort exceeded 10 kpd, the MCS
outperformed other sequencing options by a low type I error
and comparable power in variant detection (Supplementary
Table 1). For instance, among 48 kpd scenarios, the opti-
mum power using MCS was very close to that using other
coverages (87.52% vs 88.01% from low-coverage) with a
less corresponding type I error (0.01% vs 0.02%). At other
slices with OPR > 0.9, the type I error of MCS was also
much lower relative to the other scenarios with a higher
power, such as the 8, 16, and 24 kpd with the type I error
ratio (TR) of 18.45%, 33.33%, and 1.36% respectively
(Table 3). Further, at 12 kpd scenarios, MCS not only
yielded higher power but also much less type I error with
TR of ~0.01 (0.01% vs 0.77%).

For the association analysis, we first evaluated the power
of MCS in testing association for common variants. The
sample size played a more important role in association than

Fig. 1 Sequencing investment and discovery power of variants. The
variant discovery power of high/low/medium coverage, and two-stage
sequencing scenarios (denoted by symbols) using different sequencing
coverages (denoted by colors) for a total variants; b rare variants

(MAF < 0.01); c low-frequency variants (0.01 ≤MAF < 0.05); and
d common variants (MAF ≥ 0.05). The x-axis presents the sequencing
investment in person depth. The y-axis presents the discovery power.
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the choice of sequencing depth for the design using
medium-coverage. Given a certain sequencing effort, the
larger sample size always produced higher power (Supple-
mentary Table 1). When collapsing the coverage axis (as
depicted in Fig. 2a), an increase of sample size led to a
power gain (Fig. 2a and c). However, if we collapsed the
sample size axis (as depicted in Fig. 2b), the benefit of using
a higher coverage was very limited (Fig. 2b, c). In addition,
MCS was not as competent as other sequencing coverages
in identifying disease-associated variants. The OPR was
only 24.71% (7.42% vs 30.04% from low-coverage) when
the sequencing effort was fixed at 4 kpd. With the sequen-
cing effort increased from 4 to 48 kpd, the OPR elevated
from 0.25 to 0.92 (Table 3). We observed a similar trend for
the type I error of association testing using MCS relative to
other sequencing coverages. The higher sequencing effort,
the closer type I error using MCS to other sequencing
options, while the type I error of MCS was always less
(Table 3). In Fig. 3a, we plotted the common variant
association power versus type I error for the scenarios with
optimum power using MCS and other sequencing depth
under the same sequencing efforts. The points from opti-
mum MCS and other sequencing coverages likely lie in the
same line, which also provided a general idea of how the
sequencing-based genetic association study performed
given our model assumption. Similar results were also
observed for the association test of low-frequency variants
(Table 3 and Fig. 3b). However, MCS was able to achieve
high power to identify low-frequency variants with less type
I error than the other sequencing options. When the
sequencing effort is large, at 48 kpd, MCS yielded higher
power (64.13% from 4000@12 vs 57.61% from low-
coverage 6000@8) and 21% less type I error based on the
comparison of same scenarios (17.18% vs 21.71%).

Further, we examined the performance of MCS on the
rare variants association testing using SKAT. For the MCS
scenarios at the same sequencing efforts, we observed the

larger sample size, the higher association power (Table 4).
Increasing the sample size was more beneficial than
increasing the sequencing coverage, not only in common
and low-frequency variants testing, but also for the rare
variants. In the scenarios with optimum power using other
sequencing coverages, the testing power quickly rose to
~90% when the sequencing effort was over 8 kpd. How-
ever, the best power from MCS was far less than others at
the same investment, most of which were low-coverage and
two-stage design as depicted in Supplementary Table 2. The
OPRs were all less than 0.5 until the sequencing effort
increased to 32 kpd (Supplementary Table 2). Different
from the general association test for common and low-
frequency variants, the rare variants were grouped into
regions and tested by regions. In Fig. 4, the medium cov-
erage may reach the same power of other designs with a less
type I error. For instance, the top right end of the MCS
designs (4000@12) compared with the bottom left end of
the best power of others (low-coverage 2000@2). But MCS
was not efficient in rare variant association study with
respect to the sequencing investment.

Discussion

In this study, we investigated the efficiency of sequencing
studies using medium-coverage compared with single-stage
low-/high-coverage and two-stage sequencing designs.
Assuming a disease prevalence of ~9.3% and 15 causal
variations, our result is generalizable to the study of com-
plex diseases, like type 2 diabetes, but not rare diseases or
single-gene disorders. Our result showed that, given certain
sequencing investment, the variant discovery power of
MCS was just close to the best power of the other schemes.
However, the medium-coverage yielded less type I errors in
variant discovery compared with the best (highest power) of
others. Further, the variant association testing power of

Table 3 Optimum detection and association power comparison between MCS and other sequencing designs.

Sequencing effort (kpd) Detection (overall) Association (common variant) Association (low-frequency variant)

MCS Best of others* OPR TR MCS Best of others* OPR TR MCS Best of others* OPR TR

4 60.20% 71.48% (L) 0.84 0.75 7.60% 30.04% (L) 0.25 0.24 3.08% 17.14% (L) 0.18 0.19

8 70.48% 77.13% (L) 0.91 0.18 20.69% 52.61% (L) 0.39 0.33 9.54% 38.65% (L) 0.25 0.25

12 78.82% 78.54% (L) 1.00 0.01 35.29% 57.20% (L) 0.62 0.54 22.05% 42.98% (L) 0.51 0.45

16 77.74% 83.05% (L) 0.94 0.33 35.96% 54.20% (T) 0.66 0.56 22.38% 39.66% (T) 0.56 0.50

24 82.14% 84.47% (T) 0.97 0.01 50.44% 57.16% (T) 0.88 0.82 40.90% 42.76% (T) 0.96 0.74

32 83.39% 86.05% (L) 0.97 0.89 51.40% 62.66% (L) 0.82 0.74 40.85% 48.88% (L) 0.84 0.65

48 87.52% 88.01% (L) 0.99 0.55 65.44% 70.04% (L) 0.93 0.87 64.13% 57.61% (L) 1.11 0.79

MCS medium-coverage sequencing, OPR optimum power ratio, TR corresponding type I error ratio.
aBest of others is the other sequencing scenarios having the highest power. The letter in () indicated the best of other sequencing option: L—low-
coverage sequencing; T—two-stage sequencing.

Medium-coverage DNA sequencing in the design of the genetic association study 1463



Fig. 2 Common variant association power versus sequencing
depth and sample size. a Collapsed 2D view of association power vs
sample size; b Collapsed 2D view of association power vs sequencing
depth; c 3D plot of association power versus sequencing depth and

sample size. The green dots represent values in 3D space. The purple,
red, and orange dots are projections into three subplots (2D),
respectively.
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using medium-coverage was not comparable with the best
power of others for most of the cases.

Based on our findings, we can make an addendum to
existing guidelines on designing a cost-effective sequencing
study given a certain sequencing investment. If the study
goal is only detecting variants/mutations and there is suf-
ficient sequencing effort (≥12 kpd), medium-coverage is
applicable in addition to low-coverage and appropriate two-
stage design. Medium-coverage can reach a tightly close
power but will be less error-prone relative to low-coverage
and two-stage design. However, if the study goal is not only
detecting but also identifying disease-associated variants,
MCS may not be appropriate. Instead, low-coverage and

two-stage schemes should be adopted. In summary, we
provided a recommendation table for the selection of low-/
medium-/high-coverage and two-stage sequencing when
designing a genetic association study (Supplementary
Table 3).

Different from the study of SNP, the detection of struc-
tural variations (SVs) using NGS mostly relies on the
sequencing depth, such as the copy number variations
(CNVs) and indels. Gilly et al. found that genotype accu-
racy is substantially more dependent on sequencing depth
for indels than for SNPs [13]. In a recent study, the per-
formance of several CNV detection tools varied with the
sequencing depth, with high-coverage resulted in high
sensitivity and specificity [20]. We expected the sequencing
coverage would play a more important role than that in the
present study of SNP. The high-coverage sequencing may
be more appropriate for scenarios targeted on SVs. The
cost-efficiency of various sequencing coverage in the study
of indels, CNVs, and other SVs needs further investigation.
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Fig. 4 Rare variant association power and type I error. Region-
based rare variant association power and type I error for the scenarios
with optimum power at series of sequencing efforts using medium-
coverage sequencing (MCS) and other sequencing depths.

Table 4 Power and type I error rate of region-based rare variant
association in MCS.

Sample size Coverage Effort (kpd) Scenario Power Type
I error

4000 12 48 4000@12 77.20% 0.447

3000 16 48 3000@16 67.10% 0.385

2400 20 48 2400@20 56.50% 0.305

2000 24 48 2000@24 48.30% 0.262

2000 16 32 2000@16 47.90% 0.258

1600 20 32 1600@20 36.40% 0.169

2000 12 24 2000@12 46.20% 0.247

1200 20 24 1200@20 24.60% 0.117

1000 24 24 1000@24 17.70% 0.082

1000 16 16 1000@16 19.00% 0.097

1000 12 12 1000@12 17.70% 0.098

600 20 12 600@20 5.10% 0.027

500 24 12 500@24 2.70% 0.014

500 16 8 500@16 2.70% 0.016

400 20 8 400@20 0.90% 0.005

200 20 4 200@20 0.00% 0.000

MCS medium-coverage sequencing.

Fig. 3 Common and low-frequency variant association power and type I error. a Common variant; b Low-frequency variant.
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By comparing MCS scenarios together with single-stage
low-/high-coverage and two-stage sequencing scenarios, we
have investigated nearly all the practically used sequencing
depth. Some general guidelines can be concluded to design
a sequencing-based association study. First, the sample size
is more important than the sequencing depth for the asso-
ciation test. Second, increasing the sequencing coverage
does help in decreasing the error of variant detection. Above
all, one limitation of our study is that the default parameter
setting in the simulation was used without fine-tuning and
thus the observed type I error may not represent the true
number in real-world analysis. However, our study still
faithfully presented the performance of MCS and other
sequencing coverage.
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