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Abstract
A high rate of consanguinity leads to a high prevalence of autosomal recessive disorders in inbred populations. One example of
inbred populations is the Arab communities in Israel and the Palestinian Authority. In the Palestinian Authority in particular, due
to limited access to specialized medical care, most patients do not receive a genetic diagnosis and can therefore neither receive
genetic counseling nor possibly specific treatment. We used whole-exome sequencing as a first-line diagnostic tool in 83
Palestinian and Israeli Arab families with suspected neurogenetic disorders and were able to establish a probable genetic diagnosis
in 51% of the families (42 families). Pathogenic, likely pathogenic or highly suggestive candidate variants were found in the
following genes extending and refining the mutational and phenotypic spectrum of these rare disorders: ACO2, ADAT3, ALS2,
AMPD2, APTX, B4GALNT1, CAPN1, CLCN1, CNTNAP1, DNAJC6, GAMT, GPT2, KCNQ2, KIF11, LCA5, MCOLN1,
MECP2,MFN2,MTMR2, NT5C2, NTRK1, PEX1, POLR3A, PRICKLE1, PRKN, PRX, SCAPER, SEPSECS, SGCG, SLC25A15,
SPG11, SYNJ1, TMCO1, and TSEN54. Further, this cohort has proven to be ideal for prioritization of new disease genes. Two
separately published candidate genes (WWOX and PAX7) were identified in this study. Analyzing the runs of homozygosity
(ROHs) derived from the Exome sequencing data as a marker for the rate of inbreeding, revealed significantly longer ROHs in the
included families compared with a German control cohort. The total length of ROHs correlated with the detection rate of
recessive disease-causing variants. Identification of the disease-causing gene led to new therapeutic options in four families.
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Introduction

Consanguinity is a deeply rooted cultural trait in Middle
Eastern societies, especially in the Arab rural populations
due to socio-cultural factors like maintenance of the
family structure, property, or ease of marital arrangements
[1]. Despite the fact that this type of marriages is dis-
couraged by the major religions, recent studies estimated
the prevalence of consanguineous marriages among the
Palestinian Arab and Israeli Arab population to 44.3% and
25.9%, respectively, representing some of the highest
rates in the world [2–5]. This high inbreeding rate leads to
a high prevalence of autosomal recessive disorders. In first
cousin relations, the risk of significant birth defects is
increased up to 2.5 times as compared with the general
population [3]. Especially in rural Palestinian areas these
patients do not have access to advanced medical diag-
nostics and can often not be assessed by trained specia-
lists. Therefore, most of the time a genetic diagnosis is not
established.

In this study, we performed first-line whole-exome
sequencing in 83 Arab families with suspected neuroge-
netic disorders due to at least two similar affected patients
to identify the genetic cause of disease. Starting from only
minimal clinical information, WES identified potentially
disease-causing variants that were confirmed in a second
step by targeted reverse phenotyping. Through this, 37
families received a definite genetic diagnosis and 5
families a likely diagnosis with novel candidate variants,
leading to a high diagnostic yield of ~51%. Moreover, a
specific therapy was made possible in four families due
to WES.

Methods

Families were identified and enrolled in Israel or the
Palestinian territories by cooperating physicians from
2012 to 2017. The inclusion criteria were defined as fol-
lows: (1) patients had to present with so far unexplained
neurological symptoms and (2) at least two family mem-
bers, including the index patient, had to suffer from
similar symptoms. Initial phenotyping was often per-
formed by medical staff who were not trained as neurol-
ogists and was thus mostly limited to broad categories
such as “movement disorder,” “intellectual disability,”
and “epilepsy.”

Written informed consent was obtained from the patients
or the parents of the underage patients for diagnostic
procedures and next-generation sequencing. The study
has been approved by the local Institutional Review Board
(vote 180/2010BO1).

Genetics

Patients were screened for exonic variants using a whole-
exome enrichment approach (SureSelectXT Human All
Exon V5 or SureSelectXT Human All Exon V6; Agilent,
Santa Clara CA). Sequencing was performed on a
HiSeq2500 (200 cycle chemistry) or NextSeq500 (300
cycle chemistry) platform (Illumina, San Diego, CA) in
paired-end mode according to the manufacturers’ protocol.

Data analysis was performed using the megSAP [6]
pipeline. The pipeline uses BWA-MEM [7] for alignment,
freebayes [8] for variant calling, and Ensembl VEP [9] for
variant annotation. Variants were first checked for pathogenic
variants known to be associated with neurological disorders
using the HGMD [10] database. If no known disease-causing
variant was identified, variants were next filtered for rare
variants (gnomAD [11] minor allele frequency <0.1%), con-
sidering both recessive and dominant inheritance, and prior-
itized according to gene function, conservation (pyhloP [12],
GERP++ [13]) and in silico prediction scores (CADD [12],
SIFT [14], PolyPhen2 [15]). If no clear candidate variant
could be identified, a second exome was sequenced from
another affected family member to reduce the number of
potential variants. A total of 102 exomes were sequenced. In
addition, copy number variants were determined from WES
data using CnvHunter [16], a tool which compares the depth
of coverage for each exon to a collective of reference samples
to determine outlier exons. Runs of homozygosity (ROHs)
were determined using RohHunter [16], which detects
homozygous regions that are too long to occur by chance
based on detected SNP genotypes and the allele frequency of
the SNPs in public databases. Sanger sequencing was used to
confirm the identified variants and test the segregation in all
available family members. For nonsegregating variants, the
possibility of two independent genetic disorders was taken
into account. Variants have been classified as pathogenic or
likely pathogenic if they fulfilled the respective ACMG cri-
teria [17]. The respective conditions under which the variants
are causing disease (dominant, recessive, X-linked) are spe-
cified for each pathogenic/likely pathogenic variant in Table 1
and Table S1. Patients presenting with cerebellar ataxia were
additionally screened for repeat expansions in SCA 1, 2, 3, 6,
7, 17 and Friedreich’s ataxia. Patients with HSP phenotypes
underwent MLPA for SPG4. All WES data from unsolved
cases were reannotated and reanalyzed shortly before sub-
mission of the paper.

Statistical analysis

Statistical analysis was performed using JMP 14.2.0. The
nonparametric comparison in Fig. 1 was done using the
Wilcoxon method.

First-line exome sequencing in Palestinian and Israeli Arabs with neurological disorders is efficient. . . 1035
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Results

Eighty-three Arab families with at least two affected patients
with similar neurological disorders were included in this
study. Sixty families reported consanguineous marriages.
Twenty-three families were not aware of any consanguinity
in their family history. In total 102 individuals received
exome sequencing. On average 116,282,290 sequence reads
of 101-bp length were generated per sample. The mean
sequencing depth was 114× while 92% of the target sequence
was covered at least 20 times. Our standardized exome
filtering approach revealed pathogenic/likely pathogenic
variants in well-established disease genes in 35 families.
Probably disease-causing candidate variants that could not be
classified as pathogenic or likely pathogenic due to ACMG
standards were identified in five families. In addition, two
new disease genes (published separately) were identified in
the context of this study [18, 19]. In total, 51% of the families
(42 families) received either a definitive diagnosis (37
families, Table 1) or a likely diagnosis with a novel candidate
variant (5 families, Table 2). Two independent genetic dis-
orders were identified in one family (GPT2 and likely auto-
somal recessive deafness) as discussed elsewhere [20]. Based
on exome sequencing (ROH) were determined for every
sequenced patient. The total length of ROHs was used to
estimate the degree of inbreeding. patients from families with
reported consanguinity had a median ROHs length of 243
Mb. ROHs in these families were significantly longer com-
pared with patients without reported consanguinity of the

parents (median ROHs length 48Mb; p < 0.0001) (Fig. 1).
Compared with a German control cohort (median ROHs
length 35Mb) the ROHs were significantly longer not only
in the Arab patient group with reported consanguinity but
also in the Arab patient group without reported con-
sanguinity. A considerably higher percentage of families with
reported consanguinity received a genetic diagnosis and the
ROHs were also significantly longer in patients with identi-
fied pathogenic/likely pathogenic variants compared with
patients that did not receive a genetic diagnosis (median
ROH in solved patients: 233Mb, median ROH in patients
without genetic diagnosis: 101Mb; p < 0.0001, Fig. 1).

As expected most identified variants were homozygous
variants in recessive disease genes (Table 1), all located
within a region of homozygosity. Autosomal dominant
pathogenic variants were identified in two families in the
KCNQ2 gene and the KIF11 gene, respectively. One family
had a hemizygous pathogenic variant in MECP2. Com-
pound heterozygous pathogenic variants, as well as likely
pathogenic copy number variants, were not identified. Of
the 37 variants that were regarded as disease causing (in 42
families), 20 variants had been previously associated with
disease, 2 variants were established in new disease genes,
while 16 were novel variants in known disease genes
(6 missense variants, 10 loss of function variants), thus
expanding the genetic spectrum of these disorders (Table 1).
Of the novel missense variants, only one missense variant in
NTRK1 could be classified as likely pathogenic, due to the
pathognomonic phenotype with insensitivity to pain and

Fig. 1 Overview of the cohort. a Runs of homozygosity (ROHs) in
a German control cohort, patients with no reported consanguinity
and patients with reported consanguinity. Every dot represents the
ROHs in one exome. The ROHs are significantly longer in patients
with reported consanguinity vs patients without reported con-
sanguinity. Interestingly they are also significantly longer in patients
without reported consanguinity compared with German controls

indicating inbreeding in the Arab communities (p= 0.0053).
b ROHs in patients with “unsolved” exomes compared with patients
with solved/likely solved exomes. ROHs were significantly longer in
solved/likely solved cases suggesting that the higher ROHs result in
a better chance to find the causative variant. c total number and
percentage of families with pathogenic/likely pathogenic variants,
candidate variants, and unsolved families.
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anhidrosis. The other five missense variants are thus listed
below as novel candidate variants.

Novel candidate variants in established disease
genes

Based on the ACMG criteria most novel missense variants
cannot be classified as likely pathogenic or pathogenic, if
they are found only in one family and no functional readout
is available, even if other missense variants in patients with
similar phenotypic features have been established in these
disease genes. We still consider the following candidate
variants as probably pathogenic:

(1) MCOLN1 (homozygous c.230C>T: p.(Thr77Met)):
this variant segregated in a large consanguineous
family with 6 affected and 11 healthy family members
was very rare in gnomAD (MAF 2 × 10−5, not
observed homozygous) and had high in silico
prediction scores (CADD 18.8). The affected patients
suffered from mild intellectual disability, slowly
progressive cerebellar ataxia, and variable affection
of upper motor neuron, epilepsy, and pes cavus.
Ophthalmological examination was not performed
and corneal clouding was not obvious. Although not
being the typical presentation of mucolipidosis type 4
(intellectual disability and ophthalmological abnorm-
alities), the clinical features are compatible with this
diagnosis.

(2) MFN2 (homozygous c.1963A>G: p.(Lys655Glu)): this
MFN2 variant segregated in a family with two affected
and three healthy family members. Both patients
suffered from peripheral neuropathy with distal
muscle weakness, suggestive for Charcot–Marie–Tooth
h Disease. We thus consider CMT2A2B to be the likely
diagnosis.

(3) SEPSECS (homozygous c.181A>G: p.(Met61Val)):
this variant was identified in a family with two siblings

suffering from pontocerebellar hypoplasia and severe
global developmental delay. The variant was very rare
in gnomAD (MAF 4 × 10−6, not observed homozy-
gous) and received a high in silico prediction score
(CADD: 17). We concluded that pontocerebellar
hypoplasia type 2D is the likely diagnosis.

(4) SYNJ1 (homozygous c.1274G>T: p.(Cys425Phe)):
this variant was present in a family with two affected
children suffering from a severe early-onset epileptic
encephalopathy with myoclonic epilepsy. The variant
was not present in gnomAD, received high in silico
prediction scores (CADD: 27.6), and segregated in
the family with the parents and one unaffected
sibling. We consider this variant to be another cause
of autosomal recessive SYNJ1-associated epileptic
encephalopathy. So far less than ten patients have
been described [21–23].

(5) TSEN54 (homozygous c.341C>T: p.(Pro114Leu)):
two siblings with early-onset epilepsy, global devel-
opmental delay, and microcephaly shared this variant.
The variant was absent from gnomAD, received high
in silico prediction scores (CADD: 24.3), and
segregated in this family with three healthy family
members. Although a brain MRI was not available
the clinical features are suspicious for TSEN54
associated pontocerebellar ataxia.

Extensions of the phenotypic spectrum and novel
disease genes

Two distally related families were included in this study
with two sibs in each branch suffering from early-onset
generalized muscle weakness. Spinal muscular atrophy was
suspected due to severe muscle weakness, atrophy, and
fasciculations of the tongue in all patients. Additional
diagnostics like electrophysiology were not available to
these patients from the Palestinian Authority. WES was

Table 2 Overview of identified new candidate variants in established disease genes.

Gene MIM Affected/
unaffected

FamilyID Phenotype Variant Zygosity Inheritance

MCOLN1 252650 6/11 TR14 Cerebellar ataxia, affection of upper motor neuron,
intellectual disability, epilepsy, pes cavus

NM_020533.3:c.230C>T:
p.(Thr77Met)

hom AR

MFN2 617087 2/3 TR44A Peripheral motor neuropathy NM_014874.3:c.1963A>G: p.
(Lys655Glu)

hom AR

SEPSECS 613811 2/3 MA01 Intellectual disability, pontocerebellar hypoplasia NM_016955.4:c.181A>G: p.
(Met61Val)

hom AR

SYNJ1 617389 2/3 BE09 Epileptic encephalopathy, severe myoclonic epilepsy NM_203446.2:c.1274G>T: p.
(Cys425Phe)

hom AR

TSEN54 277470 2/3 TR39 Intellectual disability, microcephalus, hypotonia NM_207346.3:c.341C>T:
p.(Pro114Leu)

hom AR

Detailed annotations can be found in Table S1.

AR autosomal recessive, MIM mendelian inheritance in men.
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carried out in one affected individual of both families and
revealed a novel homozygous MTMR2 frameshift variant
c.766_767delAA segregating with the disease in both
families (Fig. 2). We reexamined all patients clinically to
confirm the diagnosis of severe Charcot–Marie–Tooth type
4b1, caused by recessive pathogenic variants in MTMR2.
The four patients were between 7 and 23 years old. All
shared distally pronounced symmetric flaccid weakness,
more severe in the older patients. Reflexes were reduced (in
the 7-year-old girl) or absent (in all other patients). While
the 7-year-old girl was still able to walk independently, the
15-year-old patient was using a walker, and the two oldest
patients were wheelchair bound since the age of 14 and 15
years, respectively. All had severe respiratory problems
with stridor and breathing restricted to the diaphragm in the
two oldest patients. Three of the four patients presented
with hoarseness. Facial weakness, chewing, and swallowing
difficulties were present in all four patients. Only some
minor distal sensory deficits were reported by the patients,
and there were only minor deficits in position sense at the
toes. Taken together the core features of early-onset disease
with respiratory distress, distal symmetric weakness and
atrophy, and vocal cord involvement were in agreement
with the genetic diagnosis of CMT type 4B1. The early
involvement of the vocal cord and stridor is increasingly
recognized in patients with CMT type 4B1 [24]. This
example shows the importance of reverse phenotyping in
these cases, once a genetic diagnosis was suspected.

In fact the a priori clinical diagnosis of the referring local
physicians differed several times from the diagnosis
achieved after genetically guided reverse phenotyping.
Another example for this was a family in which
we identified a known pathogenic homozygous SPG11
variant via WES (AQ54, Table 1), whereas the a prior
diagnosis of this family was muscular dystrophy. The more
detailed genetically guided phenotyping finally confirmed a
complicated form of hereditary spastic paraplegia (cHSP)
compatible with the homozygous pathogenic variant in the
SPG11 gene.

Another interesting finding was a homozygous frame-
shift variant (c.446delG: p.(Ser149Thrfs*45)) in SCL25A15
in two sisters presenting with spastic paraparesis, mild
cerebellar ataxia, and polyneuropathy, best summarized
as complicated form of HSP. Although pyramidal
and cerebellar affections are well-described in patients
with recessive pathogenic SLC25A15 variants [25, 26],
hyperornithinemia–hyperammonemia–homocitrullinemia
(HHH) syndrome is most likely not on the list when seeing
patients clinically presenting with cHSP. An obvious
learning disability was not present in the patient’s medical
history or clinical impression.

Besides new variants in established disease genes, the
WES-first approach enabled us to identify new disease
genes for ultra-rare disorders. In families without likely
disease-causing variants in the index patient we performed
additional WES of a second or third affected family mem-
ber. This helped to reduce the number of candidate genes
and helped (i) to identify two novel disease genes (WWOX
and PAX7, both published elsewhere [18, 19]) and (ii) to
establish substantial expansions of the gene-associated
phenotypic spectrum like in GPT2, CNTNAP1, and
POLR3A [20, 27, 28]. (iii) We identified additional families
with pathogenic or likely pathogenic variants in genes that
had been described only in single families. This helped to
confirm the pathogenic role of these variants and to estab-
lish its causal relation for the disease like the homozygous
splice variant c.2023-2A>G in SCAPER that has recently
been associated with retinitis pigmentosa and intellectual
disability [29]. Interestingly, all three patients with this
pathogenic SCAPER variant in our series had nuclear cat-
aracts in addition to retinitis pigmentosa and intellectual
disability.

WES enables specific therapy

In 4 of 83 families we identified genetic diseases that offer
causal treatment options most likely with beneficial effects
on the course of disease. The above mentioned molecular

Fig. 2 Pedigree of the two related consanguineous families AQ18
and AQ19. The mother in AQ18 is the sister of the father in AQ19
while the mother in AQ19 is the sister of the father in AQ18. In
addition, both couples are first cousins. The MTMR2 variant

(NM_016156:exon8:c.766_767del) was homozygous in all affected
patients and heterozygous in the parents. mt pathogenic variant; wt
wild type.
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genetic diagnosis of HHH syndrome, caused by an defect of
the urea cycle, enabled a dietary treatment with supple-
mentation of ornithine, and restriction of protein [25].

Similarly, in three apparently independent families we
found a well-established pathogenic GAMT variant causing
cerebral creatine deficiency syndrome 2 (CCDS2). In
CCDS2 standardized treatment recommendations, including
creatine supplementation to reduce cerebral creatinine defi-
ciency are available and are likely to improve or stabilize
symptoms. Unfortunately, the treatment response could only
be monitored in two patients with CCDS2. These two
patients both showed improvement of aggressive behavior
and autistic features, as well as a reduction of seizures fre-
quency comparable to the previously reported positive effects
of creatine supplementation [30]. In summary, WES enabled
specific treatment in nine patients from four families.

Discussion

We have shown that first-line exome diagnostic in neuro-
logical patients from consanguineous Arab communities in
Israel and the Palestinian Authority reaches a high diag-
nostic yield. In this study 42 of 83 (51%) families received a
definite genetic diagnosis or at least a very likely candidate
variant. This is comparable to the diagnostic yield from
similar studies using next-generation sequencing in con-
sanguineous populations (55–60%) [31–33].

ROHs were significantly longer in the included Arab
patients compared with a German control cohort, even in
the subgroup of Arab patients without reported con-
sanguinity. This confirms the basic assumption that there is
generally a higher inbreeding rate in the Palestinian and
Israeli Arab communities than in other populations even if
consanguinity is not documented in the family, and
demonstrates the potential of ROHs calculations based on
NGS data as a marker for inbreeding. Furthermore, a cor-
relation between longer ROHs and the likelihood of finding
a homozygous disease-causing variant was shown.

In our exome-first approach we could establish a genetic
diagnosis even with only basic clinical information and
without extensive additional diagnostics like electro-
physiology, laboratory screening, or brain imaging. For
patients from a consanguineous background with limited
access to medical diagnostics, first-line WES in combina-
tion with careful reverse clinical phenotyping might be the
fastest and the most cost-efficient way to establish a genetic
diagnosis.

Data availability

Human variants and phenotypes have been reported to
ClinVar (submission name “TLP001,” accession numbers

for all variants are found in Table S1; www.ncbi.nlm.nih.
gov/clinvar).
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