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Abstract
Numerous statistical methods have been developed to explore genomic imprinting and maternal effects by identifying
parent-of-origin patterns in complex human diseases. However, because most of these methods only use available locus-
specific genotype data, it is sometimes impossible for them to infer the distribution of parental origin of a variant allele,
especially when some genotypes are missing. In this article, we propose a two-step approach, LIMEhap, to improve upon a
recent partial likelihood inference method. In the first step, the distribution of the missing genotypes is inferred through the
construction of haplotypes by using information from nearby loci. In the second step, a partial likelihood method is applied
to the inferred data. To substantiate the validity of the proposed procedures, we simulated data in a genomic region of gene
GPX1. The results show that, by borrowing genetic information from nearby loci, the power of the proposed method can be
close to that with complete genotype data at the locus of interest. Since the inference on the genotype distribution is made
under the assumption of Hardy–Weinberg Equilibrium (HWE), we further studied the robustness of LIMEhap to violation of
HWE. Finally, we demonstrate the utility of LIMEhap by applying it to an autism dataset.

Introduction

Genomic imprinting and maternal effects are both impor-
tant epigenetic factors that have been explored as potential
sources of heritability unexplained by genome-wide asso-
ciation studies. Genomic imprinting and maternal effects
are involved in many complex human diseases, including
Prader–Willi, Beckwith–Weidemann, and Angelman syn-
dromes [1], and childhood cancers [2]. In this paper, we
focus on developing an extension to a statistical method so
that it is more powerful for detecting imprinting and
maternal effects; therefore, we only describe these two
epigenetic factors briefly that is sufficient for the purpose of

explaining our work. Complete and detailed descriptions of
their complex mechanisms can be found in the literature
[3–5]. Genomic imprinting refers to the process of differ-
ential epigenetic DNA modifications of the parental alleles,
which leads to unequal expression of a heterozygous gen-
otype depending on whether the variant allele is inherited
from the mother or from the father [3]. Genomic imprinting
may vary among individuals (a phenomenon termed
polymorphic imprinting) depending on the stages of
development, tissues, genetic background, and environ-
ment [4]. A maternal genotype effect, on the other hand, is
a phenomenon wherein the phenotype of an individual is
influenced by the genotype of the mother, not merely the
allelic copy inherited. Maternal effects usually occur due to
the additional mRNAs or proteins passed from the mother
to the fetus during pregnancy and remained in the child
after birth. Although imprinting and maternal effects arise
from two different biological processes, their effects can
mask one another [5]. Thus, it is important that these two
confounding effects are considered together using statis-
tical methods to avoid false positives/negatives ([6] and
references therein).

A number of statistical methods have been proposed to
study imprinting and maternal effects jointly, dated back to
the work by Weinberg et al. [7]. Nevertheless, this and most
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of the work that followed make the assumption of mating
symmetry to avoid overparametrization so that hypothesis
testing on the existence of imprinting and/or maternal
genotype effects can be carried out [6]. The most frequently
used design for studying maternal and imprinting effects is
that of complete triads, where the genotypes of mother,
father, and child are all required to be observed [8] to
facilitate the identification of the parental origin of the allele
of interest. In practice, incomplete triads are common, as
one parent may be unavailable for genetic study: parents
may be deceased or unavailable; they may refuse to parti-
cipate in the study; or the father may need to be excluded
post hoc due to nonpaternity. Although the need for com-
plete triad data has been relaxed in more recent methods so
that mother–child pairs may also be included in a study,
data are nonetheless not fully utilized [9–11].

Among the methods that allow for missing father geno-
types, LIME, a partial Likelihood inference method for
detecting both imprinting and maternal effects, stands out as
it does not require assumptions about mating type prob-
abilities [11]. Furthermore, nonproband siblings may also
be included in a study in addition to the child proband in
triads and pairs. However, when a father’s genotype is
missing, LIME has to ignore pairs in which both the mother
and the child’s genotypes are heterozygous, as parental
origin of the child’s allele cannot be determined and thus
the parameters of interest and the nuisance parameters are
not separable.

While Yang and Lin [11] demonstrated that ignoring
mother–child pair both with heterozygous genotypes may
not lead to a significant loss of information in some sce-
narios for LIME, incorporating genotype information for
markers that are in linkage disequilibrium (LD) with the test
locus can generally help infer parental origin [12–14]. As
such, we propose LIMEhap, an approach that adopts the
methodology of LIME, but utilizes additional information
from nearby markers that are in LD with the test locus to
help infer missing genotypes. Therefore, LIMEhap can
detect both imprinting and maternal effects and distinguish
between them by using all the complete triad data and
incomplete mother–child pair data when available. To
substantiate the validity of the proposed procedure and to
quantify the potential gain in power, we carried out an
extensive simulation study by considering 32 settings.
Our results show that, by inferring the parental origin of
the minor allele at the test locus through borrowing
genetic information from nearby loci, the power of the
proposed method can be close to that using complete
genotype data at the test locus with well-controlled type I
error rate. This illustrates that the use of nearby marker in
LD with the test locus helps resolve parental origin ambi-
guity to a great extent, consistent with observations in the
literature. We further study the robustness of LIMEhap to

violation of Hardy–Weinberg Equilibrium (HWE), as
inference on the genotype distribution is made under
the assumption of HWE. Finally, we applied LIMEhap to
an autism spectrum disorder dataset to demonstrate its
practical utility.

Materials and methods

Enrichment of test locus information

Suppose a disease locus has two alleles A and a, where a
(typically the minor allele, that is, with a smaller frequency
than A) is the variant allele. In a nuclear family, we use F,
M, and C to represent the genotypes of father, mother, and a
child, respectively. The genotypes AA, Aa, and aa are coded
as 0, 1, or 2, respectively, representing the number of the
variant allele. We also use 1m to indicate a child with
genotype Aa whose minor allele a is inherited from the
mother.

We use a multiplicative risk model for the disease
penetrance:

PðD ¼ 1jM;F;CÞ ¼ δRI C¼ 1ð Þ
1 RI C¼ 2ð Þ

2 RI C¼ 1mð Þ
im

SI M¼ 1ð Þ
1 SI M¼ 2ð Þ

2 ;
ð1Þ

where δ is the phenocopy rate; R1 and R2 denote the effects
of one or two copies of an individual’s own variant allele,
respectively; Rim denotes the imprinting effect; S1 and S2
denote the effects of one or two copies of the mother’s
variant allele, respectively; and finally, D is an indicator
variable denoting the disease status of the child, with 1
being affected and 0 being unaffected. As shown in Yang
and Lin [11], all the parameters are identifiable and
estimable; therefore, we can distinguish maternal effects
from imprinting effects using the model as specified in (1).
We denote the vector of parameters of interest by θ ¼
δ;R1;R2;Rim; S1; S2ð Þ> and the vector of nuisance para-
meters (including mating type probabilities, to be elaborated
in the following) by ϕ. We note that this model is assumed
to apply to all individuals; therefore, the methodology is
expected to suffer from power loss in the presence of
polymorphic imprinting.

When the father’s genotype is missing, there are seven
genotype combinations of the (M,C) pair, listed in Table 1.
Therein, the μ’s are mating type probabilities; that is, μij= P
(M= i, F= j),i, j= 0,1,2. As we can see from the table, for
the first six categories, the mating type probabilities (the
nuisance parameters) and the risk parameters can be com-
pletely separated as multiplicative factors in the joint
probabilities of mother–child genotypes and child’s disease
status (either D= 1 or D= 0). However, for the 7th cate-
gory, (M,C)= (1,1), separation cannot be achieved. This is
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because when both mother and child are heterozygous, the
parental origin of the child’s variant allele cannot be
inferred when father’s genotype is missing. As such, LIME
ignores data from this category, with a justification given
in Yang and Lin [11], where they demonstrated that the
loss of information with the ignorance of this category is
not substantial in some situations. Nevertheless, it is
important to recover as much information as possible,
especially given the scarcity of family data compared with
population case-control samples. For brevity in the main
text, a detailed description of the LIME procedure is dele-
gated to Supplementary Material S1. In the remaining of
this subsection, we describe a method that uses haplotype
information in the genomic region spanned by the test locus
and nearby markers in LD with it to impute the missing
father’s genotype so that such mother–child pairs can
also be used.

For ease of exposition, we explain the idea in a simple
scenario with only two loci. The method for multiple loci
proceeds analogously. Suppose the test locus has two
alleles, A and a, and a nearby marker also has two alleles, B
and b. We assume that these two loci are in high LD so that
there is no recombination between these two loci when
transmitting the chromosomal segment from parents to
offspring. There are four possible haplotypes formed by
these two loci: AB, Ab, aB, and ab. Suppose in a triad, the
mother’s unphased genotype is (Aa,Bb), where the first
entry in the parentheses denotes the genotype at the test
locus and the second denotes the genotype at the marker
locus. For the child, the genotype is (Aa,BB). Then at the
test locus, (M,C)= (1,1). Suppose further that haplotype ab
occurs with a negligible frequency, then one can safely
assume that the mother’s phased two-locus genotype is Ab|
aB, where the haplotype before and after the “|” make up the
haplotype pair of the mother. Since no recombination is
allowed between these two loci, she must have passed aB to
the child since the child has genotype BB at the additional
marker locus. Therefore, the parental origin of the a allele in
the child must be from the mother.

In a more complex scenario, we assume that all four
haplotypes have frequencies that are too high to be ignored.
In this situation, we still cannot determine the parental
origin of the a allele even with additional information from
the marker locus. For such cases, we will infer all compa-
tible haplotype configurations for the family and compute
their corresponding probabilities, as shown schematically in
Table S1 and explained in the caption. By doing so,
methods that cannot make use of the pair data with (M,C)=
(1,1) at the test locus, such as LIME, can now borrow
information from nearby markers to estimate the distribu-
tion of the familial genotype configurations, which provides
a probabilistic approach to incorporate the partial informa-
tion into these methods.Ta
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LIMEhap

In this section, we introduce LIMEhap, an extension of
LIME, to make use of the (M,C)= (1,1) category based on
inferred haplotype distributions. Pairs with (M,C)= (1,1)
are processed first. Utilizing information from loci in LD
with the test locus and assuming that there are no recom-
binations in the region spanned by these loci, we infer
compatible haplotype configurations and their correspond-
ing probabilities for the nuclear family (which may include
additional siblings) using HAPLORE [15]. Since HWE is a
necessary assumption in HAPLORE, we will explore the
robustness of LIMEhap when the HWE assumption is
violated.

Define n1mc and n0mc as the numbers of case-mother and
control-mother pairs, respectively, with M=m and C= c.
The child in each of these pairs is a proband (either affected
with D= 1 or unaffected with D= 0). Define sn1mc and sn0mc
similarly for sibling-mother pairs, where these siblings are
not probands. We assume that the total number of families
derived from case-mother pairs,n1p ¼ P

m;c n
1
mcð Þ, and the

total number of families derived from control-mother pairs,
n0p ¼ P

m;c n
0
ðmcÞ, are fixed. Then the likelihood from the

observed data can be written, up to a proportionality, as

L θ;ϕð Þ /
Y

m;c
P m; cjD ¼ 1ð Þn1mcP m; cjD ¼ 0ð Þn0mc

n

P D ¼ 1jm; cð Þsn1mcP D ¼ 0jm; cð Þsn0mc
o
:

Note that in the above likelihood, for each case-mother
or control-mother pair, the contribution is through a con-
ditional probability conditioning on their affection status
(first two factors in the likelihood), whereas for the addi-
tional siblings, their contributions are factored into the
likelihood prospectively since they are not probands (last
two factors in the likelihood).

Following the argument of LIME, one can extract the
following partial likelihood that is free of the nuisance
parameters:

Lp θð Þ ¼
Y

m;c
pmcð Þn1mc 1 � pmcð Þn0mc

n

Y
m;c

qmcð Þsn1mc 1 � qmcð Þsn0mc
n o

;
ð2Þ

where pmc and qmc for (m,c) ≠ (1,1) are as described in
Supplementary Material S1, and we focus on defining these
two quantities for (m,c)= (1,1) in the following. We first
note that in the original LIME method [11], the likelihood
and partial likelihood do not include the (m,c)= (1,1)
category. Nevertheless, their argument for extracting the
partial likelihood, now including all pairs, remains valid,
although the corresponding p11 and q11 are defined
differently and explained in the following.

We let n11 ¼ n111 þ n011 be the total number of nuclear
families with (m,c)= (1,1) and n11f 1h and n01f 1h be, respec-
tively, the summation of the inferred probabilities of case-
mother and control-mother pairs with triad genotype con-
figuration (m,f,c)= (1,f,1) at the test locus derived from
HAPLORE as explained in subsection of enrichment of test
locus information, where f may take the value of 0,1, or 2.
Following the original idea of LIME [11], we use p1f1 (θ) to
represent the probability of being a case-parent triad among
all families (including all case- and control-families) with
(m,f,c)= (1,f,1), f= (0,1,2), and is defined as

p1f 1 θð Þ ¼ 1
s1f 1

n1pP D ¼ 1jM ¼ 1;F ¼ f ;C ¼ 1ð Þ
PðD ¼ 1Þ ;

f ¼ 0; 1; 2;

where

s1f 1ðθÞ ¼
n1pP D ¼ 1jM ¼ 1;F ¼ f ;C ¼ 1ð Þ

P D ¼ 1ð Þ

þ n0pP D ¼ 0jM ¼ 1;F ¼ f ;C ¼ 1ð Þ
P D ¼ 0ð Þ

is also free of the nuisance parameters. Then, the probability
of being a case-mother pair among families with (m,c)=
(1,1), p11 (θ), is the weighted average of the p1f1’s with the
weight for each f (=0,1,2) being the proportion of families
with (m,f,c)= (1,f,1): n11f 1h þ n01f 1h

� �
=n11. That is,

p11 θð Þ ¼ p101
n1101h þ n0101h

n11
þ p111

n1111h þ n0111h
n11

þ p121
n1121h þ n0121h

n11
:

ð3Þ

Similarly, we define sn11f 1h and sn01f 1h as, respectively, the
summation of the inferred probabilities of affected or unaf-
fected sibling-mother pairs with triad genotype configuration
(m,f,c)= (1,f,1) at the test locus derived from HAPLORE.
Then the penetrance probability for (m,c)= (1,1) is
calculated as the weighted average of disease penetrance
q1f1(θ)= P(D= 1|M= 1, F= f, C= 1) with the weight for
each f(=0,1,2) being the proportion of the additional siblings
with (m, f, c)= (1,f,1): ðsn11f 1h þ sn01f 1hÞ=sn11. That is,

q11ðθÞ ¼ q101
sn1101h þ sn0101h

sn11
þ q111

sn1111h þ sn0111h
sn11

þ q121
sn1121h þ sn0121h

sn11
:

It is noteworthy to point out that the above idea for
taking care of the (M,C)= (1,1) category is in fact parallel
to the way that LIME handles the (M,F,C)= (1,1,1) cate-
gory, where the uncertain origin of the a allele is being
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attributed to father or mother, each with probability 0.5.
Thus, the disease penetrance is a weighted average of the
two possibilities with the weights being their respective
probabilities (50% for each). For LIMEhap here, we have
three possibilities, and we use the inferred probabilities
from HAPLORE as the weights.

Simulation study

We carry out a simulation study to evaluate the performance
of LIMEhap and compare its information gain over LIME.
To generate data that reflect LD structure in real situations,
we consider 5 SNPs in the GPX1 gene (shown in Supple-
mentary Table S2), where the underlying haplotypes have
been previously constructed and used in other studies,
including those that investigated the properties of methods
for detecting parent-of-origin effects [13, 16, 17]. We
consider four scenarios, which are combinations of two
levels of population disease prevalence P(D= 1) (PREV)
{0.05, 0.15}, and two levels of HWE {not hold= 0, hold=
1}. The probabilities of a genotype taking values of 0, 1,
and 2 are (1 – p)2(1 – ζ)+ (1 – p)ζ, 2p(1− p)(1− ζ), and p2

(1 – ζ)+ pζ, where ζ is the inbreeding parameter [18].
When HWE holds, ζ= 0. When HWE does not hold, ζ is
set to be 0.1 and 0.3 for males and females, respectively.

To facilitate this investigation, we consider a total of
eight disease models (Table 2). The first three models
portrait no imprinting nor maternal effects. Model 4 has
maternal effect only, models 5 and 6 have imprinting effect
only, and model 7 and 8 have both parent-of-origin effects.
With the specification of each scenario and a disease model,

the penetrance probability in (1) is fully specified. In all, we
consider a total of 32 settings (four scenarios and eight
disease models).

We generate 1000 replications under each of these
32 settings. Each replicate consists of 150 case families and
150 control families. Firstly, parental haplotypes are gen-
erated. Then, the haplotypes of their proband children are
created according to the transmission probability assuming
no recombination. Affection status D of the probands are
determined by a Bernoulli trial, with the success probability
calculated based on (1) with M,F,C as mother, father, and
child’s genotypes at the test locus, which are deduced
completely from the generated haplotypes. A family with an
affected child is recruited as a case family, whereas a family
with an unaffected child is recruited as a control family. The
process of generating M, F, C, and D is repeated until we
have collected sufficient numbers of case and control
families to meet the preset sample size. This process returns
triad data with affected or unaffected probands. To generate
pair data, we remove all the fathers’ genotype information
from the triad data. In addition, we also consider the sce-
nario with one additional nonproband sibling, whose hap-
lotype is generated based on the parents’ haplotypes and
transmission probability as for the probands, and whose
disease status is assigned prospectively based on (1). We
denote P and T as pair data without the (M,C)= (1,1)
category and triad data, respectively. We further denote
P+ 1 and T+ 1 as pair and triad families, each with one
additional sibling. On the other hand, we use P+ hap, P+
1+ hap to represent the corresponding data that include the
(M,C)= (1,1) pairs.

Real data analysis

Autism spectrum disorder (ASD) is a serious neuron-
developmental disorder that impairs the ability to commu-
nicate and interact, typically starting in childhood [19, 20].
Parents usually notice signs in the first two years of their
child’s life. The disease is highly heritable, but the under-
lying genetic determinants are yet fully understood [21, 22].
Some studies have amassed evidence that suggests the
involvement of parent-of-origin effects, including both
imprinting and maternal effects [23–25]. To uncover the
genetic architecture of ASD, the Autism Genome Project
(AGP) Consortium investigated 2611 nuclear families. We
obtained the genotype and phenotype data of 4222 indivi-
duals with pedigree information from dbGAP (Accession:
phs000267.v1.p1) [26]. In our application of LIMEhap, we
focus on the 41,940 SNPs on chromosome 7, as this chro-
mosome contains more than 50 genes that have been
implicated to be associated with ASD in the literature. One
franking marker on each side were used for each test locus.
In addition, as ignoring structure due to differential ancestry

Table 2 Parameters for eight disease models used in the
simulation study.

Parameters

Model R1 R2
Rim S1 S2

1 1 1 1 1 1

2 2 3 1 1 1

3 1 3 1 1 1

4 1 3 1 2 2

5 1 3 3 1 1

6 3 3 1/3 1 1

7 1 3 3 2 2

8 3 3 1/3 2 2

R1: relative risk of carrying one copy of the variant allele.

R2: relative risk of carrying two copies of the variant allele.

Rim: imprinting effect parameter with a single variant allele from
mother; Rim > 1(<1, or =1) represents paternal imprinting (maternal
imprinting, or no imprinting effect).

S1: maternal effect with mother carrying one copy of the variant allele.

S2: maternal effect with mother carrying two copies of the variant
allele.

Incorporating information from markers in LD with test locus for detecting imprinting and maternal. . . 1091



can lead to an excess of spurious findings and reduced
power, we only utilize families with European ancestry (the
indicator variable for European ancestry is available). About
88% of the individuals in the data belong to this category,
which come from 1193 nuclear families including 1177
affected and 32 unaffected offspring.

Results

Simulation study

Type I error and power

We applied LIMEhap to data types P+ hap and P+ 1+
hap. For comparison, we also applied LIME to the P, P+ 1,
T, and T+ 1 data types. Although it is expected that the
results from LIMEhap is somewhere between the corre-
sponding P and T data, we are interested in assessing how
much information can be gained using P+ hap over P, or
P+ 1+ hap over P+ 1, and how close P+ hap or P+ 1+
hap can get to T or T+ 1 respectively. For our first set of

analyses, we use SNP1 as the test locus and the rest of the
SNPs to infer haplotype. Figure 1 shows the type I error
rate and power when HWE does not hold and PREV=
0.05. We can see that all the type I error rates are close to
the nominal values of 0.05, even when HWE does not hold.
This shows that even though HAPLORE infers haplotype
based on the HWE assumption, LIMEhap is still robust to
violation of such an assumption, inheriting the property
from the original LIME. Compared with LIME, LIMEhap
obtains much greater power for detecting imprinting effect
for all four non-null models and comparable power for
detecting association and maternal effects. The numerical
values for the type I error and power are given in Supple-
mentary Tables S4–9. In all cases, for detecting imprinting
effects, the inclusion of the additional information from the
(M,C)= (1,1) category cuts down the information loss
(from not having complete triad data) by at least half. The
reason that there is a drastic increase in power for detecting
imprinting effect is that using markers in LD with the test
locus helps resolve, even if not completely, the parental
origin of the variant allele in the child to a great extent. The
information increase is nontrivial since, typically, more than
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Fig. 1 Type I error and power for eight disease models (labeled
1–8 corresponding to the numbering in Table 2) for the scenario in
which HWE does not hold and PREV= 0.05. The top segment
gives the outcome for association, in which the results for model 1
represent type I errors while the rest are power. The middle segment
provides the outcome for imprinting, in which the results for models
1–4 represent type I errors while the rest are power. The bottom

segment presents the outcome for maternal effect, in which the results
for models 1–3, 5–6 represent type I errors while the rest are power.
For each model, the results for six types of data utilization are given in
the order provided in the caption, and note that P+ hap and P+ 1+
hap give the analysis results using LIMEhap and the rest using the
original LIME.
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10% of the families fall into the (M,C)= (1,1) category.
Similar results for type I error and power are obtained for
the other three scenarios of HWE and PREV combinations
and are delegated to Supplementary Figures S1–3.

In reality, there might be a mixture of triad data and pair
data. To simulate this scenario, we also randomly set a
father’s genotype to be missing with probability 0.5 in each
case-parent families and 0.7 in each control-parent families.
We then apply the two-step LIMEhap procedure to
these resulting mix datasets. Results in Supplementary
Figures S4–7 and Tables S10–13 show that LIMEhap also
controls type I error well and gains considerable power for
detecting imprinting effect.

Position of test locus

The results presented above all use the 1st SNP in the
5-SNP block as the test locus. To explore whether detection
power can be substantially influenced by the position of the
test locus relative to the additional loci, we also position
the test locus to be at the 2nd, 3rd, 4th and 5th SNP, and we
use the rest of the SNPs as additional loci for inferring

fathers’ genotypes. The power for detecting imprinting
effect, presented in Fig. 2, is for the scenario where HWE
holds and PREV= 0.05. From the figure, we first see that
the power for using the additional markers is increased
regardless of the test locus position, except for when the test
locus is at the last position. To understand the result when
the last SNP (SNP 5) is the test locus, we first note that the
SNP is the most informative, or nearly the most informa-
tive; therefore, there is limited additional information that
can be gained by utilizing information from the other SNPs.
Further, the last SNP is in fact in low LD with the other
SNPs (Supplementary Table S3). Perhaps the most likely
reason for lack of increase in power in this instance is due to
its minor allele frequency (MAF) being almost equal to 0.5
(Supplementary Table S2), rendering less certainty about
the familial haplotype configurations even with additional
information from nearby loci. This argument is consistent
with that made in another study [13]. Similar results for the
other three scenarios of HWE and PREV combinations can
be found in Supplementary Figures S8–10.

Although one might have expected the greatest infor-
mation gain to be when the test locus is in the middle of the

Fig. 2 Power for imprinting
effect at different test locus
when HWE holds and
PREV= 0.05. For each locus,
the genotype information from
the rest of the other four loci is
used to help resolve the familial
haplotype ambiguity. Only
results from Models 5–8 are
presented here since there are no
imprinting effects for models
1–4.
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LD block (i.e., when SNP 3 is the test locus), this is how-
ever, not the case. Even though this may be counter-intui-
tive, the results in fact is not surprising upon careful
inspection of Fig. 2 and Supplementary Figures S8–10,
Tables S2 and S3, and using the same line of arguments as
for SNP 5. It turns out that SNP 3 is either the most
informative or nearly the most informative, in par with SNP
5; hence, as discussed before, utilizing the flanking SNPs
will only gain limited additional information. Further, like
SNP 5, it has low LD with the rest of the four SNPs
(Supplementary Table S3). However, compared with SNP
5, the MAF of SNP 3 is 0.28 (much less than 0.5); thus,
using the flanking makers did lead to some, albeit limited,
power gain over using pair data only. On the contrary, the
most information gain is in the situation where the test SNP
itself is less informative and has a relatively small MAF,
such as the 2nd or the 4th SNP. Using SNP 2 as an example,
which has a MAF of 0.18, we examined whether additional
markers, beyond the flanking ones, will necessarily lead to
greater information for inferring parental origins of the
minor allele. The results in Supplementary Figure S23 show
that there was very substantial power gain for detecting
imprinting effect when the flanking markers SNP 1 and
SNP 3 were used (note that the LD between SNP 1 and 2
was 0.78). However, inclusion of additional loci (adding
SNPs 4 and 5 one at a time) in this situation did not lead to
further power gain. Taken together, we have demonstrated
that the position of the test locus relative to the additional
loci is not the most important factor for determining infor-
mation gain. Rather, whether substantial information will be
gained by using additional markers depends not only on its
LD profile with the other markers, but also on its own
informativeness and its MAF. Further, it appears that the
use of the two immediate flanking markers is sufficient for
helping to resolve the parental origin of the minor allele in a
child. Including additional markers does not seem to be
necessary.

The two-step procedure of LIMEhap is practical, but note
that the disease model and affection status of probands are
ignored in the first step, which may lead to bias in esti-
mating the effect size in the second step. To quantify this
concern, we checked the mean value of the estimates for
each parameter under different settings, and found that the
empirical means are all very close to the corresponding true
values, alleviate the concern regarding bias, although out-
liers exit (Supplementary Figures S11–18). However, note
that this is not a unique problem of LIMEhap; rather, it is a
general phenomenon in LIME approaches when the sample
size is limited [27].

Our above results are all based on a balanced design,
where the number of case families is the same as the
number of control families. To explore the impact of a
unbalanced design, we also performed a small simulation

study with 210 case families and 90 control families. We
can see that LIMEhap still has type I error close to the
nominal value and much higher power for detecting
imprinting effects than that of LIME (Supplementary
Figures S19–22). Nevertheless, the absolute power is lower
compared with that with the same total number of 300
families of a balanced design.

Real data analysis

Using LIMEhap, we identified a number of SNPs that have
potential association, imprinting, or maternal effects at the
0.05 significance level after the Bonferroni correction.
We then checked for violation of the HWE assumption at the
5% nominal level, and none of these significant SNPs failed
the test. Although LIME is not susceptible to deviation from
HWE, and the second-step of LIMEhap has inherited this
property, we nonetheless still test HWE for all markers since
such is assumed in HAPLORE. Our results show that some
of the estimated effects are very large, which could very well
be due to the small number of control families [27]. Thus
these results need to be further scrutinized before they can be
reported confidently, and we chose only to report SNPs with
reasonable effect sizes. This issue is further elaborated in the
Discussion Section. In the following, we focus on discussing
SNPs that are found to be significant by LIMEhap (at the
Bonferroni-corrected 5% level) and have also been impli-
cated in the literature previously.

The top segment of Table 3 presents the SNPs that have
been found to have potential imprinting effects by LIMEhap
and have met the above general criterion. Specifically, SNPs
rs1608628 and rs10247167 both fall in the SLI4 region,
which is related to specific language impairment according
to OMIM (http://www.omim.org/). It has been shown in
Ruser et al. [28] that impaired communication is part of the
broader autism phenotype, especially among male family
members. SNPs rs4729043 and rs917325 are within gene
HDAC9, which has been identified to be associated with
ASDs [29]. SNPs rs1978201, rs4718958, and rs2299456
are within the autism susceptibility loci AUTS1, AUTS2,
and AUTS9, respectively (OMIM). SNPs rs1567277 and
rs854721 are within gene PPP1R9A, which has been
examined as a candidate gene for ASDs [29]. Gene PCLO,
which includes SNP rs7807790, is identified to be asso-
ciated with ASDs in the Chinese Han population [30].

For imprinting effects, three SNPs have been found to
meet the criterion; that is, their Bonferroni-corrected p value
are smaller than 0.05 and they have been previously dis-
cussed as having an effect on ASD by other investigators
(middle segment of Table 3). In fact, these SNPs all fall
within the SLI4 gene region. The SNPs that were found to
have potential maternal effects by LIMEhap and have also
been implicated in the literature are provided in the bottom
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segment of Table 3. To elaborate, SNPs rs3807843 and
rs6958145 are both in gene ICA1, while Salyakina et al.
[31] provides evidence for the involvement of ICA1 on
7p21.3 in ASDs. SNP rs17347159 falls in the gene HDAC9.
SNP rs3734989 is within PLXNA4. Suda et al. [32] found
decreased expression of axon-guidance proteins such as
PLXNA4 in the brains of people with autism. Both SNPs
rs41567 and rs2107829 are within gene PCLO. The Study
by Fenster and Garner [33] suggests that the alterations in
the expression of Piccolo or the PCLO gene could con-
tribute to developmental disabilities and mental retardation.
SNP rs11977905 is within the gene AGMO, where a rare
CNV in the AGMO (TMEM195) gene has been identified
with autism [34]. SNPs rs10225065 and rs105024216 are
both in autism susceptibility loci AUTS1. SNPs rs6956114
and rs12154389 are both in autism susceptibility loci
AUTS9. SNPs rs10488060, rs11981093, and rs13228314
are all in SLI4 gene region.

Discussion

In this article, we propose a two-step approach, LIMEhap,
to improve upon a recent partial likelihood inference
method, LIME, for detecting imprinting and maternal
effects. The improvement is to make fuller usage of
mother–child pair data by utilizing all pairs regardless of
their genotypes instead of discarding certain pairs with
ambiguous parental origin of the variant allele. Our simu-
lation shows that LIMEhap has empirical type I error rates
close to the nominal value and achieves higher power than
the original LIME. Further, the position of the test locus
relative to the additional loci in the LD block does not
appear to be important. On the other hand, the MAF of the
test locus and its informativeness do influence the extent of
power gain. Moreover, there may be little additional
information gain for delineating the parental origin beyond
the usage of the immediate flanking makers of a test locus.

Table 3 SNPs inferred from
LIMEhap with potential
association, imprinting, or
maternal effects on ASD and
have been implicated previously
in the literature.

Effect type SNP GRCh38 ref. seq.a Gene −log10 (P value)

Association rs1608628 NC_000007.14:g.147010952T>C SLI4(CNTNAP2) 8.049***

rs4729043 NC_000007.14:g.92448402G>A HDAC9 7.496**

rs10247167 NC_000007.14:g.145581582C>T SLI4 7.255**

rs2299456 NC_000007.14:g.126528712T>C AUTS9(GRM8) 6.962**

rs1527677 NC_000007.14:g.94958854C>T PPP1R9A 6.756**

rs917325 NC_000007.14:g.18248970A>G HDAC9 6.553*

rs7807790 NC_000007.14:g.83154530T>C PCLO 6.379*

rs854721 NC_000007.14:g.94971522G>A PPP1R9A 6.156*

rs4718958 NC_000007.14:g.70548605G>A AUTS2 (KIAA0442) 6.008*

rs1978201 NC_000007.14:g.105200029T>C AUTS1 5.980*

Imprinting rs842454 NC_000007.14:g.158784449G>A SLI4(ESYT2) 6.978**

rs7787974 NC_000007.14:g.158735479G>A SLI4(ESYT2) 6.936**

rs2657323 NC_000007.14:g.158851177T>C SLI4 6.267*

Maternal rs3807843 NC_000007.14:g.8140025A>G ICA1 8.071***

rs17347159 NC_000007.14:g.18354475C>A HDAC9 7.951***

rs3734989 NC_000007.14:g.132179832T>C PLXNA4 7.417**

rs41567 NC_000007.14:g.82990312T>C PCLO 7.405**

rs11977905 NC_000007.14:g.15435562A>C AGMO 7.394**

rs2107829 NC_000007.14:g.82984933A>T PCLO 7.028**

rs10225065 NC_000007.14:g.106650074A>G AUTS1 6.897**

rs6466064 NC_000007.14:g.105383770T>C AUTS1(SRPK2) 6.612*

rs10488060 NC_000007.14:g.156755951T>C SLI4(LMBR1) 6.450*

rs6958145 NC_000007.14:g.8148337C>G ICA1 6.325*

rs11981093 NC_000007.14:g.156937382C>T SLI4 6.151*

rs6956114 NC_000007.14:g.111857472G>A AUTS9(DOCK4) 6.093*

rs13228314 NC_000007.14:g.152048953C>T SLI4(GALNT11) 6.018*

rs12154389 NC_000007.14:g.111855897G>A AUTS9(DOCK4) 5.928*

*0.05 significant; **0.01 significant; and ***0.001 significant, all with Bonferroni correction.
aThese SNPs are all in Chromosome 7.
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Although the first step of LIMEhap requires the HWE
assumption, our simulation results show that it is robust to
HWE violation, at least for the 32 settings considered. Note
that the second step of LIMEhap does not assume HWE, as
no nuisance parameters are in the partial likelihood.
Nevertheless, it would be advantageous for the haplotype
frequency inference procedure in the first step to be free of
the HWE assumption as well to ensure that the entire
LIMEhap procedure is robust to such violation regardless of
the underlying setting. To this end, the algorithm described
in Kong et al. [35] is a potential choice, as it does not
require HWE, although extended pedigrees are needed in
order to infer phase information.

From the results of our analysis of the AGP data using
LIMEhap, we see that the gene region SLI4 was repeatedly
implicated to have potential association, imprinting, and
maternal effects with ASD. Although there was an abun-
dance of findings of association between SLI4 and ASD in
the literature, little were said about imprinting nor maternal
effects in previous investigations. However, although not
directly supporting the evidence of epigenetic effects,
according to OMIM (http://WWW.omim.org/), the SLI4
region is related to specific language impairment, which is
part of the broader autism phenotype especially for male
family members. Not withstanding the possibilities of false
positives, the considerable number of novel findings of
potential maternal and imprinting effects are likely the
consequence of increased power by making use of all
available data and by considering the joint effects of both
factors to diminish the impacts of potential confounding.
These are advantages of LIMEhap compared with methods
used in previous studies.

Despite advantages seen in both simulation and real data
analyses, LIMEhap has its limitations. Due to the concern
about the impact of an unbalanced design on the type I error
and power, we carried out a small simulation, which
showed that type I errors remain well maintained yet there
was a power loss compared with a balanced design. It is
worth pointing out, though, that lower power with an
unbalanced design is a common problem in statistical
methods for case-control (families) studies. In real data
analyses, deviations from a balanced design can be more
extreme than what we have explored, which was the case
with the autism data analyzed. This situation with the AGP
data is by no means unique, though, as it is a fact that
control families are harder to recruit than case families;
therefore, it is warranted to explore whether LIMEhap can
be extended to the setting where only discordant sib-pair
families are available without the need to recruit separate
control families [36].

Another limitation, which is not unique to LIMEhap
either, is the expected limited power for detecting
imprinting effects when imprinting varies among

individuals. This could potentially be an issue in our ASD
analysis. Although the AGP genotypes were obtained
mainly with DNA samples from blood, a small proportion
of the samples were obtained from cell lines, buccal, and
other sources. To the best of our knowledge, there is a
dearth of statistical methods for analyzing data exhibiting
polymorphic imprinting. Thus, future research is war-
ranted to develop methods with adequate power in such a
situation. However, it is out of the scope of the current
research.
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