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Abstract
Ischemic stroke (IS), caused by obstruction of cerebral blood flow, is one of the leading causes of death. While neurologists
agree on delineation of IS into three subtypes (cardioembolic stroke (CES), large artery stroke (LAS), and small vessel stroke
(SVS)), several subtyping systems exist. The most commonly used systems are TOAST (Trial of Org 10172 in Acute Stroke
Treatment) and CCS (Causative Classification System for Stroke), but agreement is only moderate. We have compared two
approaches to combining the existing subtyping systems for a phenotype suited for a genome-wide association study
(GWAS). We used the NINDS Stroke Genetics Network dataset (SiGN, 11,477 cases with CCS and TOAST subtypes and
28,026 controls). We defined two new phenotypes: the intersect, for which an individual must be assigned the same subtype
by CCS and TOAST; and the union, for which an individual must be assigned a subtype by either CCS or TOAST.
The union yields the largest sample size while the intersect yields a phenotype with less potential misclassification.
We performed GWAS for all subtypes, using the original subtyping systems, the intersect, and the union as phenotypes.
In each subtype, heritability was higher for the intersect compared with the other phenotypes. We observed stronger effects
at known IS variants with the intersect compared with the other phenotypes. With the intersect, we identify rs10029218:G>A
as an associated variant with SVS. We conclude that this approach increases the likelihood to detect genetic associations in
ischemic stroke.

Introduction

Stroke is one of the primary causes of death worldwide and
causes approximately one in every 20 deaths in the United
States [1]. Eighty-seven percent of all strokes are ischemic,
caused by a blockage of blood flow to the brain [1].
Ischemic stroke (IS) tends to affect those older than 65 years
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old and has several known risk factors, including type 2
diabetes, hypertension, and smoking. However, the affected
population is extremely heterogeneous in terms of age, sex,
ancestral background, and socioeconomic status.

ISs themselves are also heterogeneous in terms of clinical
features and presumed mechanism. The majority of IS are
typically grouped into three subtypes: cardioembolic stroke
(CES), frequently occurring in people with atrial fibrillation;
large artery stroke (LAS), caused by eroded or ruptured
atherosclerotic plaques in arteries; and small vessel stroke
(SVS), caused by a blockage of one of the small vessels in
the brain. These subtypes also seem to be genetically dis-
tinct: genome-wide association studies (GWAS) in ISs have
identified single-nucleotide polymorphisms (SNPs) that
primarily associate with a specific IS subtype [2]. To date,
GWAS have identified 20 loci associated with IS, of which
nine appear to be specific to an IS subtype [2]. Furthermore,
the subtypes also have varying SNP-based heritabilities
(estimated at 16%, 12%, and 18% for CES, LAS, and SVS
respectively [3]), indicating that the phenotypic variation
captured by genetic factors varies across the subtypes.
Improved genetic discovery can help further elucidate the
underlying biology of IS as well as potentially help identify
genetically high-risk patients who could be candidates for
earlier clinical interventions.

While neurologists and researchers agree on the deli-
neation of IS into these three primary categories (CES,
LAS, and SVS), multiple subtyping systems are currently
used to assign a subtype to an IS patient. The most com-
monly used approach is a questionnaire based on clinical
knowledge that was originally developed for the Trial of
Org 10172 in Acute Stroke Treatment (TOAST) [4].
TOAST was designed for implementation in the clinic and
has also been used as the subtyping system in the majority
of stroke GWAS. More recently, researchers have devel-
oped a second subtyping system: the Causative Classifica-
tion System for Stroke (CCS) [5], a decision model based

on clinical knowledge that also incorporates imaging data.
There are two outputs of CCS: CCS Causative (CCSc),
which assigns one subtype to each patient based on the
presumed cause of the stroke; and CCS phenotypic (CCSp),
which allows for multiple subtype assignments and incor-
porates the confidence of the assignment. Previous work
indicates that TOAST and CCS have moderate, but not
high, concordance in assigning subtypes in patients:
agreement is lowest in SVS (κ= 0.56) and highest in LAS
(κ= 0.71) [6]. Notably, both subtyping systems still place
more than one third of all samples into a heterogeneous
‘undetermined’ category [6].

Determining a patient’s subtype is difficult and prone to
misclassification [7], but critical to genetic discovery in IS,
as demonstrated by the prevalence of subtype-specific
association signals. If a group of cases is comprised of
phenotypically heterogeneous samples with different
underlying genetic risk, power to detect a statistically sig-
nificant association at a truly associated SNP is reduced
(Fig. 1). In contrast, a case definition that captures a more
phenotypically homogenous group of cases would improve
the chances of detecting genetic variants that associate with
disease. Therefore, we used the TOAST, CCSc, and CCSp
subtype assignments to define two new phenotypes per
subtype: the intersect, for which an individual must be
assigned the same subtype across all three subtyping sys-
tems; and the union, for which an individual must be
assigned that subtype by at least one of the subtyping sys-
tems. Analyzing the union potentially improves power for
locus discovery due to its larger sample size, but at the cost
of more potential misclassification. In contrast, analyzing
the intersect may improve power for genetic discovery by
generating a phenotype that is less prone to misclassifica-
tion, despite a smaller sample size.

Here, we perform GWAS with the union and intersect
phenotypes for each primary IS subtype to investigate
whether these newly defined phenotypes indeed improve

Fig. 1 Hypothesized benefit of
using the intersect, at a SNP
associated with ischemic
stroke. Circles indicate the non-
risk allele, and crosses the risk
allele. Using a chi-square test
(visualized with contingency
tables), the measured effect is
stronger with a group of cases
that is more homogeneous but
smaller (intersect, purple) than
with a group of cases that is less
strictly defined but is larger
(union, teal).

964 J. von Berg et al.



our ability to detect genetic risk factors for IS. We find
heritability estimates to be highest in the intersect pheno-
type for all subtypes. We also find stronger effects at known
associations for the intersect compared with the union, and
we validate a previously suspected association in SVS
through GWAS of the intersect phenotype.

Results

Genome-wide association study data processing

To investigate how redefining stroke phenotypes improves
our ability to detect SNPs associated with IS, we employed
the Stroke Genetics Network (SiGN) dataset. Data proces-
sing of the SiGN dataset, including quality control and
imputation, have been described in detail elsewhere [8].
Briefly, the dataset includes 13,930 IS cases and 28,026
controls of primarily European descent. Cases and controls
were genotyped separately (with the exception of a small
number of cohorts) and on various Illumina arrays and then
merged together into case-control groups matched for
genotyping array and sample ancestry (via principal com-
ponent analysis). For the cases, phenotype definitions based
on one or more of the CCSc, CCSp, and TOAST subtyping
systems are available (Table 1). The total number of cases
with subtype information available is 11,477.

We began our analyses by running GWAS for all phe-
notype definitions, including our intersect and union defi-
nitions, in all subtypes. We ran all GWAS using a linear
mixed model (LMM) implemented in BOLT-LMM
(Fig. S1) [9], adjusting for sex. To take into account any
residual population stratification and other batch effects, we
included the first ten principal components as covariates in
these analyses (Table S2).

Because the intersect by definition is contained in the
union, we ran one additional GWAS for each subtype to
enable a statistically independent comparison of the inter-
sect with the symmetric difference (the union minus the
intersect). This study focuses on the balance in statistical
power between a high sample size (union) and more strictly
defined phenotype (intersect). Therefore, this sensitivity
analysis was only done for the comparison between the two
most extreme case definitions (union and intersect), and not
for the comparisons between the other phenotypes, where
overlap in samples also exists.

Genetic variance in a strictly defined case group
explains a higher proportion of phenotypic variance

To estimate how much of the variation in a particular
phenotype can be explained by genetic variation, we
calculated the heritability (h2) of each phenotype using

BOLT-REML, assuming an additive model of effect sizes
overall SNPs. We estimated heritability in each of the
available phenotypes: the subtypes as defined by TOAST,
CCSc, CCSp, the union, and the intersect. We found that
the intersect yields a higher h2 than the union in all IS
subtypes (Fig. 2 and Table S3). For instance, in CES, h2 of
union is 0.139 ± 0.009 and h2 of intersect is 0.275 ± 0.017.
We additionally found that the second highest heritability
estimate in large artery and SVS was in CCSc (h2-LAS=
0.258 ± 0.023 and h2-SVS= 0.315 ± 0.029), which assigns
only one subtype to each case. The heritabilities for CCSc,
CCSp, and TOAST were not significantly different from
one another in CES (Table S4), indicating that each original
subtyping system is capturing approximately the same
proportion of genetic risk.

Different phenotype definitions represent
genetically distinct phenotypes

While heritability gives an estimation of how much varia-
tion in a phenotype can be attributed to genetic factors, it
does not show how different two phenotypes are from one
another (i.e., two phenotypes can have the same heritability
and yet be genetically distinct from each other). We there-
fore evaluated the overlap in significant SNPs for all pair-
wise combinations of phenotypes for which we performed a
GWAS, where high proportions of shared SNPs between
two phenotypes indicate genetic similarity. At multiple
significance cutoffs, we assessed overlap of significant SNP
sets using two complementary similarity measures: the
Jaccard index, which measures the ratio of overlapping
SNPs (those are significant in both analyses) in the total set
of SNPs that are significant in either analysis; and the
Pearson correlation of the z-scores of the overlapping SNPs
in both analyses (Fig. 3). Significance is defined here as an
absolute z-score that is higher than the selected z-score
threshold (where SNPs can have an effect size <−Z or >+Z).
A high Jaccard index indicates that two phenotypes share
many of their associated SNPs, while a low Jaccard index

Table 1 Case counts for the different phenotype definitions in the three
subtypes.

CES LAS SVS Undetermined
(‘other’ for CCSp)

Total

C (CCSc) 3,000 1,565 2,262 4,574 11,401

P (CCSp) 3,608 2,449 2,419 718 9,194

T (TOAST) 3,333 2,318 2,631 3,479 11,761

I (intersect) 2,219 1,328 1,548 Not tested 5,095

U (union) 4,502 3,495 3,480 Not tested 11,477

S (symmetric
difference)

2,283 2,167 1,932 Not tested 6,382

The control group is always the same group of 28,026 individuals.
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means that the phenotypes have distinct genetic archi-
tecture. Correlation pertains only to the shared SNPs and
indicates if they have similar directionality and magnitude
of effect in both analyses.

In order to assess the results of the overlap analyses and
their meaning with respect to the IS phenotypes, we also
performed these analyses between the phenotype definitions
and an unrelated GWAS of educational attainment to obtain
a null reference (Fig. S2).

In CES (Fig. 4, first panel), the Jaccard index for all
combinations with intersect decreases with more extreme
z-scores to J ≈ 0.2–0.3 while the correlation increases quickly
to approach r2= 1 at Z ≈ 2.5. These results indicate that a
relatively small group of SNPs is significant in both analyses
with correlating z-scores that get increasingly smaller and
stronger correlating. These findings indicate that the stricter
the significance threshold is, the fewer shared SNPs there are
between any two phenotypes, but that those shared SNPs

have more concordant effect sizes. In LAS (Fig. S3) and SVS
(Fig. S3) the trend is similar, albeit with lower Jaccard indices
and correlations, suggesting that there is a set of associated
SNPs for each subtype that is found by all phenotype
definitions. In all subtypes, when compared with symmetric
difference, the intersect is the most genetically distinct phe-
notype. This confirms that if we combine symmetric differ-
ence and intersect, as in the union, we increase phenotypic
heterogeneity and thereby decrease the likelihood of detecting
a genome-wide significant signal.

Figure 4 shows pairwise comparisons only; to investigate
if there is one group of SNPs that is significant in all ana-
lyses, we also calculated overall Jaccard index: the size of
the intersect of SNPs that are significant in all five pheno-
types (excluding symmetric difference, which we use for
sensitivity testing only), divided by the size of their union.
The overall Jaccard index (Fig. S4) confirms what was
suggested by the pairwise overlap analyses: there is a small
set of SNPs that is shared across all phenotype definitions,
albeit slightly smaller than the pairwise overlapping sets.
The Jaccard index is relatively low at higher significance
thresholds, indicating that there is also a substantial set of
SNPs that is unique to each phenotype definition. Thus, we
do find different associated SNPs to IS subtypes depending
on how exactly the subtype status is defined, but there are
some concordant SNPs that are found by all case defini-
tions, regardless of sample size or phenotype homogeneity.

Intersect shows the largest effect at previously
known associations

A recent GWAS (MEGASTROKE) in 67,162 TOAST-
subtyped cases and 454,450 controls identified 32 loci
(22 novel) associated to stroke (either IS or intracerebral
hemorrhage) and its subtypes [2]. Four of the 32 loci
associate to CES, five to LAS, and none to SVS. We
investigated the potential to find stroke-associated loci in

Fig. 2 Intersect is the most heritable phenotype. Heritabilities on the
liability scale for the six case definitions. Bars indicate the standard
error. Note that intersect has a relatively high standard error, due to its
lower sample size. a In cardioembolic stroke, intersect is significantly
more heritable than all other phenotype definitions (p values for the
difference between intersect and all others 3.6e−03 or lower). b In
large artery stroke and c small vessel stroke, intersect is significantly

more heritable than all other phenotype definitions except CCSc
(p values for the difference between intersect and all others except
CCSc, 2.7e−03 or lower in LAS, 6.1e−07 or lower in SVS). P values
for heritability differences determined by t-test (see Table S5). See
Table S4 for numerical values of heritabilities and standard errors. int
intersect, symdif symmetric difference.

Fig. 3 Graphical explanation of overlap analysis. a At a certain
absolute z-score threshold Z, all SNPs that have a z-score lower than
−Z or higher than +Z in GWAS I are determined (SNPs 1–8 and
9–12). Next, all SNPs that have a z-score lower than −Z or higher than
+Z in GWAS II are determined (SNPs 1–8 and 13–16). The number of
shared significant SNPs is divided by the union of significant SNPs to
calculate the Jaccard index. bWe also calculate the Pearson correlation
of the z-scores of the shared SNPs.
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our redefined phenotypes, with a sample that is four to
seven times smaller than MEGASTROKE. To this end, we
compared the odds ratios (ORs) in the intersect with the
ORs in the other phenotype definitions, at the nine known
subtype-specific SNPs (Fig. 5). In five of the nine known

SNPs, the intersect shows the most extreme OR (binomial
p= 0.0196) out of the five phenotype definitions.

Besides comparing the ORs at subtype-specific signals,
we also compared ORs at all stroke-associated loci
(including any stroke, any IS, CES, and LAS), see Fig. S5.

Fig. 4 Different phenotype definitions capture different genetic
risk factors. Overlap analysis in cardioembolic stroke. Similarity on
the y-axis denotes either correlation (circles) or Jaccard index (trian-
gles). The absolute z-score threshold is plotted on the x-axis. Numbers

indicate the number of shared SNPs at Z= 3. a Pairwise comparisons
with intersect, b pairwise comparisons with union, c pairwise com-
parisons with symmetric difference.

Fig. 5 Intersect most often shows the strongest effect at pre-
viously identified subtype-specific associations. Odds ratios for the
five LAS-associated SNPs (in purple) and the four CES-associated
SNPs (in teal) in the five phenotype definitions. The dotted line

indicates an OR of 1 (no effect). Error bars indicate the 95% con-
fidence interval. Intersect show the strongest effect at five of the nine
SNPs (binomial p= 0.0196).

Alternate approach to stroke phenotyping identifies a genetic risk locus for small vessel stroke 967



We found that intersect shows the strongest OR 30 times
out of 96, (binomial p= 0.010), indicating that ORs derived
from the intersect phenotype are indeed stronger than the
ORs in the other phenotypes more often than expected by
chance.

A stricter phenotype definition finds a new
associated locus to small vessel stroke

Our analyses revealed five new loci (two for SVS and three
for CES, Table 2 and Fig. S6) at a p value threshold of 5 ×
10−8. We validated these signals using data from MEGA-
STROKE (based on the summary statistics of MEGA-
STROKE with the SiGN cohort removed, to ensure sample
independence). We corrected the common p value threshold
of 0.05 for a lookup of multiple SNPs per subtype. For SVS
the corrected threshold is α= 0.0125 (two SNPs) and for
CES α= 0.00833 (three SNPs).

We identified one variant (rs10029218:G>A, NC_
000004.11:g.114401929G>A) in an intron of CAMK2D as
associated to SVS in the intersect analysis. This variant

replicated (p= 5.98 × 10−3) in the trans-ancestry analysis of
MEGASTROKE. The other SVS associated variant
(rs11065979:C>T, NC_000012.11:g.112059557C>T) in the
SH2B3-BRAP-ALDH2 locus was found in the CCSp analy-
sis, and replicated in both the trans-ancestry analysis (p=
9.29 × 10−3) and the European analysis (p= 7.26 × 10−3). Of
the three potential CES loci, we identified only one variant
in the CCSp analysis (rs3790099:C>G, NC_000016.9:
g.56340223C>G), an intronic variant in the GNAO1 gene
that replicated in the Europeans-only analysis of MEGA-
STROKE (p= 2.97 × 10−4). In a meta-analysis of (a) the
MEGASTROKE GWAS without the SiGN cohort and (b)
the SiGN GWAS, we found consistent direction of effect
for these three SNPs in both studies and a more significant
p value in the meta-analysis compared with either SiGN or
MEGASTROKE alone (Table S5).

Previously, one other locus was reported to associate
solely with SVS (16q24 [10]). Here, by applying an
alternate phenotyping approach, we identify 4p12 as an
additional SVS locus. In general, despite the low sample
size as compared with MEGASTROKE, we find stronger

Table 2 Summary statistics for
the new genome-wide
significant SNPs.

Locus SNP Chr A1 A2 Analysis P value Freq1 OR Beta SE

CAMK2D rs10029218 4 A G SVS-intersect 1.20E−08 0.12 1.27 0.02 0.00

SVS-rep-EUR 2.46E−02 0.11 1.11 0.10 0.05

SVS-rep-
TRANS

5.98E−03 0.13 1.12 0.11 0.04

SH2B3-BRAP-
ALDH2

rs11065979 12 T C SVS-CCSp 9.40E−09 0.42 1.13 0.01 0.00

SVS-rep-EUR 7.62E−03 0.43 1.08 0.08 0.03

SVS-rep-
TRANS

9.29E−03 0.41 1.08 0.07 0.03

PFH20 rs11697087 20 A G CES-intersect 3.20E−09 0.09 1.26 0.02 0.00

CES-rep-EUR 1.55E−02 0.09 1.10 0.10 0.04

CES-rep-
TRANS

4.76E−02 0.09 1.07 0.07 0.03

5:114799266 rs2169955 5 T C CES-CCSc 3.90E−08 0.57 0.90 −0.01 0.00

CES-rep-EUR 1.48E−02 0.56 0.95 −0.05 0.02

CES-rep-
TRANS

2.22E−02 0.56 0.96 −0.04 0.02

GNAO1 rs3790099 16 C G CES-CCSp 4.90E−08 0.85 0.87 −0.02 0.00

CES-rep-EUR 2.97E−04 0.84 0.89 −0.11 0.03

CES-rep-
TRANS

1.10E−02 0.77 0.94 −0.07 0.03

Per locus, the SiGN GWAS is in the first row, in the format ‘subtype–phenotype’. In the other rows, results
in MEGASTROKE are shown with ‘subtype-rep-EUR’ for the Europeans-only analysis, and with ‘subtype-
rep-TRANS’ for the trans-ancestry analysis. NB, Beta, and SE of SiGN GWAS and MEGASTROKE
GWAS are not comparable since they come from linear and logistic regression, respectively. The ORs are
comparable. We did a Bonferroni correction: for SVS, α= 0.0125 and for CES, α= 0.00625. Replication p
values below the threshold are indicated in bold. Two SNPs (rs2169955:C>T and rs62379973:C>G, in CES-
CCSc) that are relatively close (260 kb) on chromosome 5 were in two different clumps, even though they
are in LD (r2= 0.52, D′= 0.87, in a CEU population [31]) because the distance is just above the threshold
(250 kb). Because they are in LD, and just a little farther apart than 250 kb, they were considered to be from
the same locus and only the strongest association was kept (rs2169955:C>T).

A1 allele 1, A2 allele 2, Freq1 frequency of allele 1, OR odds ratio, Beta coefficient, SE standard error.

968 J. von Berg et al.



associations in the intersect GWAS compared with the
other phenotypes.

Discussion

To help uncover genetic associations with IS that as yet
have gone undetected, we defined new IS phenotypes based
on three existing subtyping systems (CCSc, CCSp, and
TOAST). Specifically, we studied the intersect and union of
these subtyping systems, for all IS subtypes. The intersect
results in a smaller number of available cases but potentially
results in less misclassification due to agreement between
subtyping systems. The union is potentially more hetero-
geneous, but results in a larger available group of cases. We
find that the largest proportion of phenotypic variance
explained by SNPs is in the intersect phenotype. Further,
our overlap analyses show that, for each subtype, the phe-
notype definitions each have a unique set of significantly
associated SNPs, but that there is also a small set of SNPs
that is shared among all definitions, with concordant
direction of effect and similar trend in magnitude of effect.
We also show that the cases that are in the union but not in
the intersect, are genetically distinct from the intersect-
cases, implying that the union is a combination of pheno-
typically heterogeneous cases. With an effective sample size
that is four to seven times as small as in MEGASTROKE,
we find stronger associations (i.e., higher ORs and lower p
values) at known loci by using the intersect (compared with
the other phenotype definitions studied here). This indicates
that the intersect yields more net power to detect associa-
tions due to its stricter definition, despite its lower sample
size, and is thus better suited as a phenotype in GWAS.

We identify a previously subthreshold association with
an SNP in an intron of the CAMK2D locus in SVS by using
the intersect, further demonstrating the utility of this phe-
notype in GWAS. CAMK2D expresses a calcium/calmo-
dulin-dependent protein kinase [11]; out of all tissues tested
in GTEx, the two tissues with the highest expression are
both in brain [12]. Further fine mapping in this region may
give more insight into the biological mechanisms that
contribute to stroke. In addition, we find the SH2B3-BRAP-
ALDH2 locus to be associated with SVS. rs11065979:C>T
is an eQTL of ALDH2 (aldehyde dehydrogenase 2) [12].
ALDH2 is involved in ethanol metabolism; it converts one
of the products, ethanal, into acetic acid. The allele that is
associated with higher expression of this enzyme is asso-
ciated with lower incidence of SVS. ALDH2 is mainly
expressed in liver, but it is also expressed in brain [12].
Previous work has shown an association between higher
expression of ALDH2 and lower incidence of stroke in rats
[13]. SH2B3 and BRAP are minimally expressed in brain,
compared with the other tissues [12]. We also show an

association between an intronic SNP in GNAO1 and CES.
Little is known about the function of GNAO1, though it is
expressed in brain and some data suggests that defects in
the protein are associated with brain abnormalities [14].
Overall, the causal genes at these loci remain uncertain and
further analyses within these loci are warranted.

In this study, we focused on the statistical comparison of
CCS and TOAST, their union and their intersect for use in
GWAS. It seems plausible to us that CCS and TOAST
identify biologically different stroke cases. After all, they
use different information to subtype a stroke patient and
their agreement is moderate. The intersect might then be
composed of those patients that harbor both the features that
CCS deems important, as well as the features that TOAST
deems important. This would result in a more homogeneous
case group in the intersect, and thus increase the statistical
power to detect associations. With the data we have pre-
sented here, we cannot explain what causes the differences
in subtyping methods. Further studies aimed at answering
this question might elucidate more of IS biology.

Phenotype definition is an oft-encountered issue in
complex trait genetics, as diagnosing and subtyping
methodologies can vary and even be contentious within
disease areas. Further, phenotype labels are often broad
definitions for cases that can be highly heterogeneous when
their underlying genetic risk is examined. For example,
most psychiatric diseases are also complex and phenoty-
pically heterogeneous, lacking clear and robust diagnostic
criteria. In an editorial, the Cross-Disorder Phenotype
Group of the Psychiatric GWAS Consortium states: “We
anticipate that genetic findings will not map cleanly onto
current diagnostic categories and that genetic associations
may point to more useful and valid nosological entities”
[15]. Our findings here further support this statement,
showing that while the original subtyping systems might be
useful for diagnosing individual patients, alternative phe-
notyping approaches and criteria are needed for future
genetic studies aimed at unraveling the underlying biology
of disease.

Methods

The SiGN dataset

The SiGN Consortium composed a dataset consisting of
14,549 IS cases [16]. The control group consists primarily
of publicly available controls drawn from three large mul-
tiancestry cohorts. Descriptions of the contributing case and
control cohorts have been published previously [8]. Cases
and controls were genotyped on a variety of Illumina arrays,
and nearly all cases (~90%) were subtyped using both
TOAST [4] and CCS [17]. All newly genotyped cases

Alternate approach to stroke phenotyping identifies a genetic risk locus for small vessel stroke 969



for the latest GWAS are available on dbGAP (accession
number phs000615.v1.p1). A previous genome-wide asso-
ciation study was done on the separate TOAST and CCS
subtypes [8]. In this work, we use the same 28,026 controls
from this previous GWAS, as well as the 11,477 IS cases of
European and African descent with subtype information
available. A third group of cases and controls, primarily
comprised of individuals who identify as Hispanic and
residing in the United States, has been excluded due to data
sharing restrictions. All data processing has been previously
described [8]. All genotyping data are annoted on human
genome build hg19.

Genome-wide association studies in BOLT-LMM

We ran all GWAS in BOLT-LMM [9], which implements
an LMM. BOLT-LMM implements a Leave-One-
Chromosome-Out scheme, so that the genetic relationship
matrix (GRM) is built on all chromosomes except the
chromosome of the variant being tested. Linear mixed
models have been demonstrated to improve power in
GWAS while correcting for structure in the data [18]. In
addition to the GRM, we included the first ten principal
components as fixed effects. We used the following
approximation to convert the effect estimates from BOLT-
LMM (on the observed scale) to effect estimates on the
liability scale: log ORð Þ ¼ β=ðμ� ð1� μÞÞ where μ is the
case fraction [19]. For each subtype, the intersect, union,
and symmetric difference of the original subtyping systems
were used as phenotypes in separate GWAS. The original
subtyping systems were also used as a phenotype in three
additional GWAS per subtype to serve as a point of refer-
ence. All IS cases that do not belong to the case definition
under study were left out of the analysis. The same group of
controls is used in all analyses. Association testing was
done on all imputed SNPs with a minimum minor allele
frequency of 1%. See Table S8 in [20] for simulations of
type 1 error inflation of BOLT-LMM in datasets with
unbalanced case-control ratios. In the GWAS discussed
here, case fractions range from 0.05 to 0.14 which means
that at variants with MAF > 1%, there is no significant
inflation of type 1 error rates. Those SNPs that show a large
frequency difference (>15%) across the populations in 1000
Genomes were removed (see the “Methods” in [8] for
details on how this list of SNPs was compiled). See Fig. S1
for QQ-plots (stratified by imputation quality (INFO-score)
and by minor allele frequency) and Manhattan-plots.
The genomic inflation factor (lambda) varies between 1.0
and 1.1 for CES and LAS, and between 1.0 and 1.2 for
SVS. We observed a relatively high inflation factor of 1.2 in
only the imputed SNPs with a minor allele frequency lower
than 5%. Therefore, summary statistics for these SNPs were
removed from downstream analyses. Summary statistics for

all GWAS can be found on Zenodo: https://doi.org/10.
5281/zenodo.3514726.

Heritability estimation in BOLT-REML

To estimate the heritability of the six phenotype definitions
for each subtype, we used BOLT-REML [21]. BOLT-
REML calculates heritability from the SNPs included in the
GRM, and these SNPs must be genotyped (and not impu-
tation dosages). We therefore based our estimates on only
genotyped SNPs. Furthermore, we excluded the MHC on
chromosome 6, and chromosomal inversions on chromo-
somes 8 and 17 using PLINK 1.9 [22]. See Table S8 for
more information. We filtered on various quality control
measures, by passing the following flags to PLINK: –mind
0.05 –maf 0.10 –geno 0.01 –hwe 0.001. In addition, we
pruned SNPs at an LD (r2) threshold of 0.2 (–indep-pair-
wise 100 50 0.2). We used the first ten principal compo-
nents and sex (determined by presence of XX or XY
chromosomes) as covariates. To convert the heritabilities
from the observed scale (as if the binary data, coded as 0–1,
were continuous) to the liability scale (converting the her-
itabilities of the observed binary trait to the heritabilities of
the underlying, unobserved, continuous liability of the trait),
Dempster et al. derived a formula that takes into account the
prevalence of the disease in the population [23]. In the case
of ascertained case-control traits, where the population
prevalence is not equal to the study prevalence, this has to
be taken into account as well [24]:

ĥ2l ¼
K2ð1� KÞ2

Pð1� PÞφðtÞ2 ĥ
2
o;

where ĥ2l is the heritability on the liability scale, K is the
population prevalence, P is the study prevalence, t is the
liability threshold, and ĥ2o is the heritability on the observed
scale. To test for significant difference between the
estimated heritabilities, we performed an independent t-test.

Overlap analysis

We first calculated z-scores using the following formula:
z= beta/se, where beta is the effect size of the SNP and se is
the standard error of the beta estimate. The z-scores thus
have unit standard error, but we did not standardize them to
zero mean (as is the conventional method for calculating z-
scores) to maintain the original direction of effect. To assess
overlap between two GWAS, we calculated the Jaccard
index [25], which is the ratio of (a) the number of SNPs
significant in both analyses, to (b) the number of SNPs
significant in either analysis (i.e., the size of the intersect
divided by the size of the union of the sets of significant
SNPs). The index is a number between 0 and 1: it is 0 if the
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two sets of significant SNPs do not have any SNPs in
common, and it is 1 if the two sets of significant SNPs
completely overlap. We additionally calculated, within the
set of SNPs that are significant in both analyses, the Pear-
son’s correlation of the z-scores in the two GWAS to check
the concordance of direction and size of effect in the two
analyses being compared. Significance was defined as a z-
score that is more extreme than an absolute z-score
threshold z (varied from 0 until 3, in increments of 0.1). At
the most extreme z-score threshold (z > 3 or z <−3), the
absolute number of SNPs that are significant in both ana-
lyses is indicated in the plot. As a null comparator, these
overlap analyses were also performed with GWAS results
from a study of educational attainment in 1.1 million indi-
viduals [26] downloaded from EMBL-EBI’s GWAS cata-
log [27]. The educational attainment study contains
10,098,325 SNPs, the SiGN study contains 10,156,805
SNPs. The overlap analysis was only done on the SNPs that
are present in both datasets: the size of this overlapping set
is 7,822,831 SNPs. For the overall comparisons per sub-
type, we considered all five GWAS. At each z-score
threshold, we calculated the overall Jaccard index: the ratio
(range between 0 and 1) of the number of SNPs significant
in all five analyses to the number of SNPs significant in any
analysis. See Fig. 3 for a graphical explanation of this
method.

Lookup of MEGASTROKE loci in the union and
intersect GWAS

Recently, the MEGASTROKE consortium completed the
largest GWAS in IS and its subtypes [2]. From this GWAS,
we extracted the index SNPs of each genome-wide significant
locus in each subtype. We then looked up these SNPs in our
GWAS to compare effect sizes, resulting in 15 ORs per SNP
(for each of the phenotype definitions in each of the subtypes).
See Table S6 for the summary statistics of these lookups. If
the reference allele in MEGASTROKE was not identical to
the reference allele in SiGN, the inverse of the odds ratio (1/
OR) was taken. We counted how often the intersect showed
the most extreme OR, out of all 96 ORs (15 ORs per SNP, for
the 32 SNPs that were reported in MEGASTROKE). To
determine the probability of the number of times intersect was
most extreme, under the null hypothesis that all phenotype
definitions are just as likely to show the most extreme OR, we
performed a binomial test in R [28].

Replication of new genome-wide hits in
MEGASTROKE

To assess all genome-wide significant loci instead of the
individual SNPs, we performed clumping in PLINK 1.9
[22] (http://pngu.mgh.harvard.edu/purcell/plink/). We used

all SNPs significant at α= 1 × 10−5 as index SNPs. We
generated clumps for all other SNPs within 250 kb of the
index SNP and in LD with the index SNP (r2 > 0.05). We
kept clumps if the p value of the index SNP was lower than
5 × 10−8. From the genome-wide significant clumps, only
the unique ones were kept (some clumps significantly
associated to multiple case definitions). In the case of
duplicates, the summary statistics for the analysis with the
lowest p value were kept. Ambiguous SNPs were removed,
and if the reference allele in MEGASTROKE was not
identical to the reference allele in SiGN, we calculated the
inverse of the odds ratio (1/OR). This resulted in a list of 14
unique SNPs. We checked for SNPs that are not in a locus
that had already been reported as an associated locus in
MEGASTROKE, resulting in a list of five new SNPs (two
for SVS and three for CES), which we looked up for
replication. To this end, we ran the MEGASTROKE
GWAS again (European and trans-ancestry analysis per
subtype using TOAST [29]) without the SiGN cohort, to
ensure summary statistics independent from the discovery
GWAS. We set Bonferroni corrected p value thresholds to
adjust for the number of SNPs looked up for the phenotype
in question, and for the number of GWAS it was looked up
in (two, for the European and trans-ancestry analyses). We
did a meta-analysis of the MEGASTROKE GWAS without
SiGN, and the SiGN GWAS, for the three replicating SNPs
only (Table S5). We performed meta-analysis in METAL
[30], with the inverse-variance weighting scheme.
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