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Abstract
Phasing is the process of inferring haplotypes from genotype data. Efficient algorithms and associated software for accurate
phasing in pedigrees are needed, especially for populations lacking reference panels of sequenced individuals. We present a
novel method for phasing genotypes from whole-genome sequence data in pedigrees, called PULSAR (Phasing Using
Lineage Specific Alleles/Rare variants). The method is based on the property that alleles specific to a single founding
chromosome within a pedigree are highly informative for identifying haplotypes that are shared identical by descent.
Simulation studies are used to assess the performance of PULSAR with various pedigree sizes and structures, and the effect
of genotyping errors and the presence of nonsequenced individuals is investigated. In pedigrees with complete sequencing
and realistic genotyping error rates, PULSAR correctly phases >99.9% of heterozygous genotypes, excluding sites at which
all individuals are heterozygous, and does so with a switch error rate frequently below 10−4. PULSAR is highly accurate,
capable of genotype error correction and imputation, and computationally competitive with alternative phasing software
applicable to pedigrees. Our method has the significant advantage of not requiring reference panels that are essential for
other population-based phasing algorithms. A software implementation of PULSAR is freely available.

Introduction

Haplotypes are combinations of alleles at different poly-
morphic sites occurring on the same DNA molecule and
have been an important tool in genetics research [1]. Hap-
lotypes are useful for imputation of alleles at ungenotyped
loci, identification of genomic regions shared identical by
descent (IBD), genotype error detection and correction,
identification of compound heterozygosity, and analysis of
parent-of-origin effects, among many other applications.

Haplotypes can also be used instead of alleles at individual
variable sites in association testing. At present, the most
popular sequencing platforms and associated software
packages report genotypes for individual polymorphisms,
from which haplotypes must be inferred algorithmically.
Phasing, or the process of analyzing known genotypes to
infer haplotypes, is an important concern in genetics and an
area of active research [2].

In principle, pedigrees should facilitate highly accurate
estimation of haplotypes. In contrast to unrelated (or dis-
tantly related) individuals, pedigrees provide considerable
additional information for phasing. The transmission of
alleles from one generation to the next is directly observed
in pedigrees and inheritance patterns can be used to estab-
lish phase empirically. Although pedigree-based studies
have not been popular for association-based gene mapping
of complex traits, this is changing with the emerging
interest in rare variants, which are arguably more easily and
more powerfully studied in family data. Indeed, as the trend
toward sequencing greater numbers of subjects in a study
population leads—if simply by chance—to the inclusion of
ever more closely related individuals [3], knowledge of the
pedigree relationships becomes increasingly essential. Fur-
thermore, phasing of pedigree data need not require the
allocation and processing of samples to form a population
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reference panel and can be performed with a smaller num-
ber of study participants.

Pedigree data can introduce unique computational chal-
lenges, however. Currently, there are limited options for
phasing pedigrees, especially in the absence of reference
panels (which is typical for most species other than
humans). Consequently, there is a need for computational
methods and easy-to-use software optimized for phasing
related individuals in pedigrees using whole-genome
sequence (WGS) data. Here we describe a novel and fast
algorithm, PULSAR (Phasing Using Lineage Specific
Alleles/Rare variants), that phases WGS data in families.
We demonstrate the utility of the algorithm and software
implementation using simulated data as well as real WGS
data, and compare its performance with alternative
approaches to phasing, including long-range phasing (LRP).

Background

The key step in pedigree-based phasing is identification of
large haplotype segments that are IBD within the pedigree.
The fundamental premise of PULSAR is the supposition
that alleles specific to a single founding chromosome within
a pedigree, here referred to as lineage-specific alleles
(LSAs), are highly informative for inferring phase and are
sufficiently abundant in the genomes of humans (and in
many other species) to do so with high confidence. In other
words, our method focuses on variants for which a single
founder is heterozygous and all other founders are homo-
zygous wild-type. In noninbred individuals each chromo-
some carries many rare variants, many of which will be
LSAs within a pedigree and can be interrogated with whole-
genome sequencing. The abundance of LSAs allows one to
observe large haplotype segments shared IBD within pedi-
grees empirically, simplifying the phasing effort compared
with inferring the inheritance of common alleles. Non-LSAs
provide additional information for elucidating the inheri-
tance of large haplotype segments, but it is not necessary to
use non-LSAs to identify these large segments with con-
fidence. As non-LSAs tend to be more common variants
they can be mapped to the haplotype segments after the
haplotype inheritance has been determined using LSAs.

Our phasing approach is similar in one respect to the
technique of LRP [4], in that both PULSAR and LRP use
IBS information to identify genuine IBD sharing. The
methods differ, however, in the strategy used to identify
IBS sharing, and therefore tend to perform optimally in
different contexts. LRP identifies IBD sharing by searching
for opposing homozygotes (i.e., loci at which two indivi-
duals are homozygous for different alleles) and excluding
regions that are not IBS. This approach works well with
common variants, and is highly accurate when at least one

individual sharing a segment IBD is homozygous for a
given variant. PULSAR identifies putative IBD sharing by
searching for shared LSAs (which are necessarily IBS), and
uses IBS information from opposing homozygous geno-
types only to extend the haplotype boundaries initially
established by the observed inheritance of LSAs. This
strategy is most efficient for rare variants, but more com-
mon variants may be informative in specific pedigrees.

Phasing strategy

The algorithm used by PULSAR comprises four main
stages: (1) identify LSAs, i.e., alleles that are likely to be
lineage specific; (2) use these LSAs to identify haplotypes,
set their initial boundaries, and trace their pattern of
inheritance; (3) extend the estimated boundaries of these
haplotypes using the fact that individuals must share at least
one allele at loci at which they share a haplotype IBD (this
is the idea behind LRP); and (4) comprehensively assign
alleles to the established haplotypes. Our method assumes
the physical location of variants is known, and optionally
makes use of external information regarding allele fre-
quencies. The approach is robust to some degree of geno-
typing error, provided the genotypes have been called from
WGS data of reasonably high accuracy, such as from high-
or moderate-coverage rather than low-coverage WGS data.
Below we describe each of these steps in more detail.

Identify putative LSAs

When an allele is present in a single chromosome among
the founders of a given pedigree, then any direct descendent
of that founder who also carries the allele can be assumed to
share IBD the chromosomal segment harboring that locus.
This inference enables empirical estimation of the inheri-
tance of haplotypes within the pedigree. Exceptions to this
rule, such as de novo variation, are expected but assumed
infrequent enough not to vitiate the overall strategy.

In many pedigrees not all founders will be sequenced,
and thus the initial challenge is identifying those alleles that
are specific to a single founding chromosome. (Note that at
this point we seek only to identify putative LSAs.) In
PULSAR, potential LSAs are identified by analyzing the
pattern of individuals carrying a given allele, i.e., within a
pedigree we search for alleles for which all individuals
carrying the allele also have at least one pedigree founder in
common. If such is not the case, then clearly not all copies
of the allele within the pedigree can be IBD and the allele
cannot be an LSA. (Distinct lineages within a pedigree,
however, could carry alleles IBD in consequence of having
common ancestors external to the observed pedigree
structure). Putative LSAs are then checked for Mendelian
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consistency within their inheritance patterns, i.e., between
each founder carrying the allele and the carriers in sub-
sequent generations (at least for those individuals that have
sequence data). We also check that the allele is not homo-
zygous in any individual. The algorithm does not presently
accommodate the presence of inbreeding loops (wherein
LSAs could be homozygous in inbred individuals). These
ideas are illustrated in Fig. 1. Figure 1a illustrates a hypo-
thetical pedigree in which individuals carry an allele that
cannot be lineage specific because the carriers do not share
a common founder. Figure 1b illustrates a hypothetical
pedigree in which individuals share an allele that is poten-
tially an LSA.

Establish haplotype boundaries and haplotype
inheritance

Using the set of putative LSAs identified in the previous
step, we establish boundaries within which haplotypes
are shared IBD in a set of related individuals. At this point
the putative LSAs may include false positives, but for now
we assume we have only true LSAs and relax this
assumption later. Assuming the absence of meiotic recom-
bination between the loci, de novo variation, and genotyp-
ing error, the set of individuals carrying a true LSA must
share alleles IBD at nearby loci. Conversely, a change in the
set of individuals sharing an LSA from one locus to the next
indicates one or more recombination events within the
meioses that gave rise to the haplotype lineage. By tracking
those individuals who share neighboring LSAs along the
chromosome, the boundaries of a given haplotype are

determined approximately. The procedure is straightfor-
ward, but complications arise because at any given region in
the diploid genome all individuals carry two sets of hap-
lotypes, one derived maternally and the other paternally. It
is therefore necessary to track two separate haplotypes
simultaneously. This approach is implemented in PULSAR
using a rule-based algorithm to identify changes in the
pattern of LSA sharing along a chromosome.

It will often be the case that not all individuals in a given
pedigree are sequenced, and consequently one may expect
false positives among the putative LSAs identified in the
previous step. In other words, some of the putative LSAs
are in fact not IBD but merely identical by state (IBS). To
reduce the risk of mischaracterizing IBS loci as IBD and
inferring incorrect haplotypes, we require a predetermined
number of neighboring putative LSAs to be shared before
demarcating a new haplotype. A change in the observed
inheritance pattern of a small number of neighboring
putative LSAs is required to infer, with high confidence, the
presence of a true recombination event. This heuristic is
reasonable since it is highly unlikely that the same set of
individuals will share putative LSAs over a given region
of a chromosome if the genotypes are simply a product of
chance (such as being IBS, or perhaps due to genotyping
error) and not truly lineage specific. For PULSAR, we have
required five observations of neighboring putative LSAs
showing the same changed pattern (among individuals
sharing the putative LSA) before accepting a recombination
event and declaring a haplotype change.

Once the haplotypes carried by a proband have been
identified based on the pattern of LSA inheritance, we then
establish chromosome-wide haplotypes from these smaller
haplotype segments. This task comprises two steps. First, if
during the course of identifying the haplotypes, a change is
observed in a subset of carriers along a particular haplotype
segment, we then assume that the resulting two haplotype
segments are on the same chromosome in the individual in
which the change was observed. Second, for nonfounders
having a sufficient number of informative relatives with
sequencing data, we determine if the haplotype is shared
with the maternal or paternal side of the proband’s relatives.
Since the proband inherits one chromosome from each
parent, haplotypes that are shared with either maternal or
paternal relatives are declared to reside on the maternally or
paternally inherited chromosome, respectively.

Extend haplotype boundaries

Although the human genome contains a large number of
rare variants, many of which will be lineage specific in a
given pedigree, the density of LSAs limits the precision
with which haplotype boundaries can be determined. We
extend the haplotype boundaries observed in a proband with

Fig. 1 Inheritance patterns of lineage-specific alleles. a A pattern of
individuals who share an allele (red) but do not share a common
founder (within the limits of the available pedigree information). The
shared allele cannot therefore be lineage specific. b A pedigree in
which the individuals sharing an allele (orange) have two founders in
common. The shared allele is potentially lineage specific. [Legend: ■
male; ● female; slash indicates an unsequenced individual].
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a simple heuristic: individuals sharing a haplotype must also
share an allele IBD (and therefore IBS as well) at each locus
in the haplotype. This heuristic is central to the strategy
behind LRP [4], and our approach is similar in that we also
search for opposing homozygous genotypes. The primary
difference, however, is that we do not use this rationale to
discover shared haplotypes, but only to extend pre-
determined haplotypes, already determined from the
observed LSA patterns, for relatively small (typically <1%
of the genome) unresolved segments of the genome. (We
examine the effect of the density of LSA coverage in the
results). Haplotype extension proceeds in both directions
into the unassigned gap between neighboring haplotypes
identified in the previous step, and haplotypes are extended
only as far as is possible without overlap. In the case of
overlapping haplotypes, the region of overlap is not
assigned to either haplotype.

Map alleles to haplotypes

After determining the haplotype boundaries and pattern of
inheritance throughout the pedigree, the alleles for all var-
iants are mapped onto the haplotypes. This task could
be integrated into the prior steps, but in our implementation
we assign alleles to haplotypes (including LSAs) as a
separate and final step of the procedure. Initially, homo-
zygous genotypes are straightforwardly mapped onto hap-
lotypes, with each of the two haplotypes carrying the same
allele. Next, considering each variant independently, we
phase heterozygous genotypes in individuals for which at
least one allele has been mapped onto one of the two
haplotypes carried at that genomic location. This mapping
process is iterated, at each step incorporating the mapped
alleles from heterozygous genotypes from the previous
iteration, until no additional genotypes can be phased.
When all individuals within a pedigree are sequenced, and
all of the haplotypes carried by each individual are known,
then—barring genotyping errors—this procedure can
resolve the phase of all combinations of genotypes (except
in the case where every individual is heterozygous, a
situation that becomes less likely in larger pedigrees).

When multiple individuals carry a given haplotype the
information from these individuals is considered jointly
when assigning alleles to the haplotype. In the presence of
genotyping error, however, it is possible for the genotypes
of multiple individuals to provide a conflicting or ambig-
uous indication as to which allele is carried on a haplotype.
(For example, two individuals may share a haplotype yet
have opposing homozygous genotypes.) In such cases we
apply a majority rule: the allele supported by the majority of
carriers is assigned to the haplotype. If resolution of
ambiguity requires assignment of new alleles (i.e., alleles
not originally observed in an individual), then the revision

of genotypes within the considered haplotypes effectively
amounts to a correction of genotyping error.

Note that in certain cases there can be no majority sup-
port for resolving allelic ambiguity. In trios, for example, no
haplotype is shared by more than two people, and no
majority can be formed. The same is true for haplotypes
shared between two or fewer individuals within larger
pedigrees, such as between married-in founders and only
one offspring when the lineage (and its LSAs) are not
passed to subsequent generations.

Methods

Pedigrees used for simulation studies

We used a variety of simulated sibships and extended
pedigrees to investigate the phasing and imputation accu-
racy of PULSAR. Sibships comprised two parents and 1–7
children. As a variance reduction technique, smaller pedi-
grees were generated as a subset of larger pedigrees, e.g., a
pedigree with one child is formed as a subset of the pedigree
with two children, and so forth. Seven large, multi-
generational pedigree structures were chosen from the San
Antonio Mexican American Family Studies (SAMAFS)
[5, 6] to serve as simulation templates. These pedigrees
have 11, 14, 20, 28, 55, 78, 94 individuals, comprising 3, 4,
4, 4, 6, 6, 5 generations, and 4, 3, 3, 16, 29, 31,
61 sequenced individuals, respectively. Diagrams of these
pedigrees, generated using the application Cranefoot [7], are
included in the Supplementary information. To investigate
the computational scalability of the software, two additional
pedigree structures were simulated and studied: pedigrees
having two parents and 1–1000 children, and pedigrees with
2–50 generations in which each generation comprised one
offspring and one married-in founder.

Simulation of whole-genome sequence data

For the individuals in the test pedigrees we simulated
genotypes and chromosomal haplotypes having many of the
characteristics of real data. Whole-genome sequence data
for 84 male X chromosomes (excluding the pseudoautoso-
mal regions) from British (GBR) and Finnish (FIN) popu-
lations from the 1000 Genomes Project [8] were used as the
set of potential founder chromosomes. Use of real male X
chromosomes has the advantage that chromosomal haplo-
types are known, while preserving the complexities of real
whole-genome sequencing data such as the minor allele
frequency distribution of variants, linkage disequilibrium,
and the existence of small segments shared IBD between
distantly related individuals [9], even if the X chromosome
differs slightly from the autosomes in these characteristics.
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After filtering out pseudoautosomal regions and loci with
more than two alleles, there remained 318,912 polymorphic
variants in the seed dataset. To accommodate limitations in
the software package AlphaPhase1.1 [10], the chromo-
somes were shortened in simulation to 200,000 variants by
considering a smaller section (from 152.23 to 94.37Mb) of
the original chromosome. Although not designed for phas-
ing WGS data, AlphaPhase1.1 provides an important
benchmark because it implements the ‘long-range phasing’
approach to phasing in pedigrees [4].

Within each pedigree, founder chromosomes were sam-
pled randomly without replacement from the 84 X chro-
mosomes, assuming the pedigree founders represent a
random sample from the population. Inheritance of haplo-
types within pedigrees was simulated by gene-dropping,
with a recombination probability between variants corre-
sponding to one recombination per 100Mb, or roughly the
observed recombination rate in humans. Chromosomes not
used as founder chromosomes were used to calculate minor
allele frequencies (MAF), or were used as a reference panel
of additional samples for SHAPEIT2 and Beagle 4.0.
Genotyping errors were introduced by choosing genotypes
at random and replacing them with one of the two alter-
native genotypes (for diallelic loci) with equal probability.

Whole-genome sequence data

Whole-genome sequence data have been generated for
many participants in the SAMAFS. Single-nucleotide var-
iants and diallelic indels with at least five observations of
the minor allele were homogenized and merged from
vendor-provided (Complete Genomics, Illumina) sequen-
cing genotype calls from 2330 directly sequenced genomes,
resulting in 27,160,796 genetic variants. Some additional,
minimal, quality control had been performed on the vendor-
provided genotypes beyond simple filtering based on allele
count and merging. Illumina sequencing was performed at
an average read depth of 30×, with 98% of the not-N Refseq
[11] coverage being ≥20×. (These data are available through
dbGaP Study Accession: phs000462.v1.p1.) Chromosome
21 (356,545 variants) was selected for analysis. Individuals
and variants with genotyping rates less than 99% were
excluded, resulting in 354,466 variants. To maximize the
comparability of the simulated data with the real data we
focused on the same seven pedigrees of SAMAFS for both
real and simulated datasets. These seven pedigrees comprise
three hundred individuals, of whom 147 are sequenced.

Benchmarking

The performance of PULSAR was compared with Alpha-
Phase1.1 [10], Beagle 4.0 [9], and SHAPEIT2 [12].
AlphaPhase1.1 is an implementation of the LRP [4]

algorithm which phases haplotypes under the assumption
that individuals sharing a haplotype IBD must also share at
least one allele IBS at each locus in the shared region.
Functionally, the method searches for opposing homo-
zygous alleles, the presence of which excludes two indivi-
duals from sharing a segment IBD at that genomic location
(assuming no de novo variants or genotyping error). LRP is
highly accurate when at least one individual sharing the
segment IBD is homozygous for a given variant. Beagle 4.0
is a phasing algorithm for population sequencing that is
based on a hidden Markov model and can accommodate
pedigree information. SHAPEIT2 is a phasing method for
singleton individuals and is a variant of the approximate
coalescent model. Default settings were used for all three
software packages. Pedigree information was supplied for
Beagle 4.0 and AlphaPhase1.1, but not for SHAPEIT2.

Three metrics were used to compare the performance of
these methods: the switch error rate (SER) [13] to assess
phasing accuracy, the proportion of heterozygous genotypes
phased, and the GNU time command to measure execution
times. The SER is a measure of the discrepancy between
reconstructed and original haplotypes that is due strictly to
misphasing of neighboring heterozygous regions; an SER of
zero indicates no phasing error, and an SER of one indicates
that no neighboring heterozygous genotypes were correctly
phased.

Benchmarking results

Coverage by LSAs

The PULSAR algorithm as described above is based on the
idea that variants introduced into a pedigree via a single
founding chromosome, i.e., LSAs, can be used to trace the
inheritance of haplotypes within the pedigree. For this
approach to be practical, it is crucial that LSAs exist in
sufficient density in realistic pedigree structures. We have
estimated the degree of LSA coverage using real-
sequencing data with known phase, specifically the male
X-chromosome data from the British (GBR) and Finnish
(FIN) cohorts from the 1000 Genomes Project [8]. If we
take the pedigree founders to be a random sample of the
population, then various key aspects of LSA coverage can
easily be determined by permutation for different pedigree
structures.

Supplementary Fig. 1 shows the distribution of the
number of LSAs per Mb along the X chromosome as a
function of the number of pedigree founders for the GBR
and FIN cohorts. For the GBR X chromosomes, the median
density ranges from 135.4 LSA/Mb in 2-founder pedigrees
(median inter-LSA distance of 874 bp, with a maximum of
5.14Mb which includes a gap in coverage caused by the
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centromere) to 14.8 LSA/Mb with 15 founders (median
distance of 19.0 Kb, with a maximum of 5.39Mb which
includes a gap in coverage caused by the centromere). To
estimate the coverage with larger pedigrees, we fit a power
function (R2 > 0.99) to the relationship between the number
of founders and the median number of LSA/Mb from our
simulations. By extrapolating this power function, we esti-
mate that a pedigree with 170 founders would have ~1.0
LSA/Mb. In Finns, a population with decreased genetic
diversity due to a series of founder effects [14], there are
comparatively fewer LSAs (median 133.1 LSA/Mb in 2-
founder pedigrees and 13.4 LSA/Mb with 15 founders). The
trend to fewer LSAs in larger pedigrees is reasonable given
that the definition of LSA is based on the observation or
inference of an allele in a single pedigree founder—thus, as
a pedigree contains more founders, fewer polymorphic sites
will qualify as LSAs.

Allele frequency distribution of LSAs

The probability of a single founding event in a pedigree
depends on the population prevalence of an allele, with
rare alleles more likely to be specific to a single founding
chromosome. The enrichment for rare alleles among all
LSAs will also be greater in pedigrees having more
founders, and this is indeed what we observe. For the
GBR pedigrees with 2 founders, ~13% of LSAs have
MAF less than 5% (median 21.7%), whereas with 15
founders ~91% of LSAs have MAF < 5% (median 2.2%).
These observations suggest that filtering on MAF, with
allele frequencies estimated from sample data or an
independent reference panel, could be an effective means
of decreasing the false positive rate when LSAs cannot be
identified unambiguously (perhaps due to the presence of
unsequenced individuals). In any case, these imputations
indicate that for various human pedigree types there will
generally be sufficient numbers of LSAs to make them
useful as a starting point for phasing WGS data with our
algorithm.

Pedigrees with complete sequencing data and no
genotyping error

Using the 1000 Genomes Project data, we evaluated the
performance of PULSAR, AlphaPhase1.1, Beagle 4.0, and
SHAPEIT2.0 in pedigrees of varying size and structure
under the ideal scenario in which all individuals are
sequenced without error. We chose to examine simulated
nuclear families having 1–7 children and seven larger and
more complex pedigree structures comprising 11–94 indi-
viduals and 3–6 generations. The larger pedigrees are based
on actual pedigrees from the SAMAFS [5, 6]. (Diagrams of
a seven-child nuclear family, and the seven SAMAFS

pedigrees, are provided in Supplementary Fig. 2–9.) Bea-
gle 4.0 and SHAPEIT2.0 were provided with additional
reference samples created using male X chromosomes that
were not used for simulating the pedigree genotypes. For
comparison, Beagle 4.0 was run with and without the
reference samples.

Table 1 presents a comparison of the SER [13] and the
proportion of heterozygous markers phased for these
simulations. Across most simulations PULSAR produced
the lowest SER by a considerable margin. Note that PUL-
SAR phased fewer heterozygous markers than either
SHAPEIT2.0 or Beagle 4.0 (each of which phases all
genotypes), but a higher percentage than AlphaPhase1.1. In
the case of nuclear families some markers were hetero-
zygous in all individuals, a situation that is unresolvable
without additional data. Excluding such cases, the observed
rate of heterozygous genotypes phased by PULSAR was
>99.9% of the achievable upper limit. The greatly reduced
accuracy of Beagle 4.0 in the absence of reference samples
shows the clear need for reference panels in population-
based phasing algorithms.

Effect of genotyping error

Table 2 summarizes the SER and the proportion of het-
erozygous markers phased for those simulations in which
the genotyping accuracy is 99.0% (i.e., 1% error and
assuming, for simplicity, an equal error rate for all variants).
PULSAR, SHAPEIT2.0, and Beagle 4.0 yielded similar
SERs. PULSAR yielded a lower SER, and phased a
higher proportion of heterozygous markers, than did
AlphaPhase1.1.

To further examine the influence of genotyping error on
the accuracy of imputation, nuclear pedigree datasets were
simulated with genotyping accuracies of 99–100%. For
each level of accuracy, 20 datasets were simulated for each
pedigree type and analyzed with the results shown in Fig. 2.
Significantly, SER increases linearly with the genotyping
error rate. Genotyping error has somewhat less impact on
SER in pedigrees with more children; in larger pedigrees
there is an increased potential for sharing genomic sections
IBD, enabling PULSAR to identify haplotypes accurately
and more reliably despite errors in genotyping.

Using the haplotypes reported by PULSAR we
reconstructed genotypes and compared these with the true
(error-free) genotypes. As shown in Fig. 3, error in
the reconstructed genotypes increases approximately line-
arly with the simulated error rate. Note also that the error in
genotype reconstruction for the sib trio is comparable with
the error in the simulated genotypes; this is expected
because (in the trio) no haplotype can be observed more
than twice, i.e., the pedigree lacks sufficient individuals to
establish a majority haplotype. In fact, the reconstructed
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genotype error rate can be slightly higher than the true
genotype error rate simply because the algorithm must
impute haplotype boundaries, which can introduce a small
number of errors. PULSAR is able to correct genotypes in
pedigrees with two or more children, performing better in
pedigrees having more individuals.

Effect of ungenotyped individuals

Ungenotyped individuals are a common complication in
real datasets. For phasing, nonsequenced individuals can
affect the false positive rate among putative LSAs identified
by PULSAR, which will ultimately decrease the accuracy of
reconstructing haplotypes, inferring haplotype boundaries,
and estimating haplotype sharing. Moreover, PULSAR will
not phase heterozygous genotypes for individuals in geno-
mic regions that are not shared IBD with another individual
(unless this happens in consequence of falsely inferring IBD
sharing).

Table 3 presents a comparison of the SER and the pro-
portion of heterozygous markers phased for simulations in
which genotypes are known without error but with some
individuals in each pedigree having no available sequence
data. For the seven pedigrees based on the SAMAFS data
(11–94 individuals), we recorded which pedigree members
had actual sequencing data and used this information to
model the presence of unsequenced individuals in our WGS
simulations. For the hypothetical nuclear families, we per-
formed two simulations in which one or both parents were
sequenced, with the results shown in Table 3. (For com-
parison, refer to Table 1 for the results for nuclear families
with complete sequence data.)

From Table 3 it is evident that the number of ungeno-
typed individuals and, more significantly, the location of the
ungenotyped individuals within the pedigree, have pro-
nounced effects on the ability to phase haplotypes. In the
case of nuclear families, children missing sequence data
have only a small negative effect on the accuracy of
PULSAR, as this situation does not lead to an increase in
the number of falsely inferred LSAs (although the number
of observations of each haplotype is reduced on average).
The presence in a nuclear family of children who are
missing sequence data is effectively equivalent to a reduc-
tion in the size of the nuclear family. As a consequence, a
greater number of variants will likely be heterozygous in all
the sequenced individuals, although this effect is of prac-
tical importance only if the number of sequenced indivi-
duals is small. Since PULSAR cannot resolve cases in
which all individuals are heterozygous, the main impact of
missing children in nuclear families is a decreased percen-
tage of loci that are successfully phased. The effect of
missing parents is more significant because this situation
creates ambiguity in identifying LSAs. For example, in the
simulated nine-member nuclear family, the false positive
rate for putative LSAs was 15.9% with one parent missing
and 0% with both parents sequenced (data not shown); from
Tables 1 and 3 the SER correspondingly increased from
1.68 × 10−5 to 4.04 × 10−2 and the percentage of hetero-
zygous markers phased dropped slightly from 99.99% to
99.45%.

 

Fig. 2 Effect of genotyping accuracy and IBD sharing (number of
sibs) on the switch error rate (the proportion of adjacent hetero-
zygous genotypes correctly phased). SER of zero indicates perfect
phasing, SER of one indicates no adjacent heterozygous genotypes
were correctly phased. Results are based on 20 simulations in nuclear
families having 1–7 children.

Fig. 3 Effect of IBD sharing on the accuracy of genotype recon-
struction according to the haplotypes generated by PULSAR.
Results are based on 20 simulations in nuclear families having 1–7
children.

Genotype phasing in pedigrees using whole-genome sequence data 797



Mitigating the effect of ungenotyped individuals

One approach to mitigating the effect of ungenotyped
individuals on the performance of PULSAR is to filter
putative LSAs based on their minor allele frequency.
Table 3 includes a comparison of the effect of missing
individuals in nuclear families when putative LSAs are
filtered on the threshold MAF < 5%. In the nine-member
nuclear family with one sequenced parent, the rate of falsely
inferred LSAs was 15.9% prior to filtering and only
1.50% with filtering (data not shown); from Tables 1 and
3 the SER correspondingly decreased from 4.04 × 10−2 to
1.46 × 10−3. Filtering of LSAs is not without some com-
promise, however; in this example, filtering reduced the
total number of putative LSAs from 61,160 to 7,850 (data
not shown), and decreased the percentage of heterozygous
markers phased from 99.45% to 98.58%. A simple metric
for quantifying the tradeoff between phasing accuracy (as
measured by SER), and the proportion of heterozygous
markers phased (correctly or not), is the number of het-
erozygous markers phased correctly, given by the product
of phasing accuracy (1-SER) and number of heterozygous
markers phased. By this measure, we found that filtering of
LSAs clearly improved overall performance, at least in the
case of nuclear families (data not shown).

Filtering LSAs according to MAF is most advantageous
with smaller pedigrees having fewer founders; in larger
pedigrees with many founders, the putative LSAs identified
by PULSAR tend to have lower allele frequencies anyway,
and filtering on MAF < 5% has little effect. In the largest
pedigree considered in this study, for example, in which 61
of 94 (64.9%) individuals have sequence data, prefiltering
with MAF < 5% had only a minor effect on the results. The
false positive rate for putative LSAs decreased from 0.0099
to 0.0091, the total number of putative LSAs decreased
from 44889 to 40060 (data not shown); from Table 3 the
SER increased from 2.54 × 10−3 to 2.98 × 10−3, and the
percentage of heterozygous variants phased declined
slightly from 97.38% to 97.26%. We have not investigated
the effect of different thresholds for MAF, but with larger
pedigrees more stringent filtering (i.e., smaller MAF) could
well be advantageous.

Performance with missing data and genotyping
error

In typical situations, pedigree-based studies must cope both
with missing data (e.g., individuals unavailable for
sequencing) and genotyping errors. We investigated this
situation using the simulated nuclear families and the ped-
igrees based on SAMAFS data. For the nuclear families the
genotypes for one parent were blanked to simulate missing
data. Genotypes were simulated with an accuracy of 99%;Ta
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as most sequencing platforms can outperform this bench-
mark easily with appropriate read depth, an accuracy of
99% is somewhat conservative. Results for these simula-
tions are presented in Table 4, from which it is seen that
PULSAR yields an SER competitive with SHAPEIT2.0 and
Beagle 4.0, and all three methods outperformed
AlphaPhase1.1.

Application to real WGS data

Last, we investigated the phasing performance of PULSAR
with actual whole-genome sequence data. We used whole-
genome sequence genotypes for chromosome 21 from the
SAMAFS data, and the same multigenerational pedigrees
that were used as template pedigree structures in the other
simulations. This test dataset embodied the usual problems
and errors inherent with real-world data such as ungeno-
typed individuals, missing (uncalled) genotypes within
sequenced individuals, and genotyping errors. SAMAFS
pedigree relationships had been examined previously and
corrected as necessary, but a small degree of kinship
between some presumably unrelated founders is possible.
(Of course, the disadvantage of real data for characterizing
the performance of statistical methods is that the true state
—mainly with respect to phasing, and to a lesser extent the
genotypes—is unknown.) To better characterize the per-
formance of PULSAR with these data, we introduced
missing data by blanking genotypes at random with a
probability of 1/1000, and then applied PULSAR to the
remaining data. The phased haplotypes imputed by PUL-
SAR were used to reconstruct the blanked genotypes, and
the concordance of the reconstructed and originally
observed genotypes was computed.

The results for this experiment are summarized in
Table 5. PULSAR accurately phased nearly all of the
observed genotypes (>97% except in one sparsely geno-
typed pedigree), and the genotypes imputed from the
phased haplotypes were in excellent agreement with the
originally observed genotypes (>98% concordance).
Although fewer than half of the blanked genotypes were
phased or imputed, the concordance of the imputed and
blanked genotypes ranged from 95.45% to 98.58% across
pedigrees, indicating high-phasing accuracy and reliable
genotype imputation.

The original SAMAFS sequence data also contained
some genuinely missing genotypes, and we found a notable
difference between the proportions of artificially missing
(blanked) genotypes and truly missing genotypes that
PULSAR was able to impute (data not shown). This dif-
ference is interpreted as a consequence of the different
distributions for the two kinds of missing data. The blanked
genotypes were (by construction) distributed randomly,
whereas the truly missing genotypes were more likely to be Ta
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found at the same marker in multiple individuals. This
difference can be explained in various ways, but a reason-
able hypothesis is simply that the presence of indels or copy
number variants acts to disrupt the diploid state of these
markers in a subset of related individuals.

Execution times

All software packages were benchmarked on a server with
2.40 GHz Intel Xeon Core i7 CPUs running CentOS Linux
7. Although computation times can become critical with
increasing volumes of data, we found all software packages
tested to be sufficiently fast for practical use on whole-
genome sequence data in the pedigrees we studied. For
simulated data on the largest pedigree (94 individuals),
AlphaPhase was fastest (93 s), followed by eagle 4.0 (826
s), PULSAR (938 s), and SHAPEIT2.0 (8833 s). SHA-
PEIT2.0 and Beagle 4.0 were each provided with reference
samples as would be expected in typical usage.

Scalability

Computational scalability is an important consideration
with any statistical genetic procedure applicable to pedigree
data. An algorithm that performs well with nuclear families
and small sibships may rapidly become impractical for use
with large sibships or deep, extended pedigrees. To estimate
the scalability of the PULSAR algorithm we simulated and
analyzed sibships comprising two parents and 1–100 chil-
dren. Such extreme sibships are unrealistic for human
populations, although they may exist in other species. This
design was chosen simply to enable us to investigate the
performance of PULSAR as IBD sharing within the pedi-
gree increases. The results (data not shown) indicate that
overall computation time can be well-modeled by a poly-
nomial of quadratic order in the number of individuals, with
coefficient 0.48 for the quadratic term. Based on this

polynomial fit, we can estimate that a pedigree with 2
parents and 1000 children will require ~41,000× the
execution time for a trio comprising two parents and one
offspring.

We also studied artificial pedigrees having 2–50 gen-
erations, in which each generation comprised one offspring
and one married-in founder. This structure was chosen
because the IBD sharing within such a pedigree does not, on
average, increase between generations. In this case the
simulation results disclosed a strongly linear relationship
(R2 > 0.99) between the number of individuals and execu-
tion time. Based on this result, analysis of a hypothetical
pedigree having 500 generations and 999 individuals is
expected to require 450× the execution time for a trio
comprising two parents and one offspring.

In general, our simulation results indicate that the overall
execution time of the PULSAR algorithm scales approxi-
mately linearly with pedigree size and approximately
quadratically with factors that increase IBD sharing (i.e.,
number of meioses). These tendencies also affect the rela-
tionship between execution time and presence of unse-
quenced individuals. Unsequenced individuals cannot be
used by PULSAR and act generally to reduce execution
time, but the precise effect depends to some extent on
pedigree size, structure, and the location of the unsequenced
individuals within the pedigree.

Discussion

Accurate phasing of genotype data is an essential step in
many genetic studies, yet there are currently few tools
designed specifically to phase genotypes in pedigrees of
arbitrary size and structure. Alternative methods for phasing
are typically restricted to use with unrelated individuals or
nuclear families, and many require supplemental data in the
form of reference panels in order to produce accurate

Table 5 Performance of PULSAR using SAMAFS WGS Data.

Pedigree characteristics Proportion of observed
genotypes phased

Concordance of
reconstructed and
observed genotypes

Proportion of
blanked
genotypes
imputed

Proportion of
blanked
genotypes phased/
imputed

Concordance of
imputed and blanked
genotypesSizea Foundersa Generations

11 (4) 5 (1) 3 0.9769 0.9948 0.0714 0.1853 0.9813

14 (3) 6 (0) 4 0.9297 1 0 0 *

20 (3) 6 (0) 4 0.9950 0.9859 0.2025 0.4221 0.9545

28 (16) 8 (2) 4 0.9937 0.9899 0.3396 0.4385 0.9798

55 (29) 17 (3) 6 0.9885 0.9873 0.2074 0.2450 0.9689

78 (31) 21 (5) 6 0.9909 0.9943 0.2603 0.3116 0.9858

94 (61) 28 (9) 5 0.9858 0.9941 0.1437 0.2866 0.9823

aNumber in parentheses is number of individuals sequenced.

Asterisk indicates no genotypes were imputed.
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results. While large reference panels are now available for
major human ethnic groups, this is not the case for many
smaller human populations or for virtually all other species
of biomedical relevance.

We have presented a novel algorithm for phasing whole-
genome sequence data in a broad range of pedigree sizes
and structures, and have described the associated software,
PULSAR. Our algorithm yields low SER, and phases a high
percentage of heterozygous variants, without the use of
additional data in the form of reference panels. The high
accuracy of the haplotypes produced by PULSAR, often
spanning entire chromosomes, is encouraging. Based on the
results of our benchmarking tests, PULSAR is a practical
and effective approach to phasing that works well for a
range of pedigree sizes and structures provided that a rea-
sonable proportion of the pedigree members is sequenced.
The algorithm used in PULSAR can also form the basis of a
tool for genotype error checking and correction.

While the method clearly has merit, PULSAR shares
some of the limitations typical of other phasing approaches.
Unsequenced individuals and/or genotype errors are una-
voidable in real datasets and will weaken the performance
not only of PULSAR but also of alternative approaches for
phasing. However, in our simulations based on real data, in
which we examined ‘difficult’ pedigrees with sparse
sequencing coverage (e.g., only 3 out of 20 individuals
sequenced), PULSAR performed well, erring con-
servatively on the side of phasing fewer heterozygous
markers rather than phasing them incorrectly.

The critical factor in the performance of PULSAR is the
proportion of alleles an individual shares IBD with at least
one other sequenced individual. Since it is not always
straightforward to know what patterns of missing indivi-
duals will be detrimental to the performance of PULSAR,
we also developed a tool that uses Monte Carlo gene-
dropping to estimate the expected proportion of the genome
for which each individual will share at least one haplotype
IBD with another sequenced individual. This tool can be
used for a priori estimation of the applicability of PULSAR
to a given pedigree-based dataset. If the sequenced indivi-
duals in the pedigree are not predicted to share a high
percentage of alleles IBD across the genome, one may wish
to consider alternative phasing approaches, such as those
designed for unrelated individuals.

Our simulations, using realistic genotypes and chromo-
somal haplotypes, show that PULSAR is quite robust to
genotyping errors. Indeed, PULSAR can be used to correct
some kinds of genotyping errors. PULSAR currently ‘fixes’
incorrect genotypes using a simple majority rule within the
individuals sharing a haplotype, but the ability to fix geno-
type errors could potentially be improved by implementing a
weighting scheme based on the confidence of genotype calls,
or on the number of reads supporting a given allele call.

We have not investigated the impact of errors in the
pedigree structures, including the existence of unknown
relationships between pedigree founders, on the perfor-
mance of PULSAR. As a rule, we advocate that pedigree
relationships be confirmed or estimated analytically before
undertaking any efforts to establish phase, correct geno-
typing errors, or impute missing genotypes [15, 16].

PULSAR was designed specifically to work on genotype
calls generated from high- or medium-coverage WGS data,
based on the rationale that the vast number of rare sequence
variants in the human genome will favor a high density of
LSAs in pedigrees. Low-coverage WGS data leads to less
precise genotype calls, particularly for rare variants
observed only once or a few times in a given dataset, and
PULSAR’s performance with such low-coverage data
would be impacted correspondingly. At the present time,
and due mainly to cost factors, many studies only involve
exome-sequencing data or dense SNP genotyping rather
than WGS data, but we have not investigated the perfor-
mance of PULSAR with data generated on these other
genotyping platforms. SNP genotyping panels are biased
towards common SNPs, and for this reason we expect that
PULSAR would be of limited utility for such data in
extended pedigrees, where very few common SNPs would
be introduced only once into a given pedigree and thus
serve as LSAs. In smaller pedigrees, however, having
relatively few founders, we expect the performance of
PULSAR to be much less impacted.

One can envisage a number of potential improvements
and extensions to PULSAR, but these are quite beyond the
scope of the present discussion. However, we did explore
the utility of prescreening variants based on allele frequency
when identifying putative LSAs. When pedigree founders
are not available for sequencing, as is often the case, then
such prefiltering based on minor allele frequency was found
to be useful for reducing the number of false positives
among putative LSAs and thereby improving the perfor-
mance of the algorithm. Of course, the allele frequency
estimates must be reliable to be effective as a filtering cri-
terion. With a sufficient number of founders, population
allele frequencies can be estimated from the analysis sam-
ple; alternatively they can be estimated from independent
reference panels. In either case, one must remain cognizant
of the effects of admixture, variations in sequencing tech-
nology platform, and quality of sequencing, on the resulting
estimates.

The algorithm used in PULSAR for inferring phase in
pedigrees is a rule-based procedure, but alternative methods
based on a maximum-likelihood criterion could be investi-
gated. For example, one might infer phase using the
Elston–Stewart algorithm [17] as implemented in LINK-
AGE [18] or FASTLINK [19]. As a practical consideration,
however, the Elston–Stewart algorithm is limited in the
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number of variants that can be jointly analyzed, which
would make it necessary to subdivide the genome into a
number of overlapping segments, phase these segments
separately, and then assemble the resulting haplotype data.
Alternatively, the Lander–Green algorithm [20], as imple-
mented in the software package MERLIN [21], can analyze
many variants simultaneously, but is limited in the number
of individuals (in a single pedigree) that can be handled. For
large pedigrees, one would need to break the pedigree into
several overlapping subpedigrees for phasing, then recom-
bine the phased genotypes. Pedigree breaking and com-
bining are not trivial tasks, since joining marker segments of
pedigree fragments can lead to Mendelian inconsistencies
and other problems. To overcome some of the limitations of
the Elston–Stewart and Lander–Green algorithms, a number
of Monte Carlo Markov Chain (MCMC) methods have
been developed, including LOKI [22] and SimWalk2 [23].
These methods are computationally intensive, however, and
not easily applied to whole-genome sequence data. All of
these methods are also impacted to varying degrees by
genotyping errors and missing genotype data.

There are a number of methods for phasing unrelated
individuals [2], some of which, such as Beagle 4.0 [9], are
based on hidden Markov models. Currently, the most pro-
minent phasing methods for singleton individuals use var-
iants of the approximate coalescent models, such as in
SHAPEIT2.0 [12] and MaCH [24]. The accuracy and
computational speed of these packages has greatly
improved recently, aided by the availability of ever-larger
reference panels for some of the major ethnic groups. One
difficulty with applying these methods to pedigree data is
that suitable reference panels are not presently available for
many smaller populations which are often well-
characterized and particularly well-suited for pedigree stu-
dies. Without large and accurate reference samples, how-
ever, statistical-phasing methods requiring reference panels
perform much worse, as seen in the phasing results for
Beagle 4.0 in the absence of reference samples. Unfortu-
nately, large and accurate reference panels do not exist for
most species.

Yet another simplification that is often made is that of
treating family members as unrelated individuals during
phasing. This strategy will often generate haplotypes that
are inconsistent with Mendelian rules of inheritance. Some
packages, such as Beagle 4.0, take family relationships into
consideration and can correct for Mendelian incon-
sistencies. The phasing algorithm duoHMM [25], as
implemented in SHAPEIT2 [12], attempts to use the
restrictions on inheritance observed in duos to correct the
haplotypes produced by statistical phasing, but when
applied to the test data described in this study SHAPEIT2
frequently failed to run on most of the simulated pedigree
structures.

In view of the various strengths and limitations of the
available phasing methods for pedigree data, we see the
opportunity for development of a meta-analytic algorithm
for combining the phasing results from multiple methods
and issuing results that are statistically favored in some
well-defined sense. Such an algorithm would weigh the
conclusions of different algorithms according not only to
the method and assumptions embodied by specific algo-
rithms, but also to features of the sequence data, e.g.,
sequencing technology and platform, read depth, and so on.
Results from a combination of methods may ultimately
prove to be more accurate and complete while remaining
computationally practical. Alternatively, the phasing results
from one algorithm could be refined by additional methods.
For example, the phasing output from PULSAR could be
used as input for MCMC methods, providing an initial,
plausible, phased genotyping state to be refined by an
MCMC-based method. Alternatively, the output from sta-
tistical phasing of singletons could serve as input for
pedigree-based phasing methods, or conversely. Such tan-
dem analyses could harness the high-phasing accuracy
achievable by direct observation of inheritance patterns
within pedigrees, with statistical-phasing methods that infer
phase in parts of the genome where inheritance may not be
directly observable given the particular sequencing dataset.

Data availability

PULSAR is available at https://github.com/AugustBla
ckburn/PULSAR_1.0.
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