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Abstract
Rare genetic variants are expected to play an important role in disease and several statistical methods have been developed to test
for disease association with rare variants, including variance-component tests. These tests however deal only with binary or
continuous phenotypes and it is not possible to take advantage of a suspected heterogeneity between subgroups of patients.
To address this issue, we extended the popular rare-variant association test SKAT to compare more than two groups of
individuals. Simulations under different scenarios were performed that showed gain in power in presence of genetic
heterogeneity and minor lack of power in absence of heterogeneity. An application on whole-exome sequencing data from
patients with early- or late-onset moyamoya disease also illustrated the advantage of our SKAT extension. Genetic simulations
and SKAT extension are implemented in the R package Ravages available on GitHub (https://github.com/genostats/Ravages).

Introduction

With the availability of next-generation sequencing data,
it is now possible to study the contribution of rare and
low-frequency variants to diseases. Rare-variant associa-
tion tests have been developed to compare the distribu-
tions in cases and controls of qualifying variants, usually

selected based on their allele frequency and their pre-
dicted functional effect, within a testing unit, usually a
genomic region encompassing one gene [1, 2]. These tests
can be broadly classified into two categories: burden tests,
which contrast a genetic score summarising qualifying
variant genotype information between individuals (for
example, CAST [3] and WSS [4]) and variance-
component tests, which study the distribution of genetic
effects as SKAT [5].

Rare-variant association tests may lack power when an
agnostic approach is used, due to the large number of genes
to be tested, the limited sample sizes [6], and strong genetic
heterogeneity. In this context, incorporating information on
clinical heterogeneity among cases, e.g. differences in dis-
ease presentation, severity, or age at onset, is an appealing
way to build more powerful association tests. It could allow
the identification of signals associated with sub-phenotypes
that would otherwise be missed and that would enable a
better understanding of biological mechanisms behind the
trait under study.

Multinomial regression models have been previously
used to test for association between a multi-category phe-
notype and common variants [7, 8]. We recently extended
rare-variant burden tests using a similar approach [9] and
showed an advantage of taking into account sub-phenotypes
when they are genetically heterogeneous and no significant
power loss when they are genetically homogeneous. Wu
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et al. [5] showed that SKAT outperforms burden tests in the
situation where, in the region of interest, there are only a
few causal variants, or both protective and deleterious
variants are present. Since they rely on the dispersion of
genetic effects, variance-component tests are also expected
to outperform burden tests in the detection of different
causal variants with the same genetic effects between sub-
phenotypes.

In this study, we extend the commonly used variance-
component test SKAT to account for multi-category
phenotypes using a geometrical interpretation of the test.
We used simulations to investigate properties of the
extended test under various scenarios comparing different
strategies of analysis. We also applied these strategies on
real data from patients with moyamoya disease sub-
phenotyped by their age of onset [10]. We made this
extension available in the R package “Ravages” available
on GitHub (https://github.com/genostats/Ravages).

Methods

SKAT extension

To extend SKAT [5] to multi-category phenotypes, we use
a geometrical interpretation of the test.

SKAT is based on the mixed model:

logitP Y ¼ 1ð Þ ¼ Xβ þ Zu; ð1Þ

where Y is the vector of phenotypes (we denote by
logitP Y ¼ 1ð Þ the vector of components logitP Yi ¼ 1ð Þ),
X is the matrix of covariates, Z is the matrix of weighted
genotypes, and u � MVNðO; τIÞ. Z ¼ GW with G the
matrix of genotypes coded as 0, 1, and 2, and W the
diagonal matrix of variants’ weights. Under the null
hypothesis of no association between the trait of interest
and the genomic region, H0 : τ ¼ 0 can be tested using the
score test statistics:

Q ¼ Y� π̂ð Þ0KðY� π̂Þ; ð2Þ

where π̂ corresponds to the vector of estimated probabilities
of being a case under the null model, and K to the kernel
matrix K ¼ ZZ0. π̂ is calculated using β̂ estimated from the
regression of the phenotype on the covariates, i.e., under the
null model: π̂ ¼ logit�1ðXβ̂Þ.

In particular, in a sample of n individuals composed of n0
controls and n1 cases, without covariates, we have π̂ ¼ n1

n 1;
thus:

Y� π̂ð Þ0Z ¼ n1Z1 � n1
n
� nZ ¼ n1 Z1 � Z

� �
;

where Z1 ¼ 1
n1
Y0Z and Z ¼ 1

n 1
0Z are the centres of mass of

genotypes of cases and of all individuals, respectively.
Finally, we have:

Q ¼ n21 Z1 � Z
2

���
���: ð3Þ

The centre of mass of genotypes in the group of controls
is Z0 ¼ 1

n0
ð1� Y0ÞZ. The following relation between Z0, Z1,

and Z holds: Z0 ¼ 1
n0
ðnZ� n1Z1Þ. Thus, similarly we have:

Q ¼ n20kZ0 � Zk2 (Supplementary Fig. 1A). Similar geo-
metrical interpretations can be found in Liu et al. [11].

It is possible to extend to more than two groups of
individuals, based on the centres of mass of genotypes in
each group of individuals as represented in Supplementary
Fig. 1B.

When there are no covariates and C groups of cases, our
test statistics R is a weighted sum of the distance between
the centre of mass of genotypes in each one of the ðC þ 1Þ
groups of individuals and the global centre of mass (c ¼ 0
corresponding to the controls group):

R ¼
XC

c¼0

nc Zc � Z
�� ��2; ð4Þ

where nc is the number of individuals in group c, Zc ¼
1
nc

1Y¼cð Þ0Z is the centre of mass of genotypes in group c,
and 1Y¼c is the indicator variable for each individual in
group c. By weighting each term by the size of the group nc
instead of n2c , the statistic R is made analogous to the model
sum of squares in Fisher’s one-way ANOVA. When only
two groups of individuals are present, as in a classical case/
control study, we can show that R is proportional to Q with
R ¼ n0þn1

n0n1
� Q.

Going back to the matrix form (Eqs. 2 and 3), we can
rewrite R in a form allowing the inclusion of covariates:

R ¼
XC

c¼0

1
nc

ð1Y¼c � bπcÞ0ZZ0ð1Y¼c � bπcÞ; ð5Þ

with bπc the probability belonging to group c under the null
hypothesis and estimated using bβc from the multinomial
regression of the phenotype on the covariates: π̂c ¼
logit�1 Xbβc

� �
: We show in Appendix how to write R in

matrix form.
p values are calculated by approximating the distribution

of the test statistics by the distribution of (aX+ b) where
X � χ2ðdÞ, as proposed by Liu et al. [12]. Parameters a, b
and d are chosen to have the same moments 1, 2 and 4 than
the statistics R, which is introduced by Lee et al. [13] to
improve the approximation of tail distribution compared to
the first three moments initially used by Liu et al., and is
referred in the SKAT package as the “modified Liu
method”.
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For small samples (<2000 individuals), if there is no
covariate, permutations are performed to draw an empirical
distribution of the statistics, and statistics moments are
computed based on these permutations. If covariates are
present, parametric bootstrap sampling is performed where
both phenotypes Y and bπc probabilities are sampled to
obtain an empirical distribution of R. We use a fast para-
metric bootstrap procedure which is described in Appendix.
Using permutations or bootstraps, p values are computed
using a sequential procedure as in Besag and Clifford [14]
to gain in computation time: a target number t and a max-
imum number M of permutations are chosen. Permutations/
bootstraps are carried on until t simulated values of R are
greater than the observed value, or until M values are
computed. In the first case, p is estimated as p ¼ t

m where m
is the number of permutations carried out, and in the latter
case the chi-square approximation based on moments esti-
mated from the M permutated values is used. We recom-
mend using t= 100 and M= 50,000 permutations to
maintain appropriate type I error levels (Table 1).

For larger samples (≥2000 individuals), theoretical
moments are computed based on the kernel matrix and the
variance–covariance matrix of Y� π̂ð Þ as described in
Appendix.

Simulations

To evaluate the properties of our SKAT extension, data
were simulated under various scenarios. Simulations
reproducing allele frequency spectrum and linkage dis-
equilibrium patterns observed on real data were performed
using our R package Ravages. We used 3384 haplotypes of
the LAMTOR3 gene from the UK10K Consortium [15],
which contains 114 rare variants having a minor allele
frequency (MAF) lower than 1%.

Simulations were performed as follows: 15 causal var-
iants were sampled among rare variants observed in the
LAMTOR3 gene and the burden of each haplotype was
computed by weighting these causal variants according to
their MAF, using w ¼ �0:4 � log10MAFj j, as in Wu et al.
[5]. The probability of each pair of haplotype in each group
of cases was computed under a liability model, for a given
fraction of variance h2 explained by the gene, and a given

prevalence. Pairs of haplotypes were finally sampled for
each case individual based on these conditional prob-
abilities. For controls individuals, pairs of haplotypes were
sampled uniformly in the pool of the 3384 haplotypes.

Simulations of 1000 controls and 1000 cases (divided
into two groups Cases1 and Cases2) were performed under
four scenarios with a prevalence of 1% in each group of
cases, without covariates. A schematic representation of
these scenarios is given in Supplementary Fig. 2.

(1) Same variants same risks (SVSR): the two groups of
cases are genetically homogeneous with the same
causal variants and h2 value: one group of cases is
simulated and randomly split into two groups of cases.

(2) Different genes (DG): different genes are involved in
the two groups of cases, i.e. the first group of cases is
similar to the control group and causal variants are
present only in the second group of cases.

(3) Different variants same risks (DVSR): different causal
variants are present in the same gene in the two
groups of cases with the same h2 values.

(4) Different variants different risks (DVDR): different
causal variants are present in the same gene in the two
groups of cases and in the second group, h2 is doubled
compared to the first group.

Power of the tests was evaluated as a variation of the
proportion of variance explained by the gene h2 (from 0.5 to
4%), the proportion of Cases2 among cases (from 10 to
50%), and the proportion of protective variants among
causal variants (0, 20 or 50%). For the variation of the
proportion of Cases2 and the proportion of protective var-
iants, h2 was set to 2% for both SVSR and DG scenarios, to
1.5% for the DVSR scenario, and to 1% for the DVDR
scenario. Unless otherwise stated, the permutation proce-
dure was used to estimate p values.

Three strategies of analysis were applied: the “Three
groups” test corresponding to our SKAT extension; the
“Cases vs Controls” test where all the cases are con-
sidered as one group and compared to the controls; the
“minCases_Bonferroni” test where each group of cases is
independently compared to the controls, and then the
minimum p value between those two tests is taken and

Table 1 Type I errors for
different α values using 107

simulations and the sampling
procedures (permutations or
bootstraps, each with M=
10,000 or M= 50,000) or the
theoretical moments to compute
the p values.

Pr (p < α)

Permutations Bootstraps

α M= 10,000 M= 50,000 M= 10,000 M= 50,000 Theoretical

10−4 1.20 · 10−4 1.07 · 10−4 1.13 · 10−4 1.08 · 10−4 7.17 · 10−5

10−5 1.67 · 10−5 1.29 · 10−5 1.33 · 10−5 1.36 · 10−5 7.30 · 10−6

2.5 · 10−6 4.10 · 10−6 3.10 · 10−6 3.90 · 10−6 4.60 · 10−6 2.40 · 10−6

10−6 2.00 · 10−6 1.00 · 10−6 1.60 · 10−6 1.90 · 10−6 9.00 · 10−7
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multiplied by two to correct for multiple testing. A
schematic representation of these analyses is also given in
Supplementary Fig. 2.

A total of 1000 replicates were performed for each simu-
lation scenario to estimate power at the genome-wide sig-
nificance level of 2:5 � 10�6. When a sampling procedure was
applied (permutations or bootstraps), a target t= 100 and a
maximum of M= 50,000 permutations were used for the
sequential permutation procedure. To estimate type I error
rates, 107 replicates were performed with the simulation of
1000 controls and two groups of 500 cases. For the bootstrap
procedure, a Gaussian distributed covariate was simulated.

Application on moyamoya disease whole-exome
data

We applied the different strategies to whole-exome sequence
(WES) data from a study on moyamoya disease [10] where an
association was previously found with rare variants in the
RNF213 gene. Data consisted of 96 patients (29 with early-
onset and 67 with late-onset disease), who were compared to
568 ancestry-matched controls from the FREX Project [16].
Qualifying variants were selected if having a MAF lower than
0.1% in gnomAD [17] and lower than 5% in the whole sample,
and if the variant effect predictor (VEP) consequence [18] was
among the following: missense, inframe (deletion and inser-
tion), transcript_amplification, start_lost, stop_lost, frameshift,
stop_gained, splice_donnor, splice_acceptor, and transcript_a-
blation. For the rare-variant association tests, variants were
attributed to the corresponding ENSEMBL genes from VEP
annotations. The same strategies as in the simulations were
applied to the data with four tests: (i) early vs late vs controls
where the age of onset was taken into account and our SKAT
extension was used; (ii) Cases vs Controls; (iii) late vs controls;
and (iv) early vs controls. Rare-variant association tests were
adjusted on the first five components of the principal compo-
nent analysis (PCA) and the bootstrap procedure was used to
compute the p values with M= 50,000.

Results

Simulation study

H0

We first investigated the type I error of our SKAT extension
based on 107 simulations. p values were computed using
either the theoretical moments, the permutation procedure
or the bootstrap procedure with M= 10,000 or M= 50,000.
For both the permutation and the bootstrap procedures, a
slight inflation of the type I error was observed with M=
10,000 permutations (Table 1). This inflation was corrected

for the permutation procedure when increasing M to 50,000
permutations but it was not corrected for the bootstrap
procedure. Nevertheless, the inflation on the QQ plot being
less important when M= 50,000 (Supplementary Fig. 3),
we recommend using at least M= 50,000 when any of the
two sampling procedures is used. Finally, no inflation was
observed for the p values computed using the theoretical
moments and they were even slightly conservative.

Power

The power of the three different tests was evaluated for the
four scenarios described above, first by varying the h2

values to simulate different effect sizes of the gene (Fig. 1).
As expected, in all the scenarios, the power increases with
increasing values of h2. In the SVSR scenario where the two
groups of cases are genetically homogeneous, the “controls
vs cases” test is the most powerful, followed by the “min-
Cases_Bonferroni” test, and the “Three groups” test. Our
extension is the less powerful but the loss of power is
relatively small, especially compared to the “minCa-
ses_Bonferroni” test. In the scenarios where the two groups
of cases are genetically heterogeneous (DG, DVSR, and
DVDR scenarios), our proposed “Three groups” test is
always the most powerful. It shows a strong advantage over
the “Cases vs Controls” test, especially in the DG scenario
(one group of cases is similar to the controls) where
comparing all the cases to the controls has limited power.
The “Three groups” test has similar power than the
“minCases_Bonferroni” test in the DG scenario but it
performs much better in the DVSR and DVDR scenarios.
For example, for h2 = 0.01 in the DVSR scenario the
power of the “minCases-Bonferroni” test is 0.327 com-
pared to 0.640 for the “Three groups” test, and for h2=
0.005 in the DVDR scenario the power of the two tests are
0.185 and 0.337, respectively. The same trends are
observed for the four scenarios when sample sizes are
increased (Supplementary Fig. 4).

We further investigated whether the same trends were
observed between the different tests when the proportion of
Cases2 among cases was varied from 10 to 50% (Fig. 2).
The power of the “Cases vs Controls” test is stable in the
SVSR scenario where the two groups of cases are homo-
geneous, with a slight decrease of power of the “minCa-
ses_Bonferroni” test and an increase of power of the “Three
groups” test with the increasing proportion of Cases2. The
same trends as before are observed between the three tests,
with a higher loss of power of the “Three groups” test when
very few Cases2 are present among cases. In the DVSR
scenario where causal variants are different between the two
groups of cases but with the same genetic effects, both the
“Three groups” and the “minCases_Bonferroni” tests
increase in power with increasing proportions of Cases2

Extension of SKAT to multi-category phenotypes through a geometrical interpretation 739



among cases, while the “Cases vs Controls” test shows the
opposite trend. We hypothesis that this decrease in power
could be explained by the fact that when the number of
Cases2 increases, more causal variants from Cases2 are
present in the whole cases group, resulting in a higher
global proportion of causal variants in the “Cases vs Con-
trols” test. Wu et al. [5] showed that SKAT power decreases
with the increase proportion of causal variants when ana-
lysing a dichotomous trait. Again, except for a very low
proportion of Cases2, we found the same trends as observed
before between the different tests. The relatively low power
of the “Three groups” test in both SVSR and DVSR sce-
narios can be explained by the fact that the “Cases2 vs
Controls” test has no power when only 100 Cases2 are pre-
sent. In the two scenarios where genetic effects are higher in
the Cases2 group (DG and DVDR), as expected, the power of

all tests increases with increased Cases2 sample sizes. Under
the DG scenario, the power of the “Cases vs Controls” test is
very low whereas the two other tests have very similar
powers. In the DVDR scenario, the “Three groups” test is the
most powerful regardless of the proportion of Cases2
among cases, especially in comparison to the “Cases vs
Controls” test.

Finally, we studied the power of the different analyses as
a function of the proportion of protective variants within
the genomic region (0, 20, or 50%—Fig. 3). As expected,
the power decreases with increasing proportions of protec-
tive variants among causal variants. Once again, the same
trends between the different analyses were found, with
the “Three groups” test having lower power values than the
“Cases vs Controls” test in the SVSR scenario but a
huge advantage in all scenarios of genetic heterogeneity.

Fig. 1 Power of SKAT (permutation procedure) in the four scenarios SVSR, DG, DVSR, and DVDR using the three types of test, with
1000 controls and two groups of 500 cases. Power was estimated at the genome-wide significance threshold of 2:5 � 10�6.
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We retrieve as well the advantage of our SKAT extension
over the “minCases_Bonferroni” test in the two scenarios
DVSR and DVDR with genetic heterogeneity.

Application on moyamoya disease data

The different tests were applied on WES data from a study
on moyamoya disease. Early- and late-onset cases were
compared against controls on 9567 genes that contain
63,134 variants. Analyses were adjusted on the first five
components of the PCA, and the bootstrap procedure was
used to compute p values. Depending on the maximum
number of permutations M, the computation times on a
5-core computer for the “Three groups” test (i.e. “Early vs
Late vs Controls”) varied from 95 s for M= 50,000
to 780 s for M= 1,000,000 (Table 2). Thanks to the

iterative procedure of Besag and Clifford [14], the com-
putation time is sub-linear in M, making it feasible to use
large values of M. A significant signal was detected in
both the “Early vs Late vs Controls” and the “Early vs
Controls” analyses (Supplementary Fig. 5). This signal is
located in the RNF213 gene that was previously found as
associated with moyamoya disease in this same dataset
using burden tests [9, 10]. The “Early vs Late vs Controls”
test provided the most significant result (p ¼ 1:02 � 10�8).
The p value was just slightly better than the one obtained
in the “Early vs Controls” analysis (p ¼ 3:86 � 10�8) but
the advantage of the “Three groups” test is that only
one test is performed instead of two (each group of
cases against the same group of controls). The p values
obtained for the RNF213 gene using the “Cases vs Con-
trols” and the “Late vs Controls” tests were, respectively,

Fig. 2 Power of SKAT (permutation procedure) in the four sce-
narios SVSR, DG, DVSR, and DVDR using the three types of test,
with 1000 controls and 1000 cases. The percentage of Cases2 among

cases was varied from 10 to 50. Power was estimated at the genome-
wide significance threshold of 2:5 � 10�6.
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p ¼ 1:99 � 10�6 and p= 0.026. Results for these different
tests showed a pattern similar to the one obtained under
the DG scenario in the simulations, consistent with
RNF213 rare variants being mainly involved in the early-
onset group.

Discussion

We extended the popular rare-variant association test
SKAT to allow the comparison of more than two groups of
individuals, i.e. of multi-category phenotypes. Through a

Fig. 3 Power of SKAT (permutation procedure) in the four sce-
narios SVSR, DG, DVSR, and DVDR using the three types of test,
with 1000 controls, 500 Cases1 and 500 Cases2. The proportion of

protective variants among causal variants was set at 0, 20, or 50%.
Power was estimated at the genome-wide significance threshold of
2:5 � 10�6.

Table 2 Number of variants,
number of genes, and
computation times on a 5-core
computer for the four tests on
the moyamoya WES data when
different numbers of
permutations M are used to
estimate p values with the
bootstrap procedure.

Computation time (s)

Type of analysis Number of
variants

Number of genes M= 50,000 M = 500,000 M = 1,000,000

Early vs late vs
controls

63,134 9567 100 431 780

Cases vs controls 63,134 9567 55 162 276

Late vs controls 59,857 9269 47 136 165

Early vs controls 55,476 8855 39 138 218
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simulation study, we investigated the properties of the
extended test in different scenarios where the group of cases
can be sub-divided. We compared the power of our
approach to the power of the classical “Cases vs Controls”
test that ignores the case subgroups and to the power of the
“minCases_Bonferroni” where two tests are performed to
compare each group of cases against the same group of
controls. We showed an advantage of taking into account
subgroups of cases when there exists some level of het-
erogeneity. Indeed, in the DG, DVSR, and DVDR scenarios
where different models of genetic heterogeneity were
simulated, our extension showed a clear advantage over the
“Cases vs Controls” test. It was also more powerful than the
“minCases_Bonferroni” test in the two scenarios DVSR and
DVDR, where causal variants in the same gene were
involved. In the DG scenario where different genes were
involved in the two groups of cases, and thus, at the tested
gene, one of the cases group was similar to the controls, our
approach and the “minCases_Bonferroni” test had a similar
power, by far higher than the power of the “Cases vs
Controls” test. As expected, this latter test was found more
powerful that the others in the SVSR scenario, where the
two groups of cases were genetically homogeneous. Inter-
estingly, however, the difference in power was small and
the power loss of the tests that split cases into two groups
was rather limited. In the presence of genetic heterogeneity
between cases groups, our proposed test gained power over
the “Cases vs Controls” test and to a lesser extent
over the “minCases_Bonferroni” test. Compared to the
“minCases_Bonferroni” test, our approach presents the
advantage of performing a single analysis rather than
two separate analyses on each group of cases. Moreover, in
the “minCases_Bonferroni” test, the two groups of cases are
compared to the same group of controls and the results of
the tests are correlated, which could lead to spurious
association (see for example Zaykin and Kozbur [19]).
The advantage of our SKAT extension remained when
protective variants were present, when the total sample size
was increased, and when the proportion of severe cases
among all cases varied (except for a very low proportion in
both SVSR and DVSR scenarios).

An application of the methods to whole-exome sequen-
cing data on moyamoya disease confirmed the trend
observed in the simulations. We retrieved the association
with the RNF213 gene previously found, and of which the
biological role was already described in the development of
moyamoya disease [10]. The most significant associations
with the RNF213 gene were found with the “Early vs
Controls” and “Early vs Late vs Controls” analyses.
p values for this gene were very similar between the two
analyses and significant at the corrected threshold for
around 9500 genes. Our test which had the lowest p value
showed a slight advantage, demonstrating the potential to

detect exome-wide significant signals using our SKAT
extension. Furthermore, we did not correct the p value of
the “Early vs Controls” test even though the two subgroups
of cases were each compared to the same group of controls.
The results were very similar to the ones obtained in the DG
scenario, supporting the fact that rare variants in RNF213
are probably mainly involved in the development of an
early-onset form of the disease and showing that this
genetic heterogeneity can be detected using our SKAT
extension in real data.

Our results are consistent with the results obtained for
burden tests [9]. For burden tests, we found an advantage of
the analysis on sub-phenotypes in the DG scenario; how-
ever, in the DVDR scenario, there was no clear advantage to
use sub-phenotypes. The increase in power of the “Three
groups” test with SKAT in this scenario is due to the fact
that it considers the dispersion of individuals’ genotypes,
and is thus more sensitive to the presence of different causal
variants between groups of cases. Similarly, under the
DVSR scenario where the causal variants were different
between the two groups of cases but had similar effects,
there was no advantage of considering case subgroups for
burden tests. For SKAT however, this was no longer true
and accounting for the subgroups significantly increased
the power.

p values can be analytically estimated using the approach
from Liu et al. [12] when the sample size is large enough (at
least 2000 individuals are recommended). These computa-
tions can easily accommodate covariates as described in
“Methods.” For smaller samples, when estimations are less
reliable, we propose to use a sampling procedure based on a
simple permutation procedure when no covariate are pre-
sent, or a bootstrap procedure otherwise. In this last situa-
tion, we simply need to resample the (Y� π̂), leading to a
computationally efficient algorithm. Moreover, to overcome
the computational burden of p values estimation for small
sample sizes, a sequential procedure is proposed: for large p
values, where a few permutations are sufficient to obtain a
good estimation of the p value, the sampling procedure is
used and when the maximum number of permutations is
reached, moments are estimated using the permutations and
used in the chi-square approximation. This strategy enables
to test with an efficient computing time the association of a
disease with a large number of genomic regions, as it can be
seen on the moyamoya whole-exome data analyses where
the analysis of around 10,000 genes took less than two
minutes.

We implemented all the functions for the genetic
simulations and the rare-variant association tests in the R
package Ravages based on the R package gaston [20].
The simulation procedure enables to mimic linkage dis-
equilibrium pattern and allele frequency spectra observed in
real data, and returns genetic data in the format needed to
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perform association tests. With the implementation in
Ravages of both the recent extension of burden tests and the
present extension of the widely used variance-component
test SKAT, we offer several possibilities to perform rare-
variant association test with multi-category phenotypes.
Hopefully, this could enable in the future the discovery of
new genetic associations with rare variants and a better
understanding of biological mechanisms underlying disease
phenotype heterogeneity.
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