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Abstract
Long-read sequencing (LRS) has the potential to comprehensively identify all medically relevant genome variation,
including variation commonly missed by short-read sequencing (SRS) approaches. To determine this potential, we
performed LRS around 15×–40× genome coverage using the Pacific Biosciences Sequel I System for five trios. The
respective probands were diagnosed with intellectual disability (ID) whose etiology remained unresolved after SRS exomes
and genomes. Systematic assessment of LRS coverage showed that ~35Mb of the human reference genome was only
accessible by LRS and not SRS. Genome-wide structural variant (SV) calling yielded on average 28,292 SV calls per
individual, totaling 12.9 Mb of sequence. Trio-based analyses which allowed to study segregation, showed concordance for
up to 95% of these SV calls across the genome, and 80% of the LRS SV calls were not identified by SRS. De novo mutation
analysis did not identify any de novo SVs, confirming that these are rare events. Because of high sequence coverage, we
were also able to call single nucleotide substitutions. On average, we identified 3 million substitutions per genome, with a
Mendelian inheritance concordance of up to 97%. Of these, ~100,000 were located in the ~35Mb of the genome that was
only captured by LRS. Moreover, these variants affected the coding sequence of 64 genes, including 32 known Mendelian
disease genes. Our data show the potential added value of LRS compared to SRS for identifying medically relevant genome
variation.

Background

In the last decade short-read sequencing (SRS) approaches,
such as whole exome sequencing (WES) and more recently
whole genome sequencing (WGS), have revolutionized the
field of medical genetics. Especially for clinically and
genetically heterogenic disorders, such as intellectual dis-
ability (ID), WES has become the method of choice,
allowing the identification of the underlying genetic defect
in 40–60% of patients [1]. A substantial fraction (25–30%)
of the diagnostic success is due to recent progress in the
discovery of new genes underlying disease [2–4].

It has however been shown that, due to technical limita-
tions, SRS approaches often lack sensitivity and specificity for
a large proportion of structural variants (SVs) [5–7]. These
limitations can be overcome by long-read sequencing (LRS).
For instance, recent LRS studies have revealed that each
human genome harbors thousands of SVs, in total spanning
more than 10Mb, that have largely remained undetected with
conventional SRS [6, 8–11]. In addition, LRS of a haploid
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human genome resulted in SV call-sets three to sevenfold
larger than those produced by standard SRS studies such as
the 1000 genomes project [12]. This makes SVs an even more
important source of human genome variation than anticipated
so far, accounting for the greatest number of divergent bases
across the human genome [13, 14].

SVs, in particular copy number variations (CNVs), have
long been recognized as an important cause for severe
human diseases [15–17]. As inversions and translocations
were more difficult to study in a genome-wide fashion with
good resolution, their biological and clinical relevance is
likely underestimated so far [18].

There have now been some examples of studies in which
LRS was applied to individual patients to resolve the
genetic origin of disease [19, 20] (see also ref. [21] for an
overview). In addition to higher yield of SVs, these studies
indicate that LRS allows researchers to study genomic
regions that are often challenging to sequence with SRS
[22]. Therefore, we hypothesized that LRS may also
enhance clinical diagnosis in an unbiased and genome-wide
fashion for patients whose genetic etiology remained elu-
sive after SRS WES and WGS approaches. To test this
hypothesis, we here use a trio-based LRS approach for five
individuals with unresolved ID and their parents [23], and
compare LRS and SRS results to determine the added value
of LRS for identifying all medically relevant genome var-
iation in a single experiment.

Materials and methods

Patient inclusion

Five patients with severe ID and their parents were
selected for this study. All five patients were born to non-
consanguineous parents with a negative family history. All
were diagnosed with severe developmental delay, and co-
morbidities, including epilepsy and/or behavior problems.
In addition, three of them showed facial dysmorphisms
frequently observed in patients with genetic disorders
(Supplementary Clinical Notes). Prior testing to detect the
genetic cause of disease included genomic microarray [24],
exome sequencing [25], genome sequencing [23], and
methylome analysis [26], which had not resulted in a
molecular diagnosis (Table S1). This study was conducted
and approved by the Institutional Review Board of the
Radboud university medical center (2017–3831).

Genomic DNA extraction, shearing, and library
preparation for LRS

Genomic DNA was extracted from whole blood using the
Qiagen (Hilden, Germany) Puregene Blood Core Kit C.

gDNA integrity was assessed with pulsed-field gel elec-
trophoresis 115 ng/well, 17 h runtime at 70 V (Fig. S1).
gDNA was sheared with the Diagenode (Liege, Belgium)
Megaruptor using long hydropores. A total of 12 µg gDNA
was sheared to 60 Kb fragments in a total volume of 300 µl
using the preinstalled settings. DNA was concentrated using
0.45× bead/sample ratio of Ampure PB beads and was
eluted in 73 µl elution buffer. Qubit dsDNA BR assay was
used to quantify DNA concentration.

All libraries were prepared using SMRTbell™ Template
Prep Kit 1.0, according to the Procedure & Checklist—
Preparing >30 Kb SMRTbells™ (Pacific Biosciences,
Menlo Parc, CA, USA). As 10 µg DNA input was used
instead of 5 µg, all reaction volumes were doubled until
the size-selection step. DNA was sheared using the Mega-
ruptor®, after which size selection was performed using the
BluePippin high-pass DNA size selection with 0.75% DF
marker U1 high-pass 30–40 Kb v3 cassette. The range
selection mode was set from 25 to 80 Kb. After size
selection, Ampure PB bead cleanup steps were performed
using 1× bead/sample ratio. DNA damage repair after size
selection was performed with the reaction volumes descri-
bed in the protocol. Qubit dsDNA HS assay was used to
quantify DNA concentration.

Long-read sequencing

Sequencing primer v3 was annealed to the SMRTbell™
library. Polymerase was bound using the Sequel Binding
Kit 2.0. SMRTbell™ complexes were purified using the
Procedure & Checklist—Sample Clean-up using Micro-
Spin™ columns S-400 for diffusion loading. Sequencing
reaction was performed using the Sequel sequencing plate
2.0 on a SMRT-cell 1M chip. On plate sample concentra-
tion was 10 pM, movie time was set to 600 min with an
immobilization time of 120 min.

For four trios (Trio 1, 2, 3, 4) sequencing was performed
at Radboud university medical center using a Pacific
Biosciences (Pacbio) Sequel I System. In total 145 SMRT
Cells 1M were used, resulting in an average genome cov-
erage of ~15× (Table S2). A single trio (Trio 5) was
sequenced using a Sequel I System at Pacific Biosciences to
an average genome coverage of 40× using 89 SMRT Cells
1M (Table S2).

For analyses on the percentage of the genome with
specific fold-coverage we split the genome into “easily
accessible” and “difficult” regions, and made the percentage
calculations disregarding the latter. As “difficult” regions
we defined those annotated as “scaffold”, “contig”, “clone”,
“telomere”, “centromere”, or “heterochromatin” in the
GRCh38 assembly. Additionally, chrY was included in the
“difficult” regions to enable better comparison between
samples of different gender.
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Variant calling from LRS data

For each trio, long reads were aligned to the GRCh38 refer-
ence genome (version GCA_000001405.15_GRCh38_-
no_alt_plus_hs38d1_analysis_set, with all non-primary
contigs concatenated), using minimap2 (2.11-r797) with
parameters “-a --eqx -L -O 5,56 -E 4,1 -B 5 –secondary = no
-z 400,50 -r 2k -Y” [27]. SVs were called using PBSV
(https://github.com/PacificBiosciences/pbsv) (version 2.1.0)
with default parameters for both the “discover” and “call”
steps of PBSV’s workflow. The “call” step was run jointly on
all 15 samples. PBSV is most effective for insertions with
sizes from 50 bp to 5 Kb, deletions with sizes from 50 bp to
100Kb and inversions with sizes from 200 bp to 5 Kb.
Therefore, here we only considered variants of 50 bp and
above as SVs. We annotated our SV calls using AnnotSV
(version 2.0) [28].

Single nucleotide substitution variants (SNVs) were
identified with Longshot (0.2.0) [29] using default para-
meters except for parameter max_cov, which was set to 50
for Trios 1, 2, 3, and 4 and 100 for Trio 5, in order to
improve analysis runtime. The output was annotated with
Annovar (2018-04-16) [30], using the core annotate_var-
iation.pl script with RefGene hg38 build. We then com-
pared VCF files for identifying SNVs that are uniquely
detected by LRS or SRS using a custom script.

Read and mapping metrics were obtained from the
aligned BAM files using SAMtools, Qualimap [31] and
manual processing (Table S2). The number of sequenced
bases was obtained from the “total length” field of the
SAMtools’ stats subcommand output. From the same out-
put, the field “bases mapped” was divided by “total length”
and by 3 × 109 in order to estimate the percentage of bases
mapped and the mean coverage, respectively. The mean,
median, and N50 of read lengths were calculated by filtering
out non-primary alignment, duplicate reads and supple-
mentary alignments from the BAM files, and then manually
processing the remaining mapped reads using awk and R.
The mean mapping quality and error rate were calculated
using Qualimap.

SRS and variant calling

Whereas all five trios were previously exome and genome
sequenced using SRS technology (Table S1) [23, 32], Trio
5 was re-sequenced using 2 × 150 bp paired-end reads on
the Illumina NovaSeq 6000 instrument to an average cov-
erage of 29× to allow for comparison of LRS to today’s
standard whole genome SRS. Reads were aligned using
BWA mem (version 0.7.12-r1039) and SNVs were called
using the xAtlas caller with default parameters (version 0.1)
[33], and only variants passing all filters were retained. SVs
were identified using three different variant callers: Manta

(version 1.1.0) [34], LUMPY (version 0.2.13) [35], and
DELLY (version 0.7.8) [36]. The output of LUMPY and
DELLY were genotyped using SVTyper (version 0.6.0)
[37]. SVs smaller than 50 bp in size were filtered out, and
minimum genotype quality was set to 20.

Quality assessment of SVs and SNVs

For each trio, we quantified the Mendelian inheritance errors
(MIEs) in SV calls in the LRS data. For this analysis we used
only deletions, insertions, and inversions. MIEs were quan-
tified using the plugin “mendelian” from BCFtools (version
1.9). For comparison, we performed the same analysis on SVs
detected with SRS in Trio 5.

Furthermore, for each proband, we identified SVs from
LRS that were uniquely found in that proband and not in
any of the other probands. For these SVs, we looked for
MIE using BCFtools (version 1.9) plugin “mendelian”.
Similarly, we performed a Mendelian concordance analysis
of SNVs with vcftools –mendel option. Only filtered SNVs
on autosomal chromosomes were considered for this ana-
lysis. Specifically, for Trio 5, we analyzed both Longshot
calls from LRS as well as xAtlas calls from SRS.

Comparison of sequence coverage between short
and long-read sequencing

In Trio 5, we identified genomic regions that had
no coverage with SRS but were well-covered by LRS
using BEDtools genomecov (version 2.25.0) [38]. For
this, we considered only reads with a minimum mapping
quality of 10 and used Gencode Basic gene set, release 21
to define genic and exonic regions. We determined what
percentage of these regions without coverage are in telo-
meric and centromeric sequences. We obtained a set of
telomeric and centromeric regions from UCSC genome
browser and used BEDtools intersect (2.25.0) to find
overlaps.

We also determined genes that were not well-covered
by SRS using these Gencode annotations. A gene was
considered not well-covered when at least 10% of its
length was not covered by SRS. We then compared
the GC-content of these genes to a randomized set of well-
covered genes with comparable lengths. GC-percentages
of all genes were obtained from the UCSC Genome
Browser.

Comparison of SVs

The SV call sets from Manta, LUMPY and DELLY from
SRS data were each compared to the LRS SV calls of Trio
5. The comparisons were run on large (≥50 bp) deletions,
insertions, and inversion, using Truvari (version 1.3.2).
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Truvari matches SVs between different datasets. For a
match, the maximum distance between start and end coor-
dinates of two SVs was set to 1 Kb with parameter –refdist.
Additionally, by default, two calls should be of the same
type and the ratio of the size of the smaller call over the
larger call should be at least 0.7 for a match. The parameter
--pctsim was set to 0 as it can only be applied on sequence-
resolved variants. Parameter --sizemax was set to 100Mb to
circumvent the default 50 Kb.

The SV call sets of Manta, LUMPY and DELLY were
also compared to each other to examine the concordance
between the three methods. The comparison was done with
Truvari (version 1.3.2) for all SV types and sizes, using
similar parameters as described above.

We also compared our SV call set with two published
datasets that were also produced by PacBio instruments:

● We used SV calls available from Pacific Biosciences for
the HG002 reference sample from the Genome in a
Bottle consortium, sequenced on a PacBio Sequel
instrument at 10× coverage (https://downloads.pa
cbcloud.com/public/dataset/HG002/Sequel-201810/).
The comparison was done using Truvari for deletions,
insertions, and inversions larger than 50 bp and passing
all filters [39].

● In addition, we compared our LRS SV dataset to the
results obtained by Audano et al. [40] based on long-
read WGS sequencing of 15 individuals across different
populations. As Audano et al. only supplied SV calls in
bed format, the comparison for overlap was performed
using BEDtools (2.25.0) using a 50% reciprocal overlap
setting (https://ars.els-cdn.com/content/image/1-s2.0-
S0092867418316337-mmc1.xlsx).

Identification of de novo SVs

For each trio, potential de novo SVs were identified based
on the genotyped SV calls of PBSV. Initially, we selected
all variants with a heterozygous genotype (e.g., one wild-
type allele and one allele with SV) in a proband, and a
homozygous reference genotype (e.g., two wild-type
alleles) in both parents. These variants were then sub-
jected to additional filtering in order to identify high-quality
de novo candidates:

● Heterozygous alternative allele only in proband.
● Read ratio supporting alternative allele between 0.3 and

0.7 in proband.
● Minimum depth of coverage of six reads at SV

coordinates for all samples.
● Homozygous for the reference allele in all other samples.
● Zero reads supporting alternative allele in other samples.

Each candidate de novo SV was visually inspected using
the Integrated Genomics Viewer (IGV, version 2.4.14) [41],
which adds better support for visualizing LRS, such as
grouping and coloring of alignments based on ZMW or
sequencing movie name, and allows for better identification
of false positive SV calls due to sequencing artifacts. The
subset of variants passing visual inspection was sent for
PCR validation.

Identification of de novo SNVs

For each trio, potential de novo SNVs were identified from
LRS data using VCFtools (0.1.13) –mendel, which pro-
duces a list of MIEs. We selected a quality score cutoff of
30 for missense variants such that all previously identified
de novo mutations were included in the result. Filtered
missense variants and all loss-of-function variants were
visually inspected in IGV before being sent for validation
with Sanger sequencing.

Recessive inheritance analysis

We used a custom script to parse AnnotSV annotations and
identify genes that are affected by homozygous or com-
pound heterozygous SVs and SNVs affecting the coding
regions in all trios. Only loss-of-function SNVs with quality
score higher than 30 were considered for this analysis.

Validation of SV and SNV events in LRS

Candidate de novo SVs and SNVs were visually inspected
in the BAM files of the patient as well as both parents by
using the Integrative Genomics Viewer (IGV). Based on the
examination of the mode of inheritance, read quality, and
mapping quality, each variant was classified as follows:

(1) Inherited variant: even though the variant was
classified as possible de novo event, the BAM files
showed that the variant was also present in one of the
parents (e.g., missing call in the parental data).

(2) False positive variant: the quality and mapping of the
reads at the region of the variant was substandard.

(3) The variant appears as a true de novo event.

The remaining candidate de novo SVs were subsequently
validated by breakpoint spanning PCRs and evaluation by
Agarose Gel Electrophoresis. Primers were designed using
Primer3. PCRs were performed by using Amplitaq Gold
360 Master Mix (Thermo Fisher Scientific) or Phusion Hot
Start (Finnzymes) both according to the manufacturer pro-
tocol. The agarose gels were visually inspected to assess
whether the SVs appeared to be genuine de novo events.
Hereto, it firstly needed to show a second PCR product
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representing the variant allele, next to the product of the
expected size for the wild-type allele, and secondly, the
second PCR product was only to be present in the
proband and absent in the respective parents, indicating a de
novo event.

The SNVs retained as potential de novo events were
validated using Sanger sequencing. Primers were designed
using Primer3Input. PCRs were using Amplitaq Gold 360
Master Mix (Thermo Fisher Scientific) according to the
manufacturer protocol. PCR products were enzymatically
cleaned by using Exonuclease I and FastAP, after which
samples were Sanger sequenced. Finally, Sanger sequen-
cing traces were analyzed using the VectorNTI software
package (Thermo Fisher Scientific).

Titration analysis of LRS

Titration analysis was performed by subsampling in silico
the LRS data of samples from Trio 5. Subsampling was
done on the BAM files using SAMtools view (version 1.6)
and the –s parameter to pass the desired fraction of data to
retain. The original LRS data were subsampled to coverages
30×, 20×, 15×, 10×, and 5×. Each subsampled BAM file
was then used for SV discovery with PBSV (version 2.1),
and SV calling was performed jointly for the trio at each
coverage.

The SV call set of Trio 5 proband at each coverage was
compared to the SV calls of the original full coverage
dataset. The comparison was performed using Truvari
(version 0.4) with parameters: --multimatch, --passonly,
--pctsim 0, and --refdist 1000. Parameters --sizemin and
--sizemax were set to 50 and 1,000,000.

We performed a similar analysis for SNV calling and
used the same subsampled BAM files as described above,
and ran Longshot to call SNVs at different coverages. We
then used the original full coverage SNV calls as a truth set
to calculate precision and recall values for each level of
coverage.

Results

Long-read WGS characteristics

Five patient-parent trios were subjected to LR-WGS. From
all sequenced reads per sample, the read mapping rate
varied between 94.5 and 98.7% (Table S2). Whereas the
longest read obtained was 60 Kb in size, the average read
length was 9.5 Kb (N50 average: 17481.5 Kb; Fig. S2). The
error rate was consistent across samples (0.16 errors per
aligned base), which is in line with what is reported in the
literature [42]. Sequencing and mapping resulted in an

Table 1 Overview of samples,
sequencing statistics, identified
variation, and Mendelian
inheritance errors.

Sample Coverage (×) # SVs Total affected
sequence (bp)

SV
MIE (%)

Unique
SVs
in cohort

Study-
specific SVs

SNV SNV
MIE (%)

T1P 15.7 29,030 12,775,459 4409 75 18,601 3,142,916 448,808

T1F 12.6 26,475 11,340,949 (15.2%) 245 14,172 2,663,675 (14.3%)

T1M 14.9 27,421 12,998,704 236 18,334 3,007,973

T2P 17.3 28,766 12,974,306 3186 81 19,098 3,383,890 290,676

T2F 14.2 27,412 12,595,695 (11.1%) 244 19,549 3,127,690 (8.6%)

T2M 17.2 28,649 12,851,920 253 18,539 3,353,748

T3P 15.0 28,111 12,689,520 2681 57 19,321 3,147,660 219,392

T3F 18.3 28,971 13,327,881 (9.5%) 247 19,198 3,382,461 (7.0%)

T3M 18.0 28,962 12,884,749 264 19,419 3,352,767

T4P 16.1 28,640 12,830,123 2763 33 19,470 3,166,126 301,415

T4F 16.7 28,746 12,540,739 (9.6%) 261 21,653 3,261,812 (9.5%)

T4M 16.1 28,322 12,683,375 256 19,523 3,101,729

T5P 41.6 33,056 14,085,392 2130 16 21,539 3,956,435 125,023

T5F 37.6 33,277 14,235,204 (6.4%) 228 18,974 3,905,927 (3.2%)

T5M 40.1 33,138 13,949,579 273 22,023 3,932,800

Columns from (left to right) indicate: sample identifier, average coverage across the genome (GRCh38),
number of identified SVs (≥50 bp), total number of based affected by SVs, number of SVs in proband with a
Mendelian inheritance error (% is indicated below), number of SVs only occurring in this sample, number of
SVs only found in this study (not in HG0002 and Audano et al.), number of identified SNVs, number of
SNVs in proband with a Mendelian inheritance error (% is indicated below).

F father, M mother, P proband, SV structural variant, MIE Mendelian Inheritance Error, SNV single
nucleotide variant.
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average coverage of 16.01× for Trios 1, 2, 3, and 4, and
39.77× for Trio 5 (Table 1). On average 99.9% of the easily
accessible genome regions were covered at least 5× and
more than 85.4% of the complete genome including decoy
sequences, centromeres, assembly gaps and chromosomes
Y and M (Tables S2 and S3).

Structural variation across the cohort

We identified an average of 28,292 SVs (≥50 bp) per sample
for Trios 1, 2, 3, 4. For Trio 5, sequenced at higher depth,
we identified 33,157 SVs (Tables 1, S4a, Fig. S3), sug-
gesting that greater sequencing depth enhances sensitivity
for SV detection. Across all 15 samples, we identified
55,025 unique SVs, including 34,690 insertions (63%),
20,307 deletions (37%), and 28 inversions (0.05%)
(Table S4b). There was a gradual decline of SVs abundance
with increasing size, with smaller SVs being more abundant
than larger SVs. Exceptions were noted for SVs at ~300 bp,
representing Alu short interspersed nuclear elements and
those at ~6.4 Kb representing LINE1 long interspersed
nuclear elements (LINEs; Fig. S4a, b).

All detected SVs affected in total ~13Mb of genome
sequence per sample (deletions: 6.5Mb, insertions: 6.4 Mb,
and inversions: 35.8 Kb, Table S5). On average, 173 SVs
per individual affected the coding sequences, including a
total of 81 genes with a known disease relationship
according to OMIM (Table S6). However, none of these SV
events could be linked to the patient phenotype. For Trio 5,
we performed subsampling of the LRS data to determine the
effect of coverage on SV discovery. As expected, we found

that SV yield increases with coverage, but that the number
of additional SVs diminishes beyond 10×.

Overlap with published datasets

We compared our results to other published LRS datasets
based on the GRCh38 reference genome, and sequenced
using Pacific Biosciences Sequel instrument. First, we
used SV calls from the HG002 reference sample that was
sequenced at tenfold depth [39]. We found that from the
HG002 dataset 77.4% (n= 5,920) of the deletions and
73.9% of the insertions (n= 7,043) were also detected in
our dataset, showing a high degree of overlap (Table S7).
We also compared our SV calls with the published study
of Audano et al. [40], whose work included the genomes
(50× coverage) from 13 diploid individuals, the majority
of whom were of non-European descent. Almost 80% of
the variants they reported were not previously published
to that date. We found that 33% of deletions (n= 4,526)
and 73% of insertions (n= 15,963) in our cohort were
novel compared to Audano et al. (Table S8), highlighting
the fact that there is still a large degree of previously
hidden structural variation to be identified in the human
genome.

Comparison of SRS and LRS structural variation

In order to compare the performance of LRS and SRS, Trio
5 was sequenced on an Illumina NovaSeq 6000 instrument
to an average coverage of 29× (Tables S9 and S10). SV
calls for SRS were obtained by three different calling

Fig. 1 Comparison of structural variants called with long-read
sequencing and short-read sequencing. A comparison of structural
variants identified in Trio 5 between long-read sequencing using
PBSV and short-read sequencing using three algorithms for structural
variant detection. The plot depicts the number of different structural
variants that were identified by each combination of methods,

indicated below the corresponding bar. Deletions in red, insertions in
blue, and inversions in yellow. The bottom left bar plot depicts the
total number of SVs identified with each method. B Pie charts show
the number of mendelian inheritance errors for the three types of SVs
identified by LRS and the percentage of concordant calls.
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algorithms: Manta, LUMPY, and DELLY. We compared
each of the SRS SV call sets separately to the SVs from
LRS, considering only deletions, insertions, and inversions
(Fig. 1). Between 51 and 78% of deletions identified in SRS
were detected in LRS whereas only 25–38 % of deletions in
LRS were detected in SRS by any of the three different
calling algorithms (Table S11). For insertions, 83–91% of
calls detected in SRS were detected in LRS but only 1–9%
of insertions from LRS were also detected in SRS. The
large differences in concordance between the results of the
three different SRS SV calling algorithms and SVs from
LRS emphasizes the challenges of SV detection based on
SRS.

Quality of SV calls based on Mendelian inheritance

Our trio-based sequencing design allowed us to assess the
Mendelian inheritance of SV calls. We define MIEs as
SNVs in a proband that could not have been inherited
from either parent, resulting in a genotype that is incon-
sistent with Mendelian transmission. MIEs are commonly
attributed to erroneous sequencing calls [43]. Conversely,

proper Mendelian inheritance of SVs lends additional
support to their reliability. We found that more than 90%
of SV calls were concordant with Mendelian inheritance
within Trios 2, 3, and 4 (Fig. 2, Table S12). We obtained
a lower concordance (87%) for Trio 1, likely due to a
lower coverage in the father (12.6×) and, consistent with
this, highest concordance in Trio 5 (96%) that was
sequenced at higher coverage (39×). Moreover, in com-
parison to SRS of the same samples (Trio 5), LRS had a
comparable overall percentage of MIEs to SRS (~5%). If
we consider Mendelian concordant SVs detected by
either technology as our truth set, then LRS has almost
five times higher sensitivity than SRS (93% vs. 19%,
respectively).

The high quality of the SV calls is also apparent from the
unique SV events that were only identified within a single
trio in the proband, but in none of the other trios. Mendelian
inheritance concordance for unique deletions was 90.7%,
similar to the overall concordance (Table S13). However,
for unique insertion events concordance was only 76.0%
suggesting that detection of these events is more challen-
ging in LRS data.
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Fig. 2 Schematic digital ideogram depicting genomic regions
larger than 1 Kb without LRS or SRS coverage. From top to bottom
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the figure is due to the limited resolution.
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De novo SV discovery

De novo mutations are a well-known cause of ID [1]. We
therefore set out to filter our dataset for de novo SVs based
on SV calling genotypes and minimal quality criteria. On
average, this led to the identification of ten candidate de
novo SVs per trio (range 2–17; Table S14). After visual
inspection of read mappings, the number of candidates was
manually curated to a set of eight possible de novo SVs
ranging between 0 and 3 de novo candidates per trio
(Table S15, Fig. S5). Notably, the candidate de novo SVs
that were removed after inspection were mostly false posi-
tive SV calls due to repetitive sequence, or inherited as a
consequence of a missed SV call in one of the parents. In
accordance with the hypothesis that increased sequencing
coverage results in increased specificity, the lowest number
of de novo candidates was found in the high coverage
Trio 5.

De novo SV validation

Systematic validation of the eight potential de novo SVs
left in trios 1–4 after visual inspection and follow-up by
breakpoint spanning PCRs, four SVs were confirmed as
genuine SV events, for two others the PCRs remained
inconclusive (non-unique or no PCR product), and two
SVs were a likely false positive call from LRS SV data.

None of the genuine SV events were however of de novo
origin (Table S15), but rather confirmed as parentally
inherited SVs which were likely missed due to low cov-
erage (Fig. S5).

Single nucleotide variants

In addition to SVs, our sequencing depth allowed us to
identify SNVs in all five trios form LRS data. We identified,
on average, 3.33 million substitutions per genome, of which
23,672 were located in the coding regions (Table S16).
Detailed comparison for Trio 5 for all SNVs called from
SRS and LRS showed substantial overlap. Over 95% of
SNVs identified in SRS were also identified in LRS. In the
coding regions, the overlap was more pronounced, reaching
97% (Table S17). Furthermore, we looked at the transition/
transversion ratio (Ti/Tv) of called SNVs, which is often
used as a metric to detect biases. SNVs called in both LRS
and SRS data had a T/Tv ratio of 2.1, which is in line with
expectations regarding WGS data [44], suggesting that most
variants are genuine biological events (Table S17). In
contrast, SNVs uniquely detected by SRS or LRS had Ti/Tv
ratios of 1.17 and 0.99, respectively, which may indicate a
higher degree of false positive calls in these sets. Evaluation
of MIE rates for SNVs on LRS data showed that for Trio 5,
with 40× coverage, the MIE rate was as low as 3%, while
for Trios 1–4 it was around 8% (Table S18). The MIE rate
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in the SRS data of Trio 5 was only 1.5%, almost half of that
obtained for the LRS, which demonstrates the overall higher
accuracy for SNV calling in SRS.

We overlaid the identified coding SVs with the coding
SNVs called in each individual in order to find potential
compound heterozygous SV-SNV pairs affecting the
same gene and potentially explaining recessive disease
inheritance. In total, we found 13 total SV-SNV pairs,
but none were likely causal for the patient phenotype
(Table S19).

De novo SNV discovery

Because we could have potentially missed de novo SNVs in
poorly covered regions when we performed exome and
genome SRS [23, 25], we also identified potential de novo
SNVs in all trios based on the LRS data. For this analysis,
we used a minimum quality score of 30 as a threshold, as all
previously identified de novo point mutations (DNMs) from
SRS had scores above this threshold in the LRS data
(Tables S1 and S20). We considered missense and loss-of-
function mutations as potentially damaging de novo can-
didates. This resulted in 67 candidate DNMs across all 5
trios (Table S21), in addition to the six de novo variants
reported previously [32] (Tables S1 and S20).

De novo SNV validation

Routine Sanger sequencing validations confirmed 58 of 73
(79%) of those candidate variants. Confirmed variants had
significantly higher average quality scores than variants that
could not be confirmed in the proband (quality scores 67
versus 40 respectively, p= 8.25e−4, Welch two-sample T-
test). Similar to the LRS SV validations, all Sanger
sequencing-confirmed variants, apart from the six already
known de novo SNVs, appeared inherited from one of the
parents.

Genome variation in previously uncovered regions

LRS is expected to sequence across genomic regions that
are difficult to assess using SRS. Therefore, we identified
regions in the complete genome of Trio 5 proband that
lacked sequence coverage in only one technology. Genome-
wide we found that on average 191.7 Mb of the reference
genome remains uncovered by both technologies, including
229.3 Kb of protein-coding sequence and 319.4 Kb telo-
meric and centromeric sequence (Table S22, Fig. 2). We
found an additional 35.2 Mb, including 634.9 Kb of protein-
coding sequence corresponding to 105 genes, only covered
in LRS data. Vice versa, only 12.5 Mb were uniquely
covered by the SRS data, including 20.1 Kb of coding
sequence. We compared these results to Ebbert et al.’s [22]

study on “dark” gene regions that cannot be adequately be
assembled or aligned using standard SRS. Of the 35.2 Mb
that is missed by the SRS data in our study, a substantial
portion (67%) overlapped with the regions that are identi-
fied in Ebbert et al. (Table S22d).

Importantly, in the 35.2 Mb of LRS-only regions we
identified on average 3874 SVs and 32,540 high-quality
substitutions in the proband, of which 50 and 672, respec-
tively, were overlapping with genic regions in the proband
of Trio 5 (Fig. 3). These 672 genic substitutions included
171 missense and 3 loss-of-function variants (Table S23)
and occurred within 43 different genes, including two
known genes associated with ID and four other OMIM
morbid genes (Table S24).

An additional 378 genes, of which 26 have an estab-
lished disease-association in OMIM, were only partly cov-
ered by SRS (no coverage for more than 10% of the coding
sequence; Table S25) but were well-covered in LRS. As
expected, we found that these genes had a higher GC-
content than genes that were well-covered by SRS (48.8%
compared 46.3%, p-value < 2.2e−16 Welch two-sample T-
test).

Discussion

We performed LRS for five trios with unresolved ID and
identified thousands of SVs. We identified an average of
28,292 SVs, of which up to 93% was shown to adhere to
mendelian inheritance in five trios. We found considerable
overlap with the HG002 published dataset, but slightly less
overlap for insertions identified by Audano et al. We expect
that this may be because Audano et al. used a different
variant calling algorithm (SMRT-SV) whereas variants
from HG002 were also called using PBSV. In addition,
Audano et al. sequenced mostly individuals of non-
European descent.

Although a substantial part of these SVs could not be
identified by SRS using three different and commonly used
calling algorithms, the significant overlap with existing LRS
datasets and Mendelian inheritance concordance indicates
that most of these events are likely true events. These SVs
were not only present in the most repetitive regions of the
genome, but also affected genes and coding regions. We
also compared the SV datasets from the three different
calling algorithms for SRS to each other, and found that the
concordance among these algorithms is disappointingly low
(Table S26). This is illustrative of the complexity of SV
detection using SRS data, as also observed by others [45]
and suggests that LRS technology may be a prerequisite for
reliable SV detection. In line with this we estimated that
LRS has almost five times higher sensitivity for the detec-
tion of SVs than SRS. One striking observation is that the
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number of detected inversions in our cohort is relatively
low, with 28 events in 5 trios compared to other studies that
identified 156 inversions per genome [46]. This suggests
that sensitivity for these events could be improved,
either with improved detection algorithms or alternative
sequencing approaches such as Strand-seq [47] or Bionano
technology [48].

Notwithstanding the higher raw sequencing error rate of
LRS, the relatively high sequence coverage for our samples,
allowed us to call SNVs as well. Surprisingly, our SNV
calls were of relatively high quality with MIEs as low as 3%
for Trio 5, even without the use of Circular Consensus
Sequencing technology (CCS) [39]. Most impressive is that
all previously identified de novo SNVs through SRS were
also identified as potential de novo SNVs in the LRS data,
albeit with varying quality scores. SNV calling accuracy
would have likely been improved significantly had we been
able to use CCS technology [39]. This shows the potential
of LRS to comprehensively identify all genome variation in
a single experiment.

We hypothesized a de novo SV, previously missed by
microarray, exome and genome sequencing may be the
cause for the disease in the five individuals with ID
sequenced here [23, 32]. However, in this study, we did not
identify any de novo SVs that could be confirmed by
alternative techniques. There are several possibilities for our
lack of confirmed de novo SV events. First of all, the ori-
ginal event in the proband may have been missed due to
lack of sequence coverage. Based on an in silico titration
and repeated SV calling, we find that although the quality
and quantity of the SV yield increases with coverage,
beyond 10× the increase in yield diminishes (Table S27).

Secondly, we found that the analyses for the identifica-
tion of SVs is still being actively developed and results may
change considerably depending on the calling algorithm, its
version and settings and the reference genome version that
is used. Improvements in read alignment and SV calling
algorithms for LRS constitute a developing field and future
reanalysis of our data may still identify genuine de novo
SVs. However, even with such improvements some events
may remain too complex to be reliably identified and dif-
ferent technologies may be required.

Thirdly, it is also possible that we have in fact identified
de novo SVs but that the methods that were used to validate
these events are not reliable enough to confirm such com-
plex forms of genetic variation; for four events, no con-
clusions could be drawn, showing the need for robust
validation methods in these complex genome regions.
Lastly, the lack of an identified de novo SV may simply be
because de novo mutation rate for SVs is very low. For
instance, the current estimate for de novo mutations of large
CNVs, is as low as 0.2 events per genome per generation
[49]. For other SV types such estimates are less well-

established, but it is not unlikely that these are as low as
CNVs. Larger cohorts of trio-based LRS are required to
fully capture the per generation de novo mutation rates of
other structural events.

Alternatively, our initial hypothesis of a previously
undetected SV as the cause for ID in these patients, may be
incorrect, and the disorder is caused by other types of var-
iants that have so far eluded detection. These could for
example be small insertion/deletion events, repeat expan-
sions, or mosaic variation. Moreover, we may have identi-
fied the causative variants but have not been able to
interpret them correctly.

Although LRS may indeed identify more variation, it is
still unknown how much of this genome variation is clini-
cally relevant, and thus how much of an advantage LRS
offers over SRS for clinical WGS. Our results show that
LRS identifies more SVs across the genome than SRS,
some of which affect coding regions, and provides sequence
coverage in difficult regions of the genome that harbor
protein-coding genes. Using LRS, we are also able to
identify SNVs in these regions, and genes within these
regions are part of virtual disease gene panels used in
routine diagnostic labs for clinical exome interpretation.
Whereas we did not identify clinically relevant SNVs in
these genes, it is not unreasonable to speculate that there are
patients out there that will benefit from variant calling in
these regions only accessible by LRS. With the technolo-
gical advances of CCS marketed as HiFi reads [39] shortly,
further enhancing robustness of SNV calling in LRS data,
one may expect that genome-wide LRS may allow com-
prehensive analysis of all variant types per individual gen-
ome for clinical and genetic heterogenous disorders such as
ID in the future.

Web resources

UCSC genome browser: https://genome.ucsc.edu/ Inte-
grative Genomics Viewer (IGV): https://software.broa
dinstitute.org/software/igv/.

Data availability

Data for all samples are accessible at EGA under accession
number EGAS00001004319.
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