Taste perception and lifestyle: insights from phenotype and genome data among Africans and Asians


Taste is essential for the interaction of animals with their food and has co-evolved with diet. Humans have peopled a large range of environments and present a wide range of diets, but little is known about the diversity and evolution of human taste perception. We measured taste recognition thresholds across populations differing in lifestyles (hunter gatherers and farmers from Central Africa, nomad herders, and farmers from Central Asia). We also generated genome-wide genotype data and performed association studies and selection scans in order to link the phenotypic variation in taste sensitivity with genetic variation. We found that hunter gatherers have lower overall sensitivity as well as lower sensitivity to quinine and fructose than their farming neighbors. In parallel, there is strong population divergence in genes associated with tongue morphogenesis and genes involved in the transduction pathway of taste signals in the African populations. We find signals of recent selection in bitter taste-receptor genes for all four populations. Enrichment analysis on association scans for the various tastes confirmed already documented associations and revealed novel GO terms that are good candidates for being involved in taste perception. Our framework permitted us to gain insight into the genetic basis of taste sensitivity variation across populations and lifestyles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Differences in taste perception among populations.
Fig. 2: FST values between populations.

Data availability

Data are freely available for download after request at http://jakobssonlab.iob.uu.se/data/ and at EMBL-EBI web site: http://www.ebi.ac.uk/arrayexpress/arrays/A-MTAB-679 and http://www.ebi.ac.uk/arrayexpress/arrays/A-MTAB-678.


  1. 1.

    Moskowitz HW, Kumaraiah V, Sharma KN, Jacobs HL, Sharma SD. Cross-cultural differences in simple taste preferences. Science. 1975;190:1217–8.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Witt M, Reutter K, Miller Jr IJ, Doty RL. Morphology of the peripheral taste system. Handbook of olfaction and gustation. 2nd ed. CRC Press, Florida, 2003. p. 651–77.

  3. 3.

    Steiner JE. Discussion paper: innate, discriminative human facial expressions to taste and smell stimulation. Ann N Y Acad Sci. 1974;237:229–33.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Jang H-J, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim B-J, Zhou J, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA. 2007;104:15069–74.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Breslin PAS, Spector AC. Mammalian taste perception. Curr Biol. 2008;18:R148–55.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Lindemann B. Taste reception. Physiol Rev. 1996;76:719–66.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Harris DR. Origins and spread of agriculture and pastoralism in Eurasia. Smithsonian Institution Press; 1996.

  8. 8.

    Hladik CM, Pasquet P. The human adaptations to meat eating: a reappraisal. Hum Evol. 2002;17:199–206.

    Article  Google Scholar 

  9. 9.

    Leonard WR, Crawford MH. The human biology of pastoral populations. Cambridge University Press; 2002. p. 330.

  10. 10.

    Hladik CM, Robbe B, Pagezy H. Sensibilité gustative différentielle des populations Pygmées et non Pygmées de forêt dense, de Soudaniens et d’Eskimos, en rapport avec l’environnement biochimique. C R Acad Sci Paris Sér III. 1986;303:453–8.

    CAS  Google Scholar 

  11. 11.

    Campbell MC, Ranciaro A, Froment A, Hirbo J, Omar S, Bodo J-M, et al. Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol Biol Evol. 2011;29:msr293.

  12. 12.

    Campbell MC, Ranciaro A, Zinshteyn D, Rawlings-Goss R, Hirbo J, Thompson S, et al. Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa. Mol Biol Evol. 2014;31:288–302.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Robbe B, Hladik CM. Taste responses, food choices and salt perception among the Inuit of Greenland. In: Thierry B, Anderson JR, JJH, editors. Selected proceedings of the XIVth congress of the international primatological society volume I. Strasbourg: Editions de l’Université Louis Pasteur; 1994. p. 151–4. Disponible sur: https://hal.archives-ouvertes.fr/hal-00552074.

  14. 14.

    Raliou M, Wiencis A, Pillias A-M, Planchais A, Eloit C, Boucher Y, et al. Nonsynonymous single nucleotide polymorphisms in human tas1r1, tas1r3, and mGluR1 and individual taste sensitivity to glutamate. Am J Clin Nutr. 2009;90:789S–99S.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Dias AG, Rousseau D, Duizer L, Cockburn M, Chiu W, Nielsen D, et al. Genetic variation in putative salt taste receptors and salt taste perception in humans. Chem Senses. 2013;38:137–45.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Reed DR, Zhu G, Breslin PAS, Duke FF, Henders AK, Campbell MJ, et al. The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Hum Mol Genet. 2010;19:ddq324.

  17. 17.

    Ledda M, Kutalik Z, Destito MCS, Souza MM, Cirillo CA, Zamboni A, et al. GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics. Hum Mol Genet. 2014;23:259–67.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Genick UK, Kutalik Z, Ledda M, Souza Destito MC, Souza MM, Cirillo A. et al. Sensitivity of genome-wide-association signals to phenotyping strategy: The PROP-TAS2R38 taste association as a benchmark. PLoS ONE. 2011;6:e27745

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Robino A, Mezzavilla M, Pirastu N, Dognini M, Tepper BJ, Gasparini P. A population-based approach to study the impact of PROP perception on food liking in populations along the silk road. PLoS ONE. 2014;9. Disponible sur: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953580/.

  20. 20.

    Drayna D. Human taste genetics. Annu Rev Genom Hum Genet. 2005;6:217–35.

    CAS  Article  Google Scholar 

  21. 21.

    Cornsweet TN. The staircase-method in psychophysics. Am J Psychol. 1962;75:485–91.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Zhao L, Kirkmeyer SV, Tepper BJ. A paper screening test to assess genetic taste sensitivity to 6-n-propylthiouracil. Physiol Behav. 2003;78:625–33.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78:629–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Webb J, Bolhuis DP, Cicerale S, Hayes JE, Keast R. The relationships between common measurements of taste function. Chemosens Percept. 2015;8:11–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Macbeth H, MacClancy J. Researching food habits: methods and problems. Berghahn Books; New York, 2004. p. 228.

  27. 27.

    Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Aulchenko YS, Ripke S, Isaacs A, Duijn CMvan. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–6.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

    Google Scholar 

  30. 30.

    Kugler KG, Mueller LA, Graber A. MADAM—an open source meta-analysis toolbox for R and Bioconductor. Source Code Biol Med. 2010;5:3.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Goudet J. Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes. 2005;5:184–6.

    Article  Google Scholar 

  32. 32.

    Szpiech ZA, Hernandez RD. Selscan: an efficient multi-threaded program to perform EHH-based scans for positive selection. ArXiv14036854 Q-Bio. 2014. Disponible sur: http://arxiv.org/abs/1403.6854.

  33. 33.

    Kofler R, Schlötterer C. Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies. Bioinformatics. 2012;28:2084–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP. Next generation software for functional trend analysis. Bioinformatics. 2009;25:3043–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014. Nucleic Acids Res. 2014;42:D749–55.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Kim U-k. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science. 2003;299:1221–5.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Ilegems E, Iwatsuki K, Kokrashvili Z, Benard O, Ninomiya Y, Margolskee RF. REEP2 enhances sweet receptor function by recruitment to lipid rafts. J Neurosci. 2010;30:13774–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA. 2006;103:12569–74.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Masugi M, Yokoi M, Shigemoto R, Muguruma K, Watanabe Y, Sansig G, et al. Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci. 1999;19:955–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W. Members of RTP and REEP gene families influence functional bitter taste receptor expression. J Biol Chem. 2006;281:20650–9.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Tordoff MG, Ellis HT. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene. Physiol Genom. 2013;45:834–55.

    CAS  Article  Google Scholar 

  42. 42.

    Swank MW, Schafe GE, Bernstein IL. c-Fos induction in response to taste stimuli previously paired with amphetamine or LiCl during taste aversion learning. Brain Res. 1995;673:251–61.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Li Z, Benard O, Margolskee RF. Ggamma13 interacts with PDZ domain-containing proteins. J Biol Chem. 2006;281:11066–73.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, et al. Positive natural selection in the human lineage. Science. 2006;312:1614–20.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ullrich NV, Touger-Decker R, O’Sullivan-Maillet J, Tepper BJ. PROP taster status and self-perceived food adventurousness influence food preferences. J Am Diet Assoc. 2004;104:543–9.

    PubMed  Article  Google Scholar 

  46. 46.

    Bahuchet S, McKey D, Garine Ide. Wild yams revisited: is independence from agriculture possible for rain forest hunter-gatherers? Hum Ecol. 1991;19:213–43.

    Article  Google Scholar 

  47. 47.

    Patin E, Siddle KJ, Laval G, Quach H, Harmant C, Becker N, et al. The impact of agricultural emergence on the genetic history of African rainforest hunter-gatherers and agriculturalists. Nat Commun. 2014;5:3163.

  48. 48.

    Cho S, Kim K, Kim YJ, Lee J-K, Cho YS, Lee J-Y, et al. Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide association analysis. Ann Hum Genet. 2010;74:416–28.

    PubMed  Article  Google Scholar 

  49. 49.

    Hirai R, Takao K, Onoda K, Kokubun S, Ikeda M. Patients with phantogeusia show increased expression of T2R taste receptor genes in their tongues. Ann Otol Rhinol Laryngol. 2012;121:113–8.

    PubMed  Article  Google Scholar 

  50. 50.

    Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:e72.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses. 2010;35:157–70.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Liu F, Thirumangalathu S, Gallant NM, Yang SH, Stoick-Cooper CL, Reddy ST, et al. Wnt-β-catenin signaling initiates taste papilla development. Nat Genet. 2007;39:106–12.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Miyoshi MA, Abe K, Emori Y. IP3 receptor type 3 and PLCβ2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses. 2001;26:259–65.

    CAS  PubMed  Article  Google Scholar 

Download references


We would like to thank all the volunteer participants that gave their time to contribute to this study. We would like the IRD Yaoundé for providing precious material help on the field in Cameroon, and the Bukhara Hospital for agreeing on hosting the experiment in Uzbekistan.


This work was supported by the Danone-FRM prize for nutrition and lifestyle, the ANR Growing-App, the CNRS bilateral collaborative projects PICS “Tracing past demography in Central Asian Human populations from genetic data—An Uzbek-French collaboration” and “Statistical methods that can scale with the dimension of the genomic data,” and the Swedish Research Council. AS has been financed by a Ph.D. grant from the Pierre et Marie Curie University of Paris VI and by a Swedish Research Council Grant to MJ.

Author information




AES, MJ, EH, and MGB conceived and designed the study. AES, EH, TH, AN, and FS performed data sampling. AES and PS performed the analysis. AES, EH, MJ, MGB, and PS wrote the paper. All authors read and approved the final paper.

Corresponding authors

Correspondence to Michael G. B. Blum or Evelyne Heyer or Mattias Jakobsson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research has been performed following authorization obtained from an agreement between the Immunogen Lab, the Academy of Sciences of Uzbekistan, and the Centre National de la Recherche Scientifique (CNRS) and Muséum National d’Histoire Naturelle (MNHN) in France. The research was approved by the Comite de protection des personnes—Ill de France 1, Paris, France, under the dossier numbers: DC-2009-1068 and 2010-avril-12276.

Informed consent

For Cameroon, written and audio-recorded informed consent was obtained from all participants for the collected phenotypic and genetic data. The research has been performed according to an agreement between the IRD, the Cameroonese Ministry of Research, the Université Yaoundé 1, the Catholic university and the Douala University according to the French Cameroonese scientific collaboration agreement of 1984 ORSTOM. For Uzbekistan, participants gave written informed consent for the collected phenotypic and genetic data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sjöstrand, A.E., Sjödin, P., Hegay, T. et al. Taste perception and lifestyle: insights from phenotype and genome data among Africans and Asians. Eur J Hum Genet (2020). https://doi.org/10.1038/s41431-020-00736-2

Download citation