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Abstract
Many complex human diseases, such as type 2 diabetes, are characterized by multiple underlying traits/phenotypes that have
substantially shared genetic architecture. Multivariate analysis of correlated traits has the potential to increase the power of
detecting underlying common genetic loci. Several cross-phenotype association methods have been proposed—some require
individual-level data on traits and genotypes, while the others require only summary-level data. In this article, we explore
whether non-normality of multivariate trait distribution affects the inference from some of the existing multi-trait methods
and how that effect is dependent on the allele count of the genetic variant being tested. We find that most of these tests are
susceptible to biases that lead to spurious association signals. Even after controlling for confounders that may contribute to
non-normality and then applying inverse normal transformation on the residuals of each trait, these tests may have inflated
type I errors for variants with low minor allele counts (MACs). A likelihood ratio test of association based on the ordinal
regression of individual-level genotype conditional on the traits seems to be the least biased and can maintain type I error
when the MAC is reasonably large (e.g., MAC > 30). Application of these methods to publicly available summary statistics
of eight amino acid traits on European samples seem to exhibit systematic inflation (especially for variants with low MAC),
which is consistent with our findings from simulation experiments.

Introduction

With the availability of rich data on multiple complex traits
(or phenotypes) from genome-wide association studies
(GWAS) and biobanks, several recent large-scale studies
[1–7] have examined genetic associations of multiple traits
simultaneously. The advent of advanced technologies that
can measure several quantitative traits—such as the auto-
mated high-throughput serum nuclear magnetic resonance

(NMR) metabolomics platform that provides quantitative
molecular data on hundreds of metabolites—has further led
to growing interest in multi-trait genetic analyses [8–10].
Jointly analyzing multiple correlated disease-related traits
can increase power (over multiple single-trait analyses) to
identify genetic loci influencing at least one of the traits
[1, 11]. To address the burgeoning demand for multi-trait
analysis in GWAS, several methods—some based on
individual-level data and some based on single-trait sum-
mary statistics—have been proposed. These cross-
phenotype (or multivariate) methods test the null hypoth-
esis of no association of a genetic variant with any of the
correlated traits being jointly analyzed against the alter-
native hypothesis that it is associated with at least one of
the traits.

Most of the existing cross-phenotype methods based on
individual-level data assume multivariate normality of the
traits. However, ensuring multivariate normality is not
straightforward, and univariate normality (typically
achieved by inverse normalizing traits or trait residuals after
covariate adjustment) of each trait does not guarantee that
the traits or trait residuals are jointly multivariate normal
[12, 13] (see Supplementary S1 for more details).
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Consequently, as noted earlier [13], “problems with outliers
can be more extreme in multivariate settings”, which can be
“particularly acute when dealing with strongly correlated
phenotypes”. The existing cross-phenotype methods based
on single-trait GWAS summary statistics rely on asymptotic
normality of each estimated trait effect, and assume
asymptotic multivariate normality of the ratios of these
effect estimates to their standard errors.

Currently, many GWAS focus their multivariate analyses
on variants with minor allele frequency (MAF) ≥1% or ≥5%
irrespective of the sample size or the availability of variants
with lower MAFs. Recent focus on sequencing or dense
chip-based studies to understand the effect of low-frequency
and rare variants on complex traits requires investigation of
the calibration and the power of existing multivariate
methods across the entire allele-frequency spectrum.

In this article, we explore how some of the existing
cross-phenotype methods perform (in terms of type I error
control) under deviations from multivariate normality,
especially when testing association with a low-count genetic
variant. Previous studies have explored the effect of non-
normality on rare-variant set-based tests of a single trait
[14], and the effect of normalizing traits in single-variant
single-trait tests [15]. To the best of our knowledge, no
study explored effect of non-normality on various cross-
phenotype association tests, especially in the context of rare
variant studies where the assumption of multivariate nor-
mality can lead to serious inflation in type I error. Similar to
what has been reported in previous studies for single-trait
test [16], we observe that the minor allele count (MAC) is
the key parameter that determines the type I error calibra-
tion of multivariate tests as well. The MAC threshold after
which a test is well calibrated, however, can be much higher
for multivariate than univariate test. In addition, we com-
pare power of these methods under the ideal scenario of
multivariate normality of the traits. Finally, we apply some
of the existing single-variant cross-phenotype methods on
summary data from eight amino acid NMR traits collected
on up to 24,295 European samples.

Material and methods

Model and notation

Consider a GWAS on n individuals, genotyped/sequenced
on p genetic variants and measured for K traits (possibly
correlated). For a given genetic variant, let Xi take values 0,
1, or 2 for individual i, and X be the n × 1 vector of geno-
types for all individuals. Let Yk be the n × 1 vector of kth
trait and Y be the n ×K matrix of all traits for all individuals.
For simplicity of notation, assume there is no other cov-
ariate (note that this assumption can be easily relaxed by

considering trait residuals after regressing out covariate
effects). We are interested in testing the association of a
single genetic variant with the K traits.

For testing cross-phenotype associations, several
methods have been proposed. Some methods require
individual-level phenotype-genotype data, while others
require only summary-level data (the estimated genetic
effect size and its estimated standard error, or the p-value
of association). For these tests, the null hypothesis (H0) of
interest is that none of the K traits is associated with a
given genetic variant against the alternative hypothesis
(Ha) that at least one trait is associated. Here is a brief
overview of some of the existing methods with a summary
in Table 1 (most other methods are well documented in a
recent review article [17]). In this paper, for all our ana-
lyses, we apply these methods on both raw traits and
inverse normalized traits for comparison. The rank-based
inverse normal transformation (INT) of a trait involves
ranking the trait values and then mapping the ranks to
percentiles of the standard normal distribution. Mathema-
tically, the kth inverse normalized trait for individual i is
YINT
i;k ¼ Φ�1 ri;k � 0:5

� �
=nk

� �
, where ri,k is the rank of ith

observation for the kth trait in a sample of size nk (nk < n if
there are missing values), and Φ�1 :ð Þ is the standard nor-
mal quantile function.

Existing methods based on individual-level data

MANOVA

Multivariate analysis of variance (MANOVA) [18, 19]
considers the multivariate linear regression model

Yn�K ¼ 1n�1α
0
1�K þ Xn�1β

0
1�K þ En�K ð1Þ

where α is the vector of intercepts, 1 is the corresponding
column of 1 s, β ¼ β1; ¼ ; βKð Þ′ is the vector of fixed
unknown genetic effects of the K correlated traits, and E is
the matrix of random errors. Each row Ei of the error matrix
E is assumed independently distributed as a K-variate
normal with mean 0 and variance-covariance matrix Σ (a
K × K positive definite matrix representing residual correla-
tion among the traits). This assumption imposes the
constraint that the individuals are unrelated. Multivariate
linear mixed model (mvLMM) uses an additional matrix of
random effects to account for sample relatedness and
population stratification (e.g., GEMMA [20]). The null
hypothesis of no association using Eq. 1 is H0 : β ¼ 0, and
the likelihood ratio test (LRT) of H0 gives the MANOVA
(or, Wilk’s Lambda) test statistic, which has an asymptotic
chi-squared distribution with K degress of freedom (d.f.)
(see [11]). It is equivalent to single-variant cross-phenotype
association test based on Canonical Correlation Analysis
(CCA) [21].
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POM–LRT

This approach models the genotype as an ordinal out-
come using proportional odds model (POM) assuming
unrelated individuals. The LRT statistic for testing no
association has an asymptotic chi-squared distribution
with K d.f. under the null. In the context of GWAS, this
test is known as MultiPhen [22]. One may also use Wald
test statistic instead of LRT in this POM framework
(implemented in our R program mvtests). Other var-
iations of reverse regression of genotype on phenotypes
have also been used for cross-phenotype association tests
[23–27].

Unified score-based association test (USAT)

USAT [11] is a data-adaptive combination of the MAN-
OVA and the sum of squared score (SSU) [19, 28] tests for
unrelated individuals. To account for relatedness among
individuals, the USAT framework may be used to combine
LRT statistic from mvLMM and SSU test statistic based on
linear mixed model [29]. USAT p-value is approximately
computed by a fast one-dimensional numerical integral
using the fact that both MANOVA and SSU have chi-
squared distributions under the null.

Existing methods based on summary-level data

In a typical GWAS, each trait is separately tested for
association with a given genetic variant. The association
statistic and the p-value for each trait and each variant is
reported based on the univariate/marginal model Yk ¼
αk þ βkX þ εk with normally distributed errors εk if the kth
trait is continuous, or the logistic model
logit P Yk ¼ 1jXð Þð Þ ¼ αk þ βkX if it is binary. For the kth
trait (k= 1, 2, …, K), βk is the genetic effect and the null
hypothesis of no genetic association is H0;k : βk ¼ 0. Ran-
dom effects may be included in these models to account for
sample relatedness and population structure (as imple-
mented in, say, EMMAX [30]). The Wald test statistic for
H0;k is Zk ¼ β̂k=se β̂k

� �
where β̂k is the maximum likelihood

estimate (MLE) of βk and se β̂k
� �

is its standard error. Under
H0;k, Zk has an asymptotic standard normal distribution.
However, for kth and lth traits, summary statistics Zk and Zl
are not uncorrelated if the traits are correlated [28, 31]. To
test the global null hypothesis of no association with any
trait (H0 : β1 ¼ � � � ¼ βK ¼ 0), one can form appropriate
test statistics based on GWAS summary statistics
Z ¼ Z1; ¼ ; ZKð Þ0 (as summarized below). Under H0, we
assume Z has an asymptotic K-variate normal distribution
with mean 0 and covariance matrix R. The K × K matrix R
can be estimated (denoted by R̂) using the Pearson corre-
lation of Z-statistics on a large number of variants across theTa

bl
e
1
S
um

m
ar
y
of

th
e
ex
is
tin

g
si
ng

le
-v
ar
ia
nt

cr
os
s-
ph

en
ot
yp

e
as
so
ci
at
io
n
te
st
s
th
at

ar
e
us
ed

in
th
is
st
ud

y

M
et
ho

d
[R

ef
.]

D
at
a
ty
pe

a
T
ra
it
ty
pe

M
od

el
/t
es
t
ty
pe

P
-v
al
ue

ca
lc
ul
at
io
n
ap

pr
oa
ch

Sc
en
ar
io
/s
w
he
n
m
os
t
po

w
er
fu
l

m
et
aM

A
N
O
V
A

[3
3]

S
um

m
ar
y

A
ny

C
la
ss
ic
al

m
ul
tiv

ar
ia
te

W
al
d
te
st
(q
ua
dr
at
ic
)

P
-v
al
ue

us
in
g
as
ym

pt
ot
ic

χ2
di
st
ri
bu
tio

n
S
ub
se
t
of

tr
ai
ts

as
so
ci
at
ed
;
he
te
ro
ge
ne
ou
s

ef
fe
ct
s

m
et
aU

S
A
T
[3
3]

S
um

m
ar
y

A
ny

D
at
a-
ad
ap
tiv

e
co
m
bi
na
tio

n
of

tw
o
qu
ad
ra
tic

te
st
s

A
pp
ro
xi
m
at
e
p-
va
lu
e
us
in
g
fa
st
nu
m
er
ic
al

in
te
gr
al

R
ob
us
t
po
w
er

ac
ro
ss

m
an
y
as
so
ci
at
io
n

sc
en
ar
io
s

S H
om

[3
1]

S
um

m
ar
y

A
ny

B
ur
de
n
ty
pe

lin
ea
r
te
st

P
-v
al
ue

us
in
g
as
ym

pt
ot
ic

χ2
1-
d.
f.
di
st
ri
bu
tio

n
A
ll
tr
ai
ts
as
so
ci
at
ed

w
ith

ho
m
og
en
eo
us

ef
fe
ct
s

S H
et
[3
1]

S
um

m
ar
y

A
ny

S
ub
se
t-
ba
se
d
ap
pr
oa
ch

A
pp
ro
xi
m
at
e
p-
va
lu
e
us
in
g
an

es
tim

at
ed

ga
m
m
a
di
st
ri
bu
tio

n
S
ub
se
t
of

tr
ai
ts

as
so
ci
at
ed
;
he
te
ro
ge
ne
ou
s

ef
fe
ct
s

M
T
A
R

[3
7]

S
um

m
ar
y

A
ny

D
at
a-
ad
ap
tiv

e
co
m
bi
na
tio

n
of

a
qu
ad
ra
tic

an
d
a

lin
ea
r
te
st
s

A
na
ly
tic
al

p-
va
lu
e
us
in
g
lin

ea
r
co
m
bi
na
tio

n
of

χ2
R
ob
us
t
po
w
er

ac
ro
ss

m
an
y
as
so
ci
at
io
n

sc
en
ar
io
s

P
C
O

[4
3]

S
um

m
ar
y

A
ny

D
at
a-
ad
ap
tiv

e
co
m
bi
na
tio

n
ac
ro
ss

lin
ea
r,
qu
ad
ra
tic
,
an
d

no
n-
lin

ea
r
te
st
s

P
-v
al
ue

es
tim

at
ed

us
in
g
M
on
te
-C
ar
lo

si
m
ul
at
io
ns

R
ob
us
t
po
w
er

ac
ro
ss

m
an
y
as
so
ci
at
io
n

sc
en
ar
io
s

m
ix
A
da

[4
2]

S
um

m
ar
y

A
ny

D
at
a-
ad
ap
tiv

e
co
m
bi
na
tio

n
of

tw
o
qu
ad
ra
tic

te
st
s
fr
om

m
ix
ed

m
od
el

A
pp
ro
xi
m
at
e
p-
va
lu
e
us
in
g
fa
st
nu
m
er
ic
al

in
te
gr
al

R
ob
us
t
po
w
er

ac
ro
ss

m
an
y
as
so
ci
at
io
n

sc
en
ar
io
s

M
A
N
O
V
A
/C
C
A

[2
1]

In
di
vi
du
al
-l
ev
el

C
on
tin

uo
us

M
ul
tiv

ar
ia
te

lin
ea
r
re
gr
es
si
on

m
od
el

P
-v
al
ue

us
in
g
as
ym

pt
ot
ic

χ2
di
st
ri
bu
tio

n
S
ub
se
t
of

tr
ai
ts

as
so
ci
at
ed
;
he
te
ro
ge
ne
ou
s

ef
fe
ct
s

U
S
A
T
[1
1]

In
di
vi
du
al
-l
ev
el

C
on
tin

uo
us

D
at
a-
ad
ap
tiv

e
co
m
bi
na
tio

n
of

tw
o
qu
ad
ra
tic

te
st
s

A
pp
ro
xi
m
at
e
p-
va
lu
e
us
in
g
fa
st
nu
m
er
ic
al

in
te
gr
al

R
ob
us
t
po
w
er

ac
ro
ss

m
an
y
as
so
ci
at
io
n

sc
en
ar
io
s

M
ul
tiP

he
n
[2
2]
/P
O
M
-L
R
T

In
di
vi
du
al
-l
ev
el

A
ny

P
ro
po
rt
io
na
l
od
ds

re
gr
es
si
on

m
od
el

(g
en
ot
yp
e
re
gr
es
se
d

on
tr
ai
ts
)

P
-v
al
ue

us
in
g
as
ym

pt
ot
ic

χ2
di
st
ri
bu
tio

n
S
ub
se
t
of

tr
ai
ts

as
so
ci
at
ed
;
he
te
ro
ge
ne
ou
s

ef
fe
ct
s

a D
at
a
ty
pe

‘s
um

m
ar
y’

m
ea
ns

G
W
A
S
su
m
m
ar
y
st
at
is
tic
s
re
qu

ir
ed

fo
r
ea
ch

tr
ai
t;
‘i
nd

iv
id
ua
l-
le
ve
l’
m
ea
ns

in
di
vi
du

al
-l
ev
el

tr
ai
t
an
d
ge
no

ty
pe

da
ta

re
qu

ir
ed

302 D. Ray, N. Chatterjee



genome that are not marginally associated with any of the K
traits [28, 32, 33] (call this estimate R̂pearson). For highly
polygenic traits, cross-trait LD-score regression [34] may
be used to estimate R [35, 36]. Guo and Wu [37] argued
that the common practice of filtering out large summary
statistics (as is done in LD-score regression) is less efficient
and may lead to biased estimates, and hence proposed
a robust linear regression on LD-scores (call this estimate
R̂LDscore).

metaMANOVA

This method is equivalent to MANOVA or the classical
multivariate Wald test but based on summary statistics only.
Its test statistic is Z′R̂�1

Z, which has an asymptotic chi-
squared distribution with K d.f. under the null [28, 33, 38],
and sometimes referred to as the ‘omnibus chi-square test’.
metaCCA [39] is an extension in the sense that it allows
multivariate representation of both genotype and phenotype.

SHom

Much like OBrien’s test [32, 40], SHom [31] assumes the
genetic effects to be homogeneous across traits and its test
statistic is proportional to the sum statistic 1′ R̂W

� ��1
Z,

where 10 ¼ ð1; :::; 1Þ is a row of 1 s, and W is a diagonal
matrix of weights (such as square root of sample sizes) for
the Z-statistics. SHom is asymptotically distributed as a chi-
squared variable with 1 d.f. under the null.

SHet

Similar in spirit to Xu et al.’s test [38] using truncated Z-
statistics, the data-adaptive approach SHet [31] uses the
statistic maxτ>0S τð Þ, where S τð Þ is proportional to
10τ R̂τWτ

� ��1
Zτ. Here, Zτ (and similarly 1τ, R̂τ, Wτ) attempts

to capture only the traits with a true contribution to the
association of a genetic variant under the alternative
hypothesis by considering traits whose underlying associa-
tion statistics exceed some threshold τ (unknown a priori).
The null distribution of SHet is empirically approximated by
a Gamma distribution. ASSET [41] is another such subset-
based approach that can additionally provide information on
the subset of traits that is associated with the variant.

metaUSAT

Recognizing the non-existence of the uniformly most
powerful test for cross-phenotype associations, metaUSAT
[33] adaptively combines metaMANOVA and the summary
statistic based SSU [28]. It reports a minimum p-value type
test statistic and an approximate asymptotic p-value of
association.

MTAR

This method [37] is a data-adaptive combination of meta-
MANOVA and a principal component (PC) based 1-d.f.
chi-squared test to achieve robust performance under var-
ious association scenarios.

Other summary-level methods

Recent methods have focused on being data-adaptive to
ensure robust power performance across different alter-
natives. mixAda [42] adaptively combines two independent
score statistics (proportional to the forms 10R̂

�1
Z and

Z0R̂
�1
R̂
�1
Z) based on linear mixed effects model, while

PCO [43] adaptively combines several linear and nonlinear
PC based tests together. HIPO [36] finds optimal linear
combinations of association coefficients across traits taking
into account estimates of heritability, genetic covariance,
sample size variations, and overlaps across traits. MTAG
[35] obtains an effect estimate for each trait as a weighted
sum of GWAS estimates that uses phenotypic and geno-
typic covariances estimated from cross-trait LD-score
regression [34]. Other methods have been well summarized
elsewhere [17, 44].

Simulation experiments

We conduct simulation experiments in R [45] using K= 10
continuous traits based on the multivariate linear regression
model (Eq. 1) to assess type I errors of MANOVA, POM-
LRT (or MultiPhen), USAT, metaMANOVA, SHom, SHet,
metaUSAT, MTAR, mixAda, and PCO under the following
four broad scenarios of multivariate trait non-normality,
trait outliers, and trait heteroscedasticity. We did not include
HIPO and MTAG in our comparison because they belong to
a different class of cross-phenotype tests that borrows
information across a genome-wide reference panel of var-
iants (e.g., genome-wide estimates of heritability and
genetic covariance) [36]. For comparing power, we
assumed the ideal scenario—multivariate normality of traits
without heteroscedasticity and outliers. Under each simu-
lation scenario, we consider two different trait correlation
structures: compound symmetry Rcs (with same pairwise
trait correlation) and block diagonal Rbd (with strong pair-
wise correlation within a block and weak pairwise correla-
tion between blocks). For Rcs, the pairwise trait correlation
ρ is either 0.2 (weak correlation) or 0.5 (moderate correla-
tion) or 0.9 (strong correlation). For Rbd, the first five traits
have pairwise correlation 0.5, the next 5 traits have pairwise
correlation 0.9, and the between-group correlation is 0.2.

We simulate each dataset on n= 3000 or 10,000 unre-
lated individuals based on a single bi-allelic variant in
Hardy–Weinberg equilibrium with a fixed population-level
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MAF (and corresponding expected MAC) and genetic
effects β1; ¼ ; β10. We looked at expected MAC 6, 30, and
300, which respectively corresponds to MAF 0.1%
(0.03%), 0.5% (0.15%), and 5% (1.5%) for sample size
3000 (10,000). We assume the commonly used additive
genetic model in our simulations, and assume that the total
variance of a trait is composed of the variance attributable
to the genetic variant (σ2g) and the residual variance (σ2e ).
Under the null model (for type I error analysis), we set
σ2g ¼ 0 while the alternative models (for power compar-
ison) have σ2g ¼ 0:05 for the associated traits. We obtain
the genetic effect of the kth trait from the relation
σ2g ¼ β2k � Var Xð Þ, where Var (X) is the population-level
variance of the genetic variant (a function of the MAF)
[46]. In other words, we set β1 ¼ � � � ¼ β10 ¼ 0 for type I
error analysis while for power comparison, we set genetic
effect >0 for the associated traits only. As for the joint
covariance structure of the traits, we assume either com-
pound symmetry (or exchangeable) structure Σcs ¼ σ2eRcs

or the block-diagonal structure Σbd ¼ σ2eRbd, where σ2e is
set at 9:95. We simulate 10 million replicates to estimate
type I error rates, and 10,000 replicates to estimate
asymptotic power at the GWAS threshold α= 5 × 10−8.
For simplicity, we do not include any additional
covariates.

Scenario 1: multivariate Laplace distributed traits

To mimic a heavy-tailed trait distribution, the random
errors in Eq. 1 are drawn from a multivariate Laplace with
mean 0 and covariance matrix Σcs or Σbd. This is a sym-
metric, elliptical distribution like multivariate normal.
This scenario can be considered as a case of slight
departure from multivariate normality with respect to tail
behavior.

Scenario 2: multivariate t distributed traits

The error distribution is assumed to be multivariate t with 3
d.f., mean 0 and covariance matrix Σcs or Σbd. Again, it is a
symmetric, elliptical distribution but with very heavy tails.
When the d.f. of multivariate t is infinitely large, the dis-
tribution is multivariate normal.

Scenario 3: multivariate mixture normal traits

To mimic outliers in the trait distribution, we generate
error distribution from multivariate normal with mean
0 and covariance matrix Σcs or Σbd in 95% of the
individuals. For the rest 5%, a multivariate normal with
mean 0 and covariance matrix σΣcs or σΣbd is used. We fix
σ= 10.

Scenario 4: multivariate normal traits with
heteroscedasticity

To mimic unequal error variances between genotypes, we
simulate error distribution from multivariate normal with
mean 0 and variance matrix τΣcs or τΣbd, where we fix
τ ¼ 1, 1.5 or 2 depending on whether MAC at the variant is
0, 1 or 2 for a given individual.

Scenario 5: multivariate normal traits

This is the ideal scenario where the assumption of multi-
variate normality of traits is not violated. We simulate error
distribution from multivariate normal with mean 0 and
variance matrix Σcs or Σbd. This is the only scenario where
we compare power of different methods.

Application to Amino Acids Summary Data

Kettunen et al. [47] analyzed up to 24,295 individuals from
14 European cohorts to perform GWAS for human blood
metabolites. They included individuals that had NMR
metabolite data and genome-wide single nucleotide poly-
morphism (SNP) array data. SNPs were imputed up to 39
million variants (build 37). The authors analyzed each
cohort separately, and tested univariate associations
assuming the additive genetic model. SNPs with accurate
imputation (proper info > 0.4) and MAC > 3 were com-
bined in fixed-effects meta-analysis using genomic control
correction for both individual cohort results and the meta-
analysis results. Their metabolite set covers multiple meta-
bolic pathways.

In this paper, we use the single-trait meta-analysis sum-
mary statistics of eight amino acids (alanine, glutamine,
histidine, isoleucine, leucine, phenylalanine, tyrosine, and
valine) to test multivariate associations with each SNP. We
did not include Glycine, another amino acid included in the
original study [47], as it has a much larger number of
genetic associations compared with other amino acids
(Fig. S21) and thus could dominate the cross-phenotype
tests. The summary statistics were obtained after adjusting
for age, sex, time of last meal (if applicable, as majority of
the samples were fasting), and first ten principal compo-
nents from genomic data, and then inverse normalizing the
resulting residuals. For some variants, the effective sample
size (and hence the effective MAC) varied widely across the
eight traits since some traits are missing from many cohorts
included in the original study. To reduce the effect of high
or low MAC in a few traits on the joint test of all traits, we
discarded variants for which the minimum or maximum
MAC across traits was outside ±1.3 × median MAC
(Supplementary S5).
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Results

Simulation experiments

To describe calibration of methods, we use expected
MAC (rather than MAF) because conditional on MAC, the
characteristics of methods do not depend on MAF
and sample size [16]. For the methods based on summary-
level data, we use R̂ ¼ R̂pearson obtained using function
cor.pearson() from metaUSAT software [33]. Parameter
choices and implementation details of the methods are given
in Supplementary S2. We examine type I error performance
of the different methods for varying expected MAC using
Quantile-Quantile plot (QQ plot) of observed and expected
p-values.

Scenario 1: multivariate Laplace distributed traits

First, we focus on compound symmetry trait correlation
structure with low correlation (ρ= 0.2). For variants with

MAC around 300 (i.e., MAF 5% for n= 3000), all methods
seem to be well-calibrated (although metaUSAT and PCO
may have slightly inflated type I errors) with or without INT
when there is slight departure from multivariate normality
(Fig. 1). For low-count variants, however, all methods
(except POM-LRT) with or without INT display inflated
type I errors. Type I error inflation is severe specially for
very low MAC. Also notable is the behavior of SHom: it
exhibits lesser inflation since it combines all the traits into a
single trait, thereby increasing effective sample size and
hence effective MAC. We observe similar behavior of all
these methods for compound symmetry trait correlation
structure with moderate and strong correlations (figures not
shown), for block-diagonal trait correlation structure
(Fig. S3), and for larger sample size of 10,000 (Fig. S15).
Similarity of Fig. 1 (for n= 3000) and Fig. S15 (for n=
10,000) reaffirms that MAC is a sample-size invariant
measure of test calibration. The MAC threshold after which
a test is well calibrated, however, can be much higher for
a cross-phenotype test (based on multivariate linear

Fig. 1 Scenario 1: QQ plots for null data. Observed(−log10 p-values)
are plotted on the y-axis and expected(−log10 p-values) on the x-axis.
Each replicate has n= 3000 unrelated individuals with K= 10 multi-
variate Laplace distributed traits with pairwise trait correlations ρ=
0.2. Performance of cross-phenotype tests is based on 10 million such

replicates. Expected MAC 6, 30, and 300, respectively, correspond to
MAF 0.1, 0.5, and 5% for sample size n= 3000. The gray shaded
region represents a conservative 95% confidence interval for the
expected distribution of p-values. P-values ≥ 10−10 are shown here
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regression) than a single-trait test (based on normal linear
regression) (see Fig. S4).

Scenario 2: multivariate t distributed traits

When the multivariate traits have thick tails, all the meth-
ods, except POM-LRT, suffer from severely inflated type I
errors for all MAC values (6, 30, or 300) we studied
(Fig. S5). The severity of inflation even at MAC around 300
is, however, not so evident from the values of genomic
inflation factor (λGC) based on p-values (Table S1). Cor-
rection of marginal trait distribution using INT helps cali-
brate the methods for variants with MAC 300 or more. As
expected, SHom exhibits lesser inflation in each scenario.
Like before, these observations are corroborated for stron-
ger correlations in a compound symmetry trait correlation
structure (figures not shown), for block-diagonal trait cor-
relation structure (Fig. S6), and for larger sample size of
10,000 (Fig. S16).

Scenario 3: multivariate mixture normal traits

In the presence of outliers in the data, most methods have
near-nominal type I error rates when testing association with
variants having MAC 300 or more (Fig. S7). While methods
such as PCO, metaUSAT, SHet, MANOVA, and MTAR may
have slightly inflated type I errors for MAC around 300
when applied to raw traits, it can be corrected by applying
these methods on inverse normalized traits. For low count
variants, all the methods except POM-LRT grossly fail to
maintain proper type I error even after using INT on the
traits. False positive rate can be very high for very low
MAC. Interestingly, we observe that POM-LRT becomes
more conservative with decrease in MAC. As expected,
SHom exhibits lesser inflation in each scenario. Consistent
results are observed for compound symmetry trait correla-
tion structure with moderate and strong correlations (figures
not shown), for block-diagonal trait correlation structure
(Fig. S8), and for larger sample size of 10,000 (Fig. S17).

Scenario 4: multivariate normal traits with
heteroscedasticity

When the genotype at a variant predicts the variance and
covariance of the traits, no method (with or without INT on
traits) maintains appropriate type I error at the MAC values
(6, 30, or 300) we considered (Fig. S9). Unlike the previous
scenarios, here POM-LRT is poorly calibrated across all
MAC values. As expected, the type I error control worsens
for a low count variant. SHom exhibits lesser inflation in each
scenario. We continue to observe similar behavior for
compound symmetry trait correlation structure with mod-
erate and strong correlations (figures not shown), for block-

diagonal trait correlation structure (Fig. S10), and for larger
sample size of 10,000 (Fig. S18).

Scenario 5: multivariate normal traits

In this ideal situation, all the methods (with or without INT
on traits) seem to be well calibrated for MAC 30 or more
(Fig. S11). Some data-adaptive methods like USAT and
PCO may exhibit slightly inflated type I errors at stringent
significance levels. These observations are similar across
different correlation structures (Fig. S12), and different
sample sizes (Fig. S19) we considered. It is worth noting
that although the methods based on summary data assume
only asymptotic multivariate normality of the estimated
effect sizes, the effective sample size needed for the
asymptotics to kick in seems to depend on the underlying
multivariate distribution of the traits. For instance, at
expected MAC 30, the summary-data based methods are
well calibrated when the traits are multivariate normal
(Fig. S11) while they show inflation when the traits are
multivariate Laplace (Fig. 1) or multivariate t distributed
(Fig. S5) (note that individual traits were rank inverse-
normalized in all scenarios). For a given MAC, the mag-
nitude of inflation seems to increase with degree of devia-
tion from multivariate normality of traits.

Due to proper calibration of tests, this simulation sce-
nario gives us the opportunity to compare power of these
methods (Fig. 2). We find that, in general, the multivariate
methods are more powerful when a subset of the traits is
associated compared with when all the traits are associated.
Such a behavior of multivariate association analyses has
been observed and explained before [11, 13]. This behavior
is more pronounced when the pairwise trait correlation is
stronger. Note that this observation is based on equal and
positive genetic effects for the associated traits, and equal
and positive pairwise trait correlations. The power of a
cross-phenotype test depends on a complex interplay of not
only the number, strength, and direction of genetic effects
of truly associated traits but also the strength and direction
of the pairwise trait correlations [11, 33]. The underlying
association scenario changes from one variant to the next,
and is not known a priori for any real dataset. Here, we
observe that the data-adaptive approaches (metaUSAT,
MTAR, PCO, mixAda, and USAT) exhibit similar statis-
tical power across all scenarios we studied, and are at least
as powerful as metaMANOVA, SHet, MANOVA, and
POM-LRT. In addition, similar to what previous studies
[11, 22, 33] have shown, we demonstrated massive power
gains achieved by a cross-phenotype analysis (e.g., POM-
LRT) over multiple single-trait analyses (e.g., Nyholt-Šidák
corrected minP [22]) under most scenarios of association
(Fig. S13). This commonly used minP (or minimum p-
value) approach selects the most significant p-value from
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the single-trait association tests after correcting for multiple
testing using Šidák correction [48], where the approximate
number of independent tests are estimated using Nyholt’s
approach [49]. The power of a given method is similar
irrespective of whether the traits are inverse-normalized or
not when the joint trait distribution is indeed multivariate
normal (Fig. S14).

Application to Amino Acids Summary Data

Since our real data consists of only summary-level data, we
could only apply the methods based on summary data. We
analyzed the data using both R̂pearson (Fig. 3)—like we did
in our simulation experiments—and R̂LDscore (Fig. S21). We
obtained R̂LDscore by applying the GCvr() function in
MTAR package [37] on the summary data and the pre-
computed LD-scores [50] from 1000 Genomes European
data. Results using R̂pearson and R̂LDscore are qualitatively
similar; so we describe results using R̂pearson only. For

presenting results, we took the median of MACs across
traits as the representative MAC for a particular variant.
Further, due to over-representation of common variants
(>10 million variants with median MAC 300 or more)
compared with low-count variants (1.7 million variants with
median MAC between 30 and 300), we have only presented
the 1.2 million HapMap 3 common SNPs to make the two
MAC groups comparable.

The cross-phenotype QQ plots stratified by MAC seem
to show early departure from the null when compared with
the single-trait QQ plots (Fig. 3a). Given the large effective
sample size, it is possible for many common variants to
show association signals. However, it seems rather unlikely
that so many low-frequency/rare variants (variants with
MAC between 30 and 300) are truly associated with at least
one of the eight amino acids, the signals for which show up
only in the multivariate tests. We plotted cross-phenotype
association p-values against the most significant single-trait
p-values to get a sense of the proportion of variants that are

Fig. 2 Scenario 5: Power plots for non-null data (at level α= 5=
10−8) with either first 2, 5, or 9 (out of 10) traits associated with the
genetic variant. Each sample has n= 3000 unrelated individuals with
K= 10 multivariate normal traits. The residual covariance matrix is

Σcs ρð Þ with ρ= 0.2 and 0.5. Performance of cross-phenotype tests is
based on 10,000 replicates. All plots are for raw traits only (the plots
are nearly identical for inverse-normalized traits)
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detected only by cross-phenotype analysis (Fig. S22). For a
picture of the amino acid trait distribution, we looked at
individual-level amino acid data from a separate study of
>8500 Finnish men, METSIM (Metabolic Syndrome in
Men) [51]. Note that the summary statistics we analyzed
consist of data from many Finnish cohorts [47]. When we
looked at pairwise scatter plot of inverse normalized amino
acid trait residuals (adjusted for age, age2, BMI) [51] from
METSIM (Fig. 3B), we found many points systematically
distributed outside the 95% contour of a bivariate normal
distribution. In addition, fitted local linear regression
(LOESS) curves approximating pairwise trait relationships
show evidence of non-linearity, which indicates possible
deviation of the joint trait distribution from multivariate
normality.

Discussion

Overview of this study

This article is an attempt toward identifying advantages and
pitfalls of some of the currently-used single-variant cross-
phenotype methods in GWAS of rare, low-frequency, and
common variants when the basic assumption of multivariate
normality is not satisfied. Methods based on individual-
level data often assume multivariate normality of traits,
while methods based on single-trait summary statistics

assume asymptotic multivariate normality of estimated
effect sizes. We compared several popular and new
individual-level-data based methods as well as summary-
data based methods. Our simulation experiments indicate
very poor control of type I error for all but one methods at
the rare, low, and common MACs we studied. When the
methods are applied on inverse-normalized traits, they
continue to show inflated (sometimes severely inflated) type
I error rates when the MAC of a genetic variant is low or
rare. Although summary-data based methods assume only
asymptotic multivariate normality of effect size estimates,
the effective sample size at which they are well calibrated
increases with deviation of the underlying trait distribution
from multivariate normality (note that individual traits were
inverse normalized). This is because only the univariate
normality of effect size estimates are guaranteed when each
trait or trait residual is inverse normalized. We think that for
variants with large MAC, when the underlying joint trait
distribution is not multivariate normal, the multivariate
distribution of single-trait effect size estimates is asympto-
tically closer to multivariate normal than for variants with
low MAC (see Supplementary S1). We found calibration of
SHom to be better than most others because it is a burden-
type test—it linearly combines the traits into a single
weighted trait, thereby increasing the effective sample size
and the effective MAC. Consequently, SHom has inadequate
power to capture heterogenous effects, which is more likely
when analyzing multiple traits. We re-establish MAC (and

Fig. 3 a. QQ plots for single-trait (univariate) and cross-phenotype
(multivariate) association tests of eight amino acid traits using sum-
mary statistics. Observed (-log10 p-values) are plotted on the y-axis and
expected(-log10 p-values) on the x-axis. All cross-phenotype methods
have similar performance, only metaMANOVA and metaUSAT are
presented here for demonstration. The gray shaded region represents a
conservative 95% confidence interval for the expected distribution of
p-values. P-values ≥ 10−10 are shown here. b. The upper diagonal

shows Pearson’s pairwise correlation coefficients of the 8 inverse
normalized amino acid trait residuals from the METSIM study of
>8500 Finnish men. The diagonal depicts the marginal distribution
(histogram) of each amino acid. The lower diagonal depicts the scatter
plots of pairwise distributions of the traits, where the red ellipses
correspond to 10%, 50%, 90%, and 95% contours of standard bivariate
normal distribution and the pink curves correspond to fitted local linear
regression (LOESS) curves
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not MAF) as the key parameter determining calibration of
tests. The MAC threshold after which a test is well cali-
brated can be much higher for a cross-phenotype test than a
single-trait test. We emphasize that the genomic inflation
factor (λGC) may fail to capture systematic bias of associa-
tion tests, while QQ plot allows us to see the behavior and
calibration of such tests across a wide spectrum of sig-
nificance levels.

POM-LRT (or MultiPhen)—a method requiring
individual-level data—is the only method that we found to
display type I error that is either appropriate or slightly
conservative in all but one scenarios we considered for
variants with MAC 30 or more. The POM being based on
ordinal regression of genotypes on traits does not require
normality of the traits. In addition, statistical power of
POM-LRT is comparable to other multivariate methods
under multivariate normality of traits, which is consistent
with findings from another simulation study modeling
complex networks [52]. We also implemented Wald test in
this ordinal regression framework (POM-Wald), and found
it to be anti-conservative compared with POM-LRT for
low-count variants under most simulation scenarios we
considered (Figs. S15–S19). This Wald-vs-LRT behavior in
POM is opposite to what other researchers [16, 53] found
when testing association of rare variants in case-control
GWAS using logistic regression model for disease status.
Exploring this aspect in more detail is beyond the scope of
this article.

As a proof-of-principle example, we performed multi-
variate association test of eight amino acids. Only single-
trait summary statistics from European samples (including
Finnish samples) were available to us. We found an excess
of statistically significant low-count variants from cross-
phenotype (multivariate) analysis—irrespective of the
summary-data based method used—compared with single-
trait (univariate) analysis. We think it is due to deviations
from multivariate normality. We went on to look at pairwise
relationships between amino acid traits using individual-
level amino acid trait data from METSIM (a study of Fin-
nish men), and found some patterns of non-linearity that
indicate possible violation of multivariate normality
assumption.

Recommendations

Based on our findings, we recommend in general extra caution
when applying cross-phenotype association tests in GWAS
with low-frequency or rare variants due to possible violation of
multivariate normality assumption. However, we found that
robust association testing is still possible for variants
with MAC> 30 by application of the POM-LRT method,
which uses reverse regression modeling (implemented in
R program https://github.com/RayDebashree/mvtests). We

recommend inverse normalizing each trait residual after
accounting for important covariates, and then using the rank-
normalized trait residuals to test for genetic association when
individual-level data are available. The POM-LRT method, in
its current form, cannot handle summary-level data. If only
summary-level data are available, one could apply a variety of
alternative methods for cross-phenotype association tests, but
results may not be robust for genetic variants with MAC
below 300. Our recommendation is based on an MAC
threshold (instead of an MAF threshold as is commonly used)
because we found consistent type I error calibration of meth-
ods when the MAC is kept constant. We, additionally,
emphasize use of QQ plots, instead of just the genomic
inflation factor, to assess calibration of tests at genome-wide
levels.

Practical issues with the recommended cross-
phenotype method

In a reverse regression framework like POM-LRT, it is,
however, unclear how to meaningfully adjust for sample
relatedness and population structure. Furthermore, POM-
LRT requires observed genotypes or ‘hard-call’ genotypes
for imputed variants. It cannot readily incorporate impu-
tation dosage like the usual multivariate linear regression
approaches, which may lead to decreased statistical
power. Wu and Pankow [54] proposed imputation-score-
weighted multinomial regression approach with robust
GEE covariance estimates to extend the multi-trait reverse
regression model for observed genotypes to imputed
SNPs. We did not evaluate the performance of this
method though. Another caveat of POM-LRT is its
requirement of individual-level data. Restrictions on data
sharing necessitate use of summary data. Summary sta-
tistics come adjusted for relatedness and population
structure, and makes it straightforward and computation-
ally easier to apply multivariate methods on genome-wide
summary data. Unfortunately, for summary data on low-
count variants, there is no multivariate method that we can
recommend when there is concern about the validity of
multivariate normality assumption.

Other practical concerns

Inducing approximate multivariate normality of traits

As one of the reviewers pointed out, ‘univariate normality
does not imply multivariate normality’ begs the question:
can the trait data be more intelligently transformed to induce
approximate multivariate normality? If individual-level data
were available, one approach can be to identify potential
‘multivariate outliers’ that might be contributing to the
breakdown of multivariate normality assumption, and check
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sensitivity of cross-phenotype analyses to inclusion/exclu-
sion of such outliers [13]. Detecting outliers in a multi-
dimensional space is a challenging problem. We briefly
explored two outlier detection approaches under Scenario 2
with multivariate t distributed traits. First approach detects
multivariate outliers using sample Mahalanobis Distance
(MD) [1, 13] and excludes individuals with significant
sample MD at, say, 5% level. Second approach detects
univariate outliers for each trait and performs winsorization
to limit the influence of outlying trait values in one
dimension [14]. We observed some attenuation of inflation
—more so when potential multivariate outliers are removed
—for all cross-phenotype methods across all MACs
(Fig. S24).

Ties in the trait data

It is possible for some traits to exhibit ties (e.g., zero value
of some blood measure for multiple individuals). First, our
recommendation of inverse normalizing single-trait resi-
duals after necessary covariate adjustments is very likely to
break the ties in the traits. Second, the problem of ties can
persist in the trait residuals if very few confounders are
adjusted (especially if the confounders are not continuous).
We briefly explored if INT on tied trait data can affect the
calibration of the cross-phenotype tests. In Scenario 2 with
multivariate t traits, we artificially created ties in the first
five traits to ensure that an average of 10% or 50% indi-
viduals have ties for each trait. The resultant joint trait
distribution is right skewed with fat tails and many ties. We,
then, applied INT on each trait (including the traits with
ties). The QQ plots (Fig. S25), when compared with those
without ties (Fig. S5), did not reveal any noticeable effect of
INT on ties on the calibration of the methods across
different MACs.

Study limitations and caveats

This empirical study is not without limitations. First, neither
the methods nor the simulation scenarios we considered are
exhaustive. We chose a handful of Frequentist methods for
our study, none of which is optimized to specifically detect
pleiotropic variants (a variant that is associated with at least
two traits). Second, our simulation framework is very
simple and does not reflect the underlying complex genetic
architecture of biological traits. Our simulation study uses
ten traits and we have not examined high dimensional traits
as is common in neuroimaging and NMR metabolomics.
We briefly explored, using 5–30 correlated traits, if our
MAC recommendations are dependent on the number of
traits being tested. We found that for variants with MAC
between 30 and 300, POM-LRT becomes somewhat con-
servative while the other methods become more inflated

with increase in the number of traits when the underlying
trait distribution is not multivariate normal (Figs. S26–S28).
Our MAC threshold recommendations may be used as long
as the number of traits is between 5 and 30. Our extensive
simulations and recommendations are based on continuous
traits only. So, we considered an additional limited simu-
lation study comparing performance of summary-level
methods on binary traits. In Scenario 5 with multivariate
normal traits, we dichotomized each trait at 0 (or 4.23) to
ensure, on an average, a 1:1 (or 1:10) case-control dis-
tribution for all ten traits. We, then, analyzed each binary
trait using logistic regression model and used the resultant
GWAS summary statistics to implement cross-phenotype
association tests. All summary-level methods seem well-
calibrated for binary traits with balanced case-control dis-
tribution when MAC is 30 or more (slight deflation is
observed for MAC 30), while they exhibit inflation, even at
MAC 300, when the case-control distribution gets skewed
(Fig. S29). Another limitation is that our simulations do not
involve any confounders. We have assumed unrelated
individuals without any cryptic relatedness or population
structure. Our simplistic power simulations indicate that
most multivariate methods have similar statistical power,
especially the data-adaptive ones. More sophisticated
simulations will probably bring out their differences [52].
Nonetheless, it is important to bear in mind that the aim of
the current empirical study is not to determine which
method gives better power under what scenario of asso-
ciation when the traits are indeed multivariate normal.
Rather, we undertake the first attempt to study how these
popular cross-phenotype methods fare when the assumption
of multivariate normality fails, especially when testing
association with a low-count variant.

Web resources

The URLs for software, codes, and data used in this article
are as follows:

metaUSAT v1.17 (implements metaMANOVA, metaU-
SAT): https://github.com/RayDebashree/metaUSAT
CPASSOC v1.01 (implements SHom and SHet): http://hal.
case.edu/~xxz10/zhu-web/CPASSOC/
MTAR v0.1.0: https://github.com/baolinwu/MTAR
MPAT v1.0 (implements PCO and mixAda): https://
content.sph.harvard.edu/xlin/software.html#mpat
USAT v1.21 (implements MANOVA and USAT):
https://github.com/RayDebashree/USAT
mvtests v0.3 (implements POM-LRT and Nyholt-Šidák
corrected minP): https://github.com/RayDebashree/
mvtests
Amino Acids summary data: http://www.computationa
lmedicine.fi/data#NMR_GWAS
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LD scores from 1000 Genomes European data: https://da
ta.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_
chr.tar.bz2
List of HapMap3 SNPs: https://data.broadinstitute.org/a
lkesgroup/LDSCORE/hapmap3_snps.tgz
QQ plot code: https://genome.sph.umich.edu/wiki/Code_
Sample:_Generating_QQ_Plots_in_R
Manhattan plot code: https://genome.sph.umich.edu/w
iki/Code_Sample:_Generating_Manhattan_Plots_in_R
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