De novo variants in an extracellular matrix protein coding gene, fibulin-5 (FBLN5) are associated with pseudoexfoliation


Fibulin-5 (FBLN5), an extracellular scaffold protein, plays a crucial role in the activation of Lysyl oxidase like-1 (LOXL1), a tropoelastin crosslinking enzyme, and subsequent deposition of elastin in the extracellular matrix. Following study identifies polymorphisms within FBLN5 gene as risk factors and its aberrant expression in the pathogenesis of an ocular disorder, pseudoexfoliation (PEX). Exons and exon–intron boundaries within FBLN5 gene were scanned through fluorescence-based capillary electrophoresis for polymorphisms as risk factors for PEX pathogenesis in recruited study subjects with Indian ethnicity. mRNA and protein expression of FBLN5 was checked in lens capsule of study subjects through qRT-PCR and western blotting, respectively. In vitro functional analysis of risk variants was done through luciferase reporter assays. Thirty study subjects from control and PEX affected groups were scanned for potential risk variants. Putative polymorphisms identified by scanning were further evaluated for genetic association in a larger sample size comprising of 338 control and 375 PEX affected subjects. Two noncoding polymorphisms, hg38 chr14:g.91947643G>A (rs7149187:G>A) and hg38 chr14:g.91870431T>C (rs929608:T>C) within FBLN5 gene are found to be significantly associated with PEX as risk factors with a p-value of 0.005 and 0.004, respectively. Molecular assays showed a decreased expression of FBLN5 at both mRNA and protein level in lens capsule of pseudoexfoliation syndrome (PEXS) affected subjects than control. This study unravels two novel risk variants within FBLN5 gene in the pathogenesis of PEX. Further, a decreased expression of FBLN5 in PEXS affected lens capsules implicates a pathogenic link between extracellular matrix maintenance and onset of PEX.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 2006;141:921–37.

    PubMed  Google Scholar 

  2. 2.

    Ritch R. Exfoliation syndrome—the most common identifiable cause of open-angle glaucoma. J Glaucoma 1994;3:176–7.

    CAS  PubMed  Google Scholar 

  3. 3.

    Ovodenko B, Rostagno A, Neubert TA, Shetty V, Thomas S, Yang A, et al. Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci 2007;48:1447–57.

    PubMed  Google Scholar 

  4. 4.

    Li ZY, Streeten BW, Wallace RN. Association of elastin with pseudoexfoliative material: an immunoelectron microscopic study. Curr Eye Res 1988;7:1163–72.

    CAS  PubMed  Google Scholar 

  5. 5.

    Schlotzer-Schrehardt U, Dorfler S, Naumann GO. Immunohistochemical localization of basement membrane components in pseudoexfoliation material of the lens capsule. Curr Eye Res 1992;11:343–55.

    CAS  PubMed  Google Scholar 

  6. 6.

    Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007;317:1397–400.

    CAS  PubMed  Google Scholar 

  7. 7.

    Aung T, Ozaki M, Lee MC, Schlotzer-Schrehardt U, Thorleifsson G, Mizoguchi T, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet 2017;49:993–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Krumbiegel M, Pasutto F, Mardin CY, Weisschuh N, Paoli D, Gramer E, et al. Exploring functional candidate genes for genetic association in german patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 2009;50:2796–801.

    PubMed  Google Scholar 

  9. 9.

    Burdon KP, Sharma S, Hewitt AW, McMellon AE, Wang JJ, Mackey DA, et al. Genetic analysis of the clusterin gene in pseudoexfoliation syndrome. Mol vision 2008;14:1727–36.

    CAS  Google Scholar 

  10. 10.

    Padhy B, Nanda GG, Chowdhury M, Padhi D, Rao A, Alone DP. Role of an extracellular chaperone, clusterin in the pathogenesis of pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Exp Eye Res 2014;127:69–76.

    CAS  PubMed  Google Scholar 

  11. 11.

    Krumbiegel M, Pasutto F, Schlotzer-Schrehardt U, Uebe S, Zenkel M, Mardin CY, et al. Genome-wide association study with DNA pooling identifies variants at CNTNAP2 associated with pseudoexfoliation syndrome. Eur J Hum Genet 2011;19:186–93.

    PubMed  Google Scholar 

  12. 12.

    Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet 2015;47:387–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zagajewska K, Piatkowska M, Goryca K, Balabas A, Kluska A, Paziewska A, et al. GWAS links variants in neuronal development and actin remodeling related loci with pseudoexfoliation syndrome without glaucoma. Exp Eye Res 2018;168:138–48.

    CAS  PubMed  Google Scholar 

  14. 14.

    Hayat B, Padhy B, Mohanty PP, Alone DP. Altered unfolded protein response and proteasome impairment in pseudoexfoliation pathogenesis. Exp Eye Res 2019;181:197–207.

    CAS  PubMed  Google Scholar 

  15. 15.

    Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 2004;36:178–82.

    CAS  PubMed  Google Scholar 

  16. 16.

    Tang JC, Liu JH, Liu XL, Liang X, Cai XJ. Effect of fibulin-5 on adhesion, migration and invasion of hepatocellular carcinoma cells via an integrin-dependent mechanism. World J Gastroenterol 2015;21:11127–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lomas AC, Mellody KT, Freeman LJ, Bax DV, Shuttleworth CA, Kielty CM. Fibulin-5 binds human smooth-muscle cells through alpha5beta1 and alpha4beta1 integrins, but does not support receptor activation. Biochem J 2007;405:417–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Budatha M, Roshanravan S, Zheng Q, Weislander C, Chapman SL, Davis EC, et al. Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans. J Clin Invest 2011;121:2048–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Schluterman MK, Chapman SL, Korpanty G, Ozumi K, Fukai T, Yanagisawa H, et al. Loss of fibulin-5 binding to beta1 integrins inhibits tumor growth by increasing the level of ROS. Dis Model Mech 2010;3:333–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Thomassin L, Werneck CC, Broekelmann TJ, Gleyzal C, Hornstra IK, Mecham RP, et al. The Pro-regions of lysyl oxidase and lysyl oxidase-like 1 are required for deposition onto elastic fibers. J Biol Chem 2005;280:42848–55.

    CAS  PubMed  Google Scholar 

  21. 21.

    Jung HJ, Jeon MJ, Yim GW, Kim SK, Choi JR, Bai SW. Changes in expression of fibulin-5 and lysyl oxidase-like 1 associated with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol 2009;145:117–22.

    CAS  PubMed  Google Scholar 

  22. 22.

    Claus S, Fischer J, Megarbane H, Megarbane A, Jobard F, Debret R, et al. A p.C217R mutation in fibulin-5 from cutis laxa patients is associated with incomplete extracellular matrix formation in a skin equivalent model. J Invest Dermatol 2008;128:1442–50.

    CAS  PubMed  Google Scholar 

  23. 23.

    Elahi E, Kalhor R, Banihosseini SS, Torabi N, Pour-Jafari H, Houshmand M, et al. Homozygous missense mutation in fibulin-5 in an Iranian autosomal recessive cutis laxa pedigree and associated haplotype. J Invest Dermatol 2006;126:1506–9.

    CAS  PubMed  Google Scholar 

  24. 24.

    Orriols M, Varona S, Marti-Pamies I, Galan M, Guadall A, Escudero JR, et al. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 2016;110:431–42.

    CAS  PubMed  Google Scholar 

  25. 25.

    Cheng S, Lv H, Zhang W, Wang Z, Shi X, Liang W, et al. Adult-onset demyelinating neuropathy associated with FBLN5 gene mutation. Clin Neuropathol 2017;36:171–7.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Stone EM, Braun TA, Russell SR, Kuehn MH, Lotery AJ, Moore PA, et al. Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 2004;351:346–53.

    CAS  PubMed  Google Scholar 

  27. 27.

    Zengin MO, Karti O, Karahan E, Kusbeci T. An evaluation of the relationship between clinically unilateral pseudoexfoliation syndrome and age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retina 2018;49:12–9.

    PubMed  Google Scholar 

  28. 28.

    Wirostko BM, Curtin K, Ritch R, Thomas S, Allen-Brady K, Smith KR, et al. Risk for exfoliation syndrome in women with pelvic organ prolapse: a Utah Project on Exfoliation Syndrome (UPEXS) study. JAMA Ophthalmol 2016;134:1255–62.

    PubMed  Google Scholar 

  29. 29.

    Gonen KA, Gonen T, Gumus B. Renal artery stenosis and abdominal aorta aneurysm in patients with pseudoexfoliation syndrome. Eye 2013;27:735–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Schumacher S, Schlotzer-Schrehardt U, Martus P, Lang W, Naumann GO. Pseudoexfoliation syndrome and aneurysms of the abdominal aorta. Lancet 2001;357:359–60.

    CAS  PubMed  Google Scholar 

  31. 31.

    Schlotzer-Schrehardt U, Hammer CM, Krysta AW, Hofmann-Rummelt C, Pasutto F, Sasaki T, et al. LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation-specific risk of glaucoma. Ophthalmology 2012;119:1832–43.

    PubMed  Google Scholar 

  32. 32.

    Want A, Gillespie SR, Wang Z, Gordon R, Iomini C, Ritch R, et al. Autophagy and mitochondrial dysfunction in tenon fibroblasts from exfoliation glaucoma patients. PLoS ONE 2016;11:e0157404.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Padhy B, Hayat B, Nanda GG, Mohanty PP, Alone DP. Pseudoexfoliation and Alzheimer’s associated CLU risk variant, rs2279590, lies within an enhancer element and regulates CLU, EPHX2 and PTK2B gene expression. Hum Mol Genet 2017;26:4519–29.

    CAS  PubMed  Google Scholar 

  34. 34.

    Perez-Rico C, Pascual G, Sotomayor S, Asunsolo A, Cifuentes A, Garcia-Honduvilla N, et al. Elastin development-associated extracellular matrix constituents of subepithelial connective tissue in human pterygium. Invest Ophthalmol Vis Sci 2014;55:6309–18.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ren T, Lin S, Wang Z, Shang A. Differential proteomics analysis of low- and high-grade of astrocytoma using iTRAQ quantification. Onco Targets Ther 2016;9:5883–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 2009;3:337–47.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lotery AJ, Baas D, Ridley C, Jones RP, Klaver CC, Stone E, et al. Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Hum Mutat 2006;27:568–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Markova D, Zou Y, Ringpfeil F, Sasaki T, Kostka G, Timpl R, et al. Genetic heterogeneity of cutis laxa: a heterozygous tandem duplication within the fibulin-5 (FBLN5) gene. Am J Hum Genet 2003;72:998–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Callewaert B, Su CT, Van Damme T, Vlummens P, Malfait F, Vanakker O, et al. Comprehensive clinical and molecular analysis of 12 families with type 1 recessive cutis laxa. Hum Mutat 2013;34:111–21.

    CAS  PubMed  Google Scholar 

  40. 40.

    Khadzhieva MB, Kamoeva SV, Chumachenko AG, Ivanova AV, Volodin IV, Vladimirov IS, et al. Fibulin-5 (FBLN5) gene polymorphism is associated with pelvic organ prolapse. Maturitas 2014;78:287–92.

    CAS  PubMed  Google Scholar 

  41. 41.

    Safka Brozkova D, Lassuthova P, Neupauerova J, Krutova M, Haberlova J, Stejskal D, et al. Czech family confirms the link between FBLN5 and Charcot-Marie-Tooth type 1 neuropathy. Brain 2013;136(Pt 7):e232.

    PubMed  Google Scholar 

  42. 42.

    Auer-Grumbach M, Weger M, Fink-Puches R, Papic L, Frohlich E, Auer-Grumbach P, et al. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. Brain 2011;134:1839–52.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hu Q, Loeys BL, Coucke PJ, De Paepe A, Mecham RP, Choi J, et al. Fibulin-5 mutations: mechanisms of impaired elastic fiber formation in recessive cutis laxa. Hum Mol Genet 2006;15:3379–86.

    CAS  PubMed  Google Scholar 

  44. 44.

    Jones RP, Ridley C, Jowitt TA, Wang MC, Howard M, Bobola N, et al. Structural effects of fibulin 5 missense mutations associated with age-related macular degeneration and cutis laxa. Invest Ophthalmol Vis Sci 2010;51:2356–62.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kaur I, Rathi S, Chakrabarti S. Variations in TIMP3 are associated with age-related macular degeneration. Proc Natl Acad Sci USA 2010;107:E112–3.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kozobolis VP, Detorakis ET, Tsilimbaris MK, Vlachonikolis IG, Tsambarlakis IC, Pallikaris IG. Correlation between age-related macular degeneration and pseudoexfoliation syndrome in the population of Crete (Greece). Arch Ophthalmol 1999;117:664–9.

    CAS  PubMed  Google Scholar 

  47. 47.

    Pasutto F, Zenkel M, Hoja U, Berner D, Uebe S, Ferrazzi F, et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat Commun 2017;8:15466.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Hauser MA, Aboobakar IF, Liu Y, Miura S, Whigham BT, Challa P, et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet 2015;24:6552–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Mullins RF, Olvera MA, Clark AF, Stone EM. Fibulin-5 distribution in human eyes: relevance to age-related macular degeneration. Exp Eye Res 2007;84:378–80.

    CAS  PubMed  Google Scholar 

  50. 50.

    Takacs P, Nassiri M, Viciana A, Candiotti K, Fornoni A, Medina CA. Fibulin-5 expression is decreased in women with anterior vaginal wall prolapse. Int Urogynecol J Pelvic Floor Dysfunct 2009;20:207–11.

    PubMed  Google Scholar 

  51. 51.

    Zhou Y, Ling O, Bo L. Expression and significance of lysyl oxidase-like 1 and fibulin-5 in the cardinal ligament tissue of patients with pelvic floor dysfunction. J Biomed Res 2013;27:23–8.

    PubMed  Google Scholar 

  52. 52.

    Chen X, Song X, Yue W, Chen D, Yu J, Yao Z, et al. Fibulin-5 inhibits Wnt/beta-catenin signaling in lung cancer. Oncotarget 2015;6:15022–34.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Shi XY, Wang L, Cao CH, Li ZY, Chen J, Li C. Effect of Fibulin-5 on cell proliferation and invasion in human gastric cancer patients. Asian Pac J Trop Med 2014;7:787–91.

    CAS  PubMed  Google Scholar 

  54. 54.

    Schlotzer-Schrehardt U, Pasutto F, Sommer P, Hornstra I, Kruse FE, Naumann GO, et al. Genotype-correlated expression of lysyl oxidase-like 1 in ocular tissues of patients with pseudoexfoliation syndrome/glaucoma and normal patients. Am J Pathol 2008;173:1724–35.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Papadopoulou M, Papadaki H, Zolota V, Gartaganis SP. Immunohistochemical profiles of LOXL-1, FBN1, TGF-beta1, and COX-2 in pseudoexfoliation syndrome. Curr Eye Res 2017;42:880–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Zenkel M, Poschl E, von der Mark K, Hofmann-Rummelt C, Naumann GO, Kruse FE, et al. Differential gene expression in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 2005;46:3742–52.

    PubMed  Google Scholar 

  57. 57.

    Schlotzer-Schrehardt U. Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J Ophthalmol 2011;18:30–6.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Choi J, Bergdahl A, Zheng Q, Starcher B, Yanagisawa H, Davis EC. Analysis of dermal elastic fibers in the absence of fibulin-5 reveals potential roles for fibulin-5 in elastic fiber assembly. Matrix Biol 2009;28:211–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, et al. Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol 2007;176:1061–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank the study participants for their contribution and consent for this study. This work was supported by the National Institute of Science Education and Research, Department of Atomic Energy (India); and Council of Scientific and Industrial Research (India) Grant no. 27(0317)/16/EMR-II.

Author information



Corresponding authors

Correspondence to Pranjya Paramita Mohanty or Debasmita Pankaj Alone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padhy, B., Kapuganti, R.S., Hayat, B. et al. De novo variants in an extracellular matrix protein coding gene, fibulin-5 (FBLN5) are associated with pseudoexfoliation. Eur J Hum Genet 27, 1858–1866 (2019).

Download citation