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Abstract
Hexokinase 1 (HK1) phosphorylates glucose to glucose-6-phosphate, the first rate-limiting step in glycolysis. Homozygous
and heterozygous variants in HK1 have been shown to cause autosomal recessive non-spherocytic hemolytic anemia,
autosomal recessive Russe type hereditary motor and sensory neuropathy, and autosomal dominant retinitis pigmentosa
(adRP). We report seven patients from six unrelated families with a neurodevelopmental disorder associated with
developmental delay, intellectual disability, structural brain abnormality, and visual impairments in whom we identified four
novel, de novo missense variants in the N-terminal half of HK1. Hexokinase activity in red blood cells of two patients was
normal, suggesting that the disease mechanism is not due to loss of hexokinase enzymatic activity.

Introduction

Neurodevelopmental disorders affect 1–3% of children and
encompass a wide range in severity and associated beha-
vioral differences [1]. Identifying the etiology of neurode-
velopmental disorders has been challenging given the
diversity of genetic and non-genetic causes. Exome
sequencing (ES) is an effective tool to diagnose patients
with phenotypically similar and etiologically heterogeneous
neurodevelopmental disorders and to discover new genetic
etiologies. Many of these conditions affect reproductive
fitness and arise from de novo variants in genes with a
critical role in brain development and/or function [2].

Hexokinases catalyze the first rate-limiting step of gly-
colysis; phosphorylation of glucose to produce glucose-6-
phosphate (G6P). There are four hexokinases (I-IV), each of
which has a specific tissue expression pattern. HK1 is ubi-
quitously expressed but is abundant in the brain and is
known as the ‘brain-type hexokinase’. HK1 consists of N-
terminal regulatory and C-terminal catalytic domains. Bi-
allelic variants affecting the catalytic active site in the C-
terminus and in the 5’ UTR cause non-spherocytic hemo-
lytic anemia (OMIM #235700) and hereditary motor and
sensory neuropathy, Russe type (OMIM #605285),
respectively [3–6]. In addition, a rare heterozygous variant
close to the C-terminal end, c.2539G>A (p.(Glu847Lys)),
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has recently been shown to cause autosomal dominant
retinitis pigmentosa 79 (OMIM #617460) [7–9]. In this
study, we report four novel, de novo variants in HK1 in
seven patients from six unrelated families with neurodeve-
lopmental problems, structural brain abnormalities, and
visual impairment, expanding the phenotype of variants in
HK1.

Subjects and methods

This study was approved by the Institutional Review Board
of Columbia University. Informed consent was obtained
from all participants. Genomic DNA was extracted from
whole blood from the affected children and their biological
parents. ES was performed in 12,289 (5132 females; 7157
males) individuals with mainly developmental delay/intel-
lectual disabilities (DD/ID) with or without accompanying
abnormalities in multiple organ systems at GeneDx with
exon targets captured using the Agilent SureSelect Human
All Exon V4 (50Mb) kit or the Clinical Research Exome
(Agilent Technologies, Santa Clara, CA). The sequencing
methodology and variant interpretation protocol have been
previously described [10]. One additional patient with one
of the same variants we identified in the original series was
identified through personal communication with an external
clinic and laboratory. All HK1 variants were confirmed by
Sanger sequencing.

Results

Seven patients from six unrelated families were found to
carry four different, de novo heterozygous missense var-
iants in HK1 (NM_000188.2; NP_000179.2): c.1241G>A
(p.(Gly414Glu)) and c.1252A>G (p.(Lys418Glu)) in exon 9
and c.1334C>T (p.(Ser445Leu)) and c.1370C>T (p.
(Thr457Met)) in exon 10 (Exons are numbered like in
NG_012077.1). Predictions of variant pathogenicity are
given in Table 1. Two of the variants, c.1370C>T (p.
(Thr457Met)) and c.1334C>T (p.(Ser445Leu)), were each
observed recurrently in two unrelated families. In addition,
the c.1370C>T (p.(Thr457Met)) variant was identified in
two affected siblings in one family, and parental analyses
did not show parental mosaicism in the blood. We calcu-
lated the probability of identifying de novo variants in HK1
with the same phenotype. Assuming a mutation rate of 1e-8
per base pair per meiosis, and considering the six inde-
pendent meiosis identified from a single laboratory
(assuming parental origin for the two that were recurrent in
the same family), the probability of our findings is p=
6.68e-5 using a Poisson test and p= 0.0016 with the
full-likelihood VarPrism approach [11]. Identified variants Ta
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have been deposited in ClinVar under the following
accession numbers: SCV000570679.3, SCV000570071.3,
SCV000854591, and SCV000491089.1.

The four missense variants are all located in highly
conserved residues (Fig. 1a). None of the variants were
observed in 1000 Genomes [12], the NHLBI GO Exome
Sequencing Project (Exome Variant Server, http://evs.gs.wa
shington.edu/EVS), ExAC (exac.broadinstitute.org), gno-
mAD (gnomad.broadinstitute.org), or in our own local
(GeneDx) database of >100,000 exomes consisting of
individuals affected with various largely pediatric pheno-
types and their healthy first degree relatives. GnomAD v2.1
gene constraint metrics for HK1 indicate the gene is under
constraint for both loss-of-function (pLI= 0.91) and mis-
sense (Z-score= 3.34) variation in the general population.
Regional missense constraint scores (MPC) for each variant
are high and range from 1.6 to 2.15 (Table 1) [13].

Clinical findings of our patients are summarized in
Table 2. Of note, patients 6 and 7 were similarly affected
siblings, and they each died around the age of 1 year due to
respiratory infections. Prenatal and neonatal histories were
largely unremarkable except a resolved cystic brain lesion
in one patient and prematurity in another. Features common
to the majority of individuals with the HK1 variants include
global developmental delay (7/7), intellectual disability (5/
5), optic atrophy and/or retinitis pigmentosa (7/7), structural

brain anomalies on MRI including cerebral and cerebellar
atrophy and thin corpus callosum (6/7), hypotonia/hyper-
tonia (5/7), speech problems (4/5), and ataxia (3/4). Three
patients have feeding difficulties and two patients have
musculoskeletal abnormalities (torticollis, scoliosis, hip
dislocation, and pes planus). Two patients have nonspecific
mildly dysmorphic facial features (Fig. 2). The deceased
siblings were noted to have laryngotracheomalacia at birth.
There were several features observed in only a single patient
including unilateral facial weakness, cerebellar atrophy, and
hearing loss.

We determined the kinetic properties of red blood cell
hexokinase in two patients (c.1252A>G, p.(Lys418Glu) and
c.1334C>T, p.(Ser445Leu)) using previously described
methods [14] and found no difference between control and
patient samples in the affinity of mutant HK for glucose or
ATP, nor was there any difference in thermal stability of
these two variants (Fig. 3).

Discussion

We identified seven patients from six independent families
with overlapping neurodevelopmental features, structural
brain abnormalities including cerebral and cerebellar atro-
phy and thin corpus callosum, and optic atrophy and/or

HUMAN   PRLRTTVGVDGSLYKTHPQYSRRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLAHFHLT 480

RAT     PRLRTTVGVDGSLYKMHPQYSRRFHKTLRRLVPDSDVRFLLSESGTGKGAAMVTAVAYRLAEQHRQIEETLAHFRLS 480

BOVIN   PRLRTTVRVDGSLYKTHPQYSRRFHKTLRRLVPDSDVRFLLSESGTGKGAAMVTAVAYRLAEQHRQIEETLAHFRLS 480

DANRE   PRLRTTVGIDGSLYKMHPQYARRLHKTVRRLVPESDVRFLLSESGSGKGAALVTAWAYRLADQERQIAETLEEFRLT 480

PANTR   PRLRTTVGVDGSLYKTHPQYSRRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLAHFHLT 480

XENLA   PRLRTTVGIDGSLYKMHPQYARRLHKTVRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLSEQRRQIDETLEEFKLS 480

******* :****** ****:**:***:*****:***********:*****:*** ****::*.*** *** .*:*:

a

b

Fig. 1 a Sequence alignment of HK1 across different species. Mutated residues in our patients are shown in bold red. b 3D crystal structure of HK1
obtained from Protein Data Bank (PDB ID: 1HKC) and variants localizations. Our variants are localized in the vicinity of the glucose-6-phosphate
binding site near the end of N-terminus and in the interdomain α-helix
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retinitis pigmentosa and identified four novel, de novo
missense variants in highly conserved residues in the N-
terminal half of HK1.

There are four hexokinases in humans, each encoded by
a different gene that phosphorylates glucose to G6P, the first

rate-limiting step in glucose metabolism. HK1 contains an
amino-terminal regulatory and carboxy-terminal catalytic
domains. Alternative splicing results in different isoforms,
which differ only in the first exon and are specific to dif-
ferent cell types such as red blood cells, retina, and sper-
matogenic cells [7, 15–17]. All of our variants fall into the
exons shared across isoforms. The canonical HK1 isoform
is expressed ubiquitously; however, due to its abundance in
brain, it is known as ‘brain-type hexokinase.’ It is also
known, along with HK2, as a mitochondrial hexokinase. It
can bind the porin protein (VDAC1) of the outer mito-
chondrial membrane (OMM) via its N-terminus 12 amino
acid hydrophobic sequence and couple oxidative phos-
phorylation with glycolysis. It has been shown that with this
unique feature, HK1 also interacts with the apoptotic
pathway genes such as Akt [18–22].

The variants that have been associated with HK1-related
clinical phenotypes are shown in Fig. 4. The most common
clinical phenotype associated with HK1 variants is non-
spherocytic hemolytic anemia (OMIM #235700) caused by
bi-allelic variants affecting the hexokinase activity [3, 4, 14,
23, 24]. Homozygous variants in the 5’ UTR of HK1 have
been associated with hereditary motor and sensory neuro-
pathy, Russe Type (OMIM #605285) [5, 6, 25]. A rare
heterozygous missense variant close to the C-terminal end,
c.2539G>A (p.(Glu847Lys)), has been shown to cause
autosomal dominant retinitis pigmentosa 79 (OMIM
#617460) and other forms of retinal dystrophies [7–9].
Interestingly, Sullivan et al., reported homozygosity of the
c.2539G>A (p.(Glu847Lys)) variant in a patient with early
onset (at age 4 years old) retinitis pigmentosa but without
hemolytic anemia or developmental abnormalities, and
Wang et al., reported two asymptomatic adult family
members who carry the heterozygous c.2539G>A (p.
(Glu847Lys)) variant [7, 8]. In both hereditary motor and
sensory neuropathy, Russe Type disease and retinitis pig-
mentosa 79, no change in hexokinase activity has been
reported, and the pathogenic mechanism of those variants is
unknown. Additionally, increased expression of HK1 was
reported in patients with congenital hyperinsulinism [26],
and three non-coding variants were reported in one large
family with congenital hyperinsulinism as potentially cau-
sative [27].

Glucose-6-phosphate inhibits the kinase activity by
binding multiple sites in the N- and C-terminal halves.
Binding of the phosphate and pyranose moieties of G6P to
the residues 413–415 (Asp-Gly-Ser) and residue 449 (Ser),
respectively, results in conformational changes propagated
to the C-terminal half and inhibits ATP binding, and hence
kinase activity [28, 29]. Orthophosphate (Pi) relieves this
inhibitory effect by competing with the phosphate moiety of
G6P. The N- and C-terminal halves of HK1 are connected
by an interdomain helix required to exert full Pi relief [30].

Fig. 2 Frontal and profile photos of Patient 2 showing mildly dys-
morphic facial features of frontal bossing, anteverted nose, bulbous
nasal tip, and thin upper lip
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Fig. 3 Thermostability, glucose affinity, and ATP affinity measure-
ments on red blood cells from two patients carrying c.1252A>G (p.
(Lys418Glu)) and c.1334C>T (p.(Ser445Leu)) variants and controls.
In addition to the internal healthy control sample, peripheral blood
samples from one unaffected parent of each patient were used to adjust
the possible effects of shipment (“shipment control”) from the
interpretation
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Since all of our variants fall into the region (Fig. 1b)
common to all HK1 isoforms, we measured the hexokinase
activity in red blood cells of two patients (c.1334C>T, p.
(Ser445Leu) and c.1252A>G, p.(Lys418Glu)) but found no
difference in enzyme activity or kinetic properties between
controls and patient samples (Fig. 3), consistent with the
lack of (hemolytic) anemia in our patients. These results,
along with the normal hexokinase activity found in other
HK1-related phenotypes without non-spherocytic hemolytic
anemia, suggest a different pathogenic mechanism for the
dominant missense variants.

All but one of our patients show structural brain
abnormalities and neurodevelopmental problems along with
optic atrophy and/or retinitis pigmentosa (Table 2).
Although neurodevelopmental problems and structural brain
abnormalities have been reported in some patients with
hexokinase deficiency-related non-spherocytic hemolytic
anemia (Table 3) [3, 31–33], whether these findings were
direct consequences of HK1 variants, indirect consequences
of severe intrauterine anemia due to hexokinase deficiency,
or due to different genetic and/or non-genetic factors is not
known. In addition, there are individuals with both homo-
zygous and heterozygous variants with decreased hex-
okinase activity but no phenotypic manifestations including
non-spherocytic hemolytic anemia. We hypothesize that
heterozygous missense variants identified in this study may
result in a gain-of-function which might lead to accumula-
tion of the protein in cells of affected tissues leading to
cellular dysfunction, apoptosis, or cell death, adverse effect
on mitochondrial function, or conferring new phosphoryla-
tion targets for HK1, thereby impacting eye and brain
function. It has been shown that the intracellular accumu-
lation of misfolded proteins plays an important role in some

forms of retinitis pigmentosa [34]. Accumulation of mis-
folded proteins, in general, leads to endoplasmic reticulum
stress which later results in apoptotic cell death via unfolded
protein response [35]. Autophagy and mitophagy are among
the well-known pathophysiological mechanisms in optic
atrophy and neurological disorders [36]. A gain-of-function
mechanism has been hypothesized for some missense var-
iants in OPA1 and has also been proposed for autosomal
dominant optic atrophy with extraocular manifestations such
as sensorineural hearing loss, ataxia, myopathy, spasticity,
and peripheral neuropathy [36, 37]. In addition to the neu-
rodevelopmental problems, we have noted optic atrophy in
four patients and retinitis pigmentosa in three patients.

By using protein–protein interaction network analysis,
about 30% of the human proteins have been proposed to
have multifunctional properties [38, 39] or ‘moonlighting’
activities [40]. Although it has been previously classified in
this group along with other glycolytic pathway enzymes
such as glucose-6-phosphate isomerase (GPI) [41], HK1 has
yet to be classified as multifunctional by network analyses.
Several studies have shown that HK1 has an anti-apoptotic
function via its mitochondrial role [19, 20, 42–45] and it has
been proposed to have a role in some psychiatric [46, 47]
and late-onset neurologic disorders [48–50] via its effect on
mitochondrial homeostasis. Variants identified in this study
could alter HK1 binding to porin protein in the outer
mitochondrial membrane and alter the apoptotic pathway or
some other aspect of mitochondrial function.

Two of the four variants, c.1334C>T (p.(Ser445Leu)) and
c.1370C>T (p.(Thr457Met)), are recurrently observed in
unrelated individuals in our study. Furthermore, the
c.1370C>T (p.(Thr457Met)) variant is seen in two affected
siblings of one family in which parental analyses did not
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show mosaicism in parental blood. This family also has an
unaffected child who does not carry the HK1 variant. These
two variants are among the four heterozygous variants
detected in four different patients in Deciphering Develop-
mental Disorders study along with another missense variant in
C-terminal domain and a canonical splice site variant close to
N-terminus [51]. Further phenotypic delineation of those and
other patients would contribute to the understanding of the
genotype-phenotype relationships, mutational hot spots, mode
of action of variants, and disease progress.

In conclusion, we describe de novo heterozygous missense
variants in patients with both neurodevelopmental problems,
structural brain abnormalities, and optic atrophy and/or reti-
nitis pigmentosa thereby expanding the HK1-associated
human disease spectrum. Future clinical and functional stu-
dies are needed to elucidate the underlying pathophysiological
mechanism leading to the observed phenotypes.
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