The Marquesans at the fringes of the Austronesian expansion

Article metrics


In the present study, 87 unrelated individuals from the Marquesas Archipelago in French Polynesia were typed using mtDNA, Y-chromosome and autosomal (STRs) markers and compared to key target populations from Island South East Asia (ISEA), Taiwan, and West and East Polynesia to investigate their genetic relationships. The Marquesas, located at the eastern-most fringes of the Austronesian expansion, offer a unique opportunity to examine the effects of a protracted population expansion wave on population structure. We explore the contribution of Melanesian, Asian and European heritage to the Marquesan islands of Nuku-Hiva, Hiva-Oa and Tahuata. Overall, the Marquesas Islands are genetically homogeneous. In the Marquesan Archipelago all of the mtDNA haplogroups are of Austronesian origin belonging to the B4a1 subhaplogroup as the region marks the end of a west to east decreasing cline of Melanesian mtDNA starting with the West Polynesian population of Tonga. Genetic discrepancies are less pronounced between the Marquesan and Society islands, and among the Marquesan islands. Interestingly, a number of Melanesian, Polynesian and European Y-chromosome haplogroups exhibit very different distribution between the Marquesan islands of Nuku Hiva and Hiva Oa, likely resulting from drift, differential migration involving various source populations and/or unique trading routes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Wilmshurst JM, Hunt TL, Carl P, et al. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. PNAS. 2015;108:1815–20.

  2. 2.

    Mirabal S, Herrera KJ, Gayden T, et al. Increased Y-chromosome resolution of Polynesian Islands of Samoa and Tonga. Gene. 2012;492:339-48.

  3. 3.

    Gray RD, Drummond AJ, Greenhill SJ. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science. 2009;323:479–83.

  4. 4.

    Sagart, L. The expansion of Setaria farmers in East Asia: a linguistic and archaeological model. Past human migrations in East Asia: matching archaeology, linguistics and genetics. Routledge, NY, NY, USA. 2008;p. 133–57.

  5. 5.

    Stone R. Graves of the Pacific’s first seafarers revealed. Science. 2006;312:360.

  6. 6.

    Skoglund P, Cosimo Posth C, Sirak K. Genomic insights into the peopling of the Southwest Pacific. Nature. 2016;538:510–3.

  7. 7.

    Lipson M, Skoglund P, Spriggs M, et al. Population turnover in remote oceania shortly after initial settlement. Curr Biol. 2018;28(7):1157–65.

  8. 8.

    Posth C, Nägele K, Powell A. Language continuity despite population replacement in Remote Oceania. Nat Ecol Evol. 2018;2:731–40.

  9. 9.

    Bellwood P. The checkered prehistory of rice movement southwards as a domesticated cereal—from the Yangzi to the Equator. Rice. 2011;4:93–103.

  10. 10.

    Soares P, Trejaut JA, Loo JH, et al. Climate change and postglacial human dispersals in southeast Asia. Mol Biol Evol. 2008;25:1209–18.

  11. 11.

    Li H, Wen B, Chen S-J. Paternal genetic affinity between western Austronesians and Daic populations. BMC Evol Biol. 2008;8:146.

  12. 12.

    Tianlong J The neolithic of southeast China: cultural transformation and regional interaction on the coast. Amherst: Cambria Press; 2007.

  13. 13.

    Pawley A. The Austronesian dispersal: languages, technologies and people. In: Bellwood, PS, Renfrew C. Examining the farming/language dispersal hypothesis. UK: University of Cambridge Press; 2002.

  14. 14.

    Kayser M. The human genetic history of oceania: near and remote views of dispersal. Curr Biol. 2010;20:194–201.

  15. 15.

    Burley D, Weisler MI, Zhao J-X. High precision U/Th dating of first Polynesian settlement. PLoS ONE. 2012;7:e48769.

  16. 16.

    Hammarström H, Forkel R, Haspelmath M. Central Pacific. Glottolog 3.0. Jena, Germany: Max Planck Institute for the Science of Human History; 2017.

  17. 17.

    Vinton KP. The Lapita Peoples. London, UK: Wiley; 1997.

  18. 18.

    Hudjashov G, Endicott P, Post H, et al. Investigating the origins of eastern Polynesians using genome-wide data from the Leeward Society Isles. Sci Rep. 2018;8:1823.

  19. 19.

    Hunt TL, Lipo CP. Late colonization of Easter Island. Science. 2006;31:1603–6.

  20. 20.

    Horsburgh KA, McCoy MD. Dispersal, isolation, and interaction in the islands of Polynesia: a critical review of archaeological and genetic evidence. Diversity. 2017;9:37–58.

  21. 21.

    Green RC, Weisler MI. The Mangarevan sequence and the dating of geographic expansion into southeast Polynesia. Asian Perspectives. 2002;41:213–41.

  22. 22.

    Di Piazza A, Pearthree E. Voyaging and basalt exchange in the Phoenix and Line Archipelagoes: the viewpoint from three mystery islands. Archaeol Ocean. 2001;36:146–52.

  23. 23.

    Allen MS, William R, Dickinson WR, Huebert JM. The anomaly of Marquesan ceramics: a fifty year retrospective. J Pac Archaeol. 2012;3:90–104.

  24. 24.

    Sand C, Connaughton SP. Oceanic explorations: Lapita and western Pacific settlement, Australia: ANU E Press; 2007.

  25. 25.

    Stephanie L. Melanesia’: the history and politics of an idea. J Pac Hist. 2013;48:1–22.

  26. 26.

    Friedlaender JS, Friedlaender FR, Reed FA, et al. The genetic structure of pacific islanders. PLoS Genet. 2009;4:e19.

  27. 27.

    Kayser M, Lao O, Saar K, et al. Genome-wide analysis indicates more Asian than Melanesian ancestry of Polynesians. Am J Hum Genet. 2008;82:194–8.

  28. 28.

    Regueiro M, Mirabal S, Lacau H. Austronesian genetic signature in East African Madagascar and Polynesia. J Hum Genet. 2008;53:106–20.

  29. 29.

    Lansing JS, Murray P, Cox MP, et al. An ongoing Austronesian expansion in Island Southeast Asia. J Anthropol Archaeol. 2011;30:262–72.

  30. 30.

    Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, USA: Cold Spring Harbor Press; 1989.

  31. 31.

    Aznar JM, Celorrio D, Odriozola A, et al. I-DNASE21 system: development and SWGDAM validation of a new STR 21-plex reaction. Forensic Sci Int Genet. 2014;8:10–9.

  32. 32.

    Raymond M, Rousset F. genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.

  33. 33.

    Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16:1099–106.

  34. 34.

    Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure using multilocus genotype data. Genetics. 2000;155:945–59.

  35. 35.

    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.

  36. 36.

    Nei M. Molecular evolutionary genetics. USA: Columbia University Press; 1987.

  37. 37.

    Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995;139:457–62.

  38. 38.

    FMTA Busing, Commandeur JJF, Heiser WJ, Bandilla W, Faulbaum F, et al. PROXSCAL: a multidimensional scaling program for individual differences scaling with constraints. Adv Stat Softw. 1997;6:67–73.

  39. 39.

    Cardoso S, Zarrabeitia MT, Valverde L, et al. Variability of the entire mitochondrial DNA control region in a human isolate from the Pas Valley (northern Spain). J Forensic Sci. 2010;55:1196–201.

  40. 40.

    Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999;23:147.

  41. 41.

    Parson W, Gusmão L, Hares DR, et al. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet. 2014;13:134–42.

  42. 42.

    van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009;30:E386–94.

  43. 43.

    Valverde L, Illescas MJ, Villaescusa P. New clues to the evolutionary history of the main European paternal lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia. Eur J Hum Genet. 2016;24:437–41.

  44. 44.

    Hammer M, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9. pp

  45. 45.

    Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.

  46. 46.

    Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. USA: W.H. Freeman; 1969.

  47. 47.

    Kayser M, Brauer S, Cordaux R, et al. Melanesian and Asian origins of Polynesians: mtDNA and Y chromosome gradients across the Pacific. Mol Biol Evol. 2006;23:2234–44.

  48. 48.

    Wei LH, Shi Yan S, Teo YY, et al. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 revealspatrilineal traces of Austronesian populations on the eastern coastal regions of Asia. PLoS ONE. 2017;12:e0175080.

  49. 49.

    Yan S. CC Wang, H Li, et al. An updated tree of Y-chromosome Haplogroup O and revised phylogenetic positions of mutations P164 and PK4. Eur J Hum Genet. 2011;19:1013–5.

  50. 50.

    Salmond A. Aphrodite’s island. Berkeley USA: University of California Press; 2010.

Download references

Author information

Correspondence to Rene J. Herrera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark