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Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex
etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs
identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the
contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-
sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their
known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory
variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D
transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p= 0.014,
CI= 1.1–10). Fisher’s exact test revealed an association between the genetic variant and a triad of disease manifestations
including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p= 0.00037) among the
patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region
has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the
risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target
gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and
correlating them with rare risk alleles with strong biological effects.

Introduction

Systemic lupus erythematosus (SLE) is a chronic inflam-
matory autoimmune disease that predominantly affects
women of childbearing age [1]. A number of studies
exploring the genetic basis of SLE in diverse populations
identified over 40 risk loci [2], however it was estimated
that these loci explain only about 30% of SLE heritability
[3], indicating that disease pathogenesis results from a
combined effect of different mechanisms and even a larger
number of genes. The recently proposed omnigenic model
of complex traits suggests that virtually any gene with
regulatory variants active in relevant tissue may contribute
to disease pathogenesis [4]. Genes are highly interconnected
within the cell-specific gene networks, and thus any effect
on one gene with regulatory function, that is not even
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directly related to disease pathways, would lead to waves of
perturbations in other genes that would result in increased
disease susceptibility. This implies that many non-canonical
susceptibility genes remain to be discovered.

Apart from humans, SLE-like disorders have been stu-
died in mice [5] and dogs [6]. These studies revealed
potentially shared disease mechanisms across species. We
have previously identified five loci associated with a SLE-
related disease complex in dogs [7], leading to the detection
of a risk haplotype that affects the expression of the BANK1
gene [8], which is also associated with human SLE [9] and
cause perturbations in B-cell signaling pathways in mice
[10]. Identification of shared mechanisms and genes
between human and animal diseases could further improve
our understanding of SLE.

While GWAS lacks the capability of identifying rare
genetic variants, next generation sequencing provides better
resolution for discovery of such variants. Here, we used
targeted enrichment and high-throughput sequencing of
genes from pathways relevant for human immunity, SLE-
associated genes, and genes associated with the canine SLE-
related disease. Our approach revealed an association of a
rare regulatory variant with SLE in the Swedish population.

Materials and methods

Cases and controls

To detect novel disease-associated rare variants, we per-
formed targeted re-sequencing of 17 healthy controls and
156 patients; 16 of these had medical record data indicating
that they or their parents were born in another country than
Sweden (the remaining hereafter referred to as “Swedish”).
All patients fulfilled four or more of the American College
of Rheumatology (ACR) classification criteria for SLE
[11, 12] and were enrolled at the outpatient rheumatology
clinic at Uppsala University Hospital, Sweden. Clinical
data, including age, sex, disease duration, smoking habits,
information of ACR, and systemic lupus international col-
laborating clinics (SLICC) classification criteria [13, 14],
SLICC/ACR damage index (SLICC DI), major cardiovas-
cular event (MCE; myocardial infarction, stroke or transient
ischemic attack) and Raynaud, as well as results of auto-
antibody analyses, were collected from medical records. A
summary of patient characteristics is presented in Supple-
mentary Table 1. An additional cohort of 364 Swedish SLE
cases (average age= 51, 84% females) was used for variant
validation by genotyping and for further genetic analysis. A
total of 837 healthy blood donors from Uppsala Bioresource
(Uppsala, Sweden) matched for age and sex (average age=
50, 88% females) were used as controls. All patients and

controls gave their informed consent. The regional ethics
committee at Uppsala, Sweden approved the study proto-
cols EPN Uppsala Dnr 00–227 and Dnr 2016/155.

Gene array capture and sequencing data analysis

For all 215 genes (Supplementary Table 2) chosen for tar-
geted re-sequencing, the following regions were included:
all annotated coding exons, 5′ UTRs, 3′ UTRs and all
conserved elements with a SiPhy [15] lodscore of > 7.5
based on 29 mammals alignment [16], and located within
100 kb 5′ and 3′ of the genes as well as introns. The tiling
array comprised 5,059,619 bp in total. Detailed description
of array design and sequence analysis is in Supplementary
Methods. DNA samples from patients were allocated into
ten pools (Supplementary Table 3) and DNA from 17
healthy controls was pooled together. Paired-end sequen-
cing was performed using Illumina HighSeq2000 at the
SNP&SEQ Technology Platform (National Genomics
infrastructure, SciLifeLab, Uppsala, Sweden), yielding 100
bp reads. Sequence data was submitted to European
Nucleotide Archive (ENA) http://www.ebi.ac.uk/ena/data/
view/PRJEB8904 (study accession number: PRJEB8904).

Variant validation and genetic analysis

Variants were selected based on a series of filters with strict
cutoff thresholds and functional evidence based
on ENCODE data and Phylo P scores (Fig. 1). Genotyping
by pyrosequencing was used to validate candidate SNPs
(n= 10) and to identify individuals carrying the variants in
the primary patient cohort and 96 Swedish healthy blood
donors. Genotyping of the additional cases and controls was
performed either by ABI TaqMan allelic discrimination
assay on the ABI 7900HT system (Applied Biosystems) or
Sanger sequencing. Fisher’s exact test was used to analyze
associations between 3 candidate SNPs and disease status.
The three associated variants were tested for HWE:
rs200395694:G > T p-value 0.91; rs867059436:G > A
p-value 0.98; rs576275580:G > A p-value 0.88.

Reporter assays and EMSA

The allelic effects were studied using electrophoretic
mobility shift assays (EMSA) and luciferase reporter assays.
For detailed description see Supplementary methods.

Minigenes and splicing analysis

The MEF2D minigene constructs containing different allelic
variants of rs200395694 were prepared as follows: one intact
2.9 kb region (positions: chr1:156,479,713–156,482,610;
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hg38) containing four exons including two alternative exons
α1 and α2 [17] together with introns was amplified by PCR
from a DNA sample with known heterozygous genotype and
cloned into pcDNA3.1 D/V5-His -TOPO vector (Invitrogen).
The resulting plasmids were validated by Sanger sequencing
and purified with EndoFree Plasmid Maxi kit (Qiagen) for
transfection experiments. The minigenes were tested in Jurkat,
THP-1, HEK293, and C2C12 cell lines using quantitative
reverse transcription (RT-PCR) for transcript detection (Sup-
plementary Methods).

Statistical analyses of SLE phenotypes and
candidate SNP

The complete clinical data were available for 140 Swedish
patients and these were used for analysis of associations
between 21 SLE phenotypes using Fisher’s exact test
(binary variables) and Mann–Whitney U-test (non-binary
and ordinal variables). The ACR criterion 10 was removed
from genotype-phenotype association analyses as it was
well represented by the autoantibodies. Statistical analyses
were performed using R. The p-value threshold after Bon-
ferroni correction for 21 tests is 2.4 × 10−3.

Results

Targeted re-sequencing and variant selection

In order to find novel rare variants relevant to SLE patho-
genesis, we performed targeted re-sequencing of 215 can-
didate genes and their potentially regulatory regions
including elements highly conserved across mammals [16].
The list of genes comprises known human SLE-associated
genes and genes involved in immune response and

autoimmunity (n= 77), the nuclear factor of activated
T cells (NFAT) pathway genes (n= 98), genes in regions
associated with dog SLE-like disease [7] and other dog
immune-mediated diseases (n= 40) (Supplementary
Table 2).

We successfully re-sequenced the candidate regions in
140 SLE patients (nine pools) and 17 Swedish healthy
individuals (one pool). One of the patient pools containing 4
Swedish and 12 non-Swedish SLE samples failed library
preparation and was not sequenced. The average coverage
was 3775 X per pool. A summary of the sequencing results
can be found in Supplementary Table 3.

A total of 14,206 SNPs were identified in the case pools
that were absent in the control pool. To identify novel case-
only variants, all SNPs found only in the case pools were
also compared against the 1000 Genomes database (1000G
phase 1) and dbSNP136 [18] and only novel SNPs were
kept. Later, however, our key SNP was found in dbSNP137.
A series of filters with strict cutoff thresholds (Fig. 1) were
further applied to select variants with the most evidence for
potential regulatory function. Ten SNPs located in six genes
fulfilled our criteria by combining strong signals for reg-
ulatory potential and were kept for further validation
(Supplementary Table 4).

Genotyping and genetic analysis of candidate
variants

Since the variant discovery was performed on pooled DNA,
we genotyped our patient cohort in order to identify the
individuals carrying the alternative alleles of the ten selected
SNPs. In addition, a small control group of 96 Swedish
healthy blood donors was also genotyped for comparison.
After genotyping, we excluded seven SNPs based on their
occurrence in the control group or presence in only one
patient. The SNPs that remained were the following:
rs200395694:G > T (hg19 chr1:g.156450591 G > T), loca-
ted in the myocyte enhancer factor 2D (MEF2D) gene,
rs867059436:G > A (hg19 chr14:g.22958952 G > A), loca-
ted in the T-cell receptor alpha (TCRA) gene locus, and
rs576275580:G > A (hg19 chr15:g.89437973 G > A) loca-
ted in the first intron of the hyaluronan and proteoglycan
link protein 3 (HAPLN3) gene.

The three SNPs were further genotyped in an additional
set of 364 Swedish SLE cases and 741 control samples and
used for genetic association analysis. Combining all geno-
typed cases and controls we observed a significant asso-
ciation with SLE only for the MEF2D variant rs200395694
(p= 0.014). There were in total 12 heterozygotes out of 504
patients and 6 heterozygotes out of 839 controls giving an
allele frequency of 0.011 and 0.003, respectively. The SNP
is present in an updated version of dbSNP, and the allele
frequency in 1000G project is 0.001. The allele frequency in

Variant selection workflow

Sequence capture- 215 genes
• 9 patient pools (144 patients)
• 1 control pool (17 individuals)

138 novel variants
• Not in control pool
• Not in 1000 Genomes phase 1
• Not in dbSNP136
• Functional evidence

43 variants
• Variants with PhyloP score above 1

10 variants
• Variants that fulfilled at least two of the criteria:
• Overlap with promoter/enhancer associated histone modifications
• DNaseI hypersensitive sites
• ChIP-seq peaks

Fig. 1 Flowchart of variant selection. Variant selection was based on a
series of filters to remove variants without enough evidence for reg-
ulatory potential
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healthy controls observed in our study is similar to those
reported for the general Swedish population, according to
SweFreq (MAF 0.002) (https://swegen-exac.nbis.se/) [19].
Only two alternative alleles were detected in the Swedish
population. Of note, there are only heterozygotes reported
in both 1000G and SweFreq, and not a single homozygote
was identified for the alternative allele. The other two SNPs
were not associated in the larger cohort (HAPLN3: p=
0.818; TCRA: p= 0.188, Supplementary Table 5).

Functional effects of candidate variant

The associated SNP rs200395694 is located in the small
intron 4 of the myocyte enhancer factor 2D (MEF2D) gene
(Ensembl:ENSG00000116604) (encoded on the negative
strand: ref C, alt A) and overlaps with a DNase I hyper-
sensitive site, histone modifications and transcription factor
binding sites (Fig. 2). The PhyloP score of 4.2 indicates
high conservation among mammals and two regulatory
motifs for Elk1 and GABP transcription factors overlap
with the variant (http://genome.ucsc.edu/). The region also
contains chromatin modification marks for enhancers active
in T, B, NK cells, and monocytes (Fig. 2) (http://www.roa
dmapepigenomics.org) [20]. The Regulome database
annotates the variant as likely to affecting binding with the

score 2a (http://regulomedb.org/snp/chr1/156450590) [21].
Further analyses using TRANSFAC [22] and TRAP [23],
indicated stronger binding affinities to the alternative allele
for several transcription factors (Supplementary Table 6).

The potential for protein-binding of rs200395694 was
first investigated by EMSA using nuclear extracts from
Jurkat T-cell line to confirm the Roadmap T-cell-specific
enhancer activity and tested also in Daudi B-cell line. We
observed differential protein-binding between the reference
and the alternative allele in nuclear extracts from both cell
lines (illustrated with Jurkat T cells; Fig. 3a). Next, we
explored the regulatory effect of the SNP by luciferase
reporter assays. The opposite effect of the alternative allele
A on the reporter gene expression in different cells and
under different conditions was detected. Thus, the alter-
native A allele induced expression in non-stimulated Jurkat
(1.3-fold, p= 0.02) and K562 cells (1.8-fold, p= 0.0001)
compared to the reference C allele (Fig. 3b, Supplementary
Fig. 1), while in THP-1 this allele suppressed the reporter,
and no significant allelic difference was seen in HeLa and
Daudi. Interestingly, upon Jurkat stimulation, the reference
allele showed much higher luciferase activity (1.5-fold, p=
0.0001), suggesting active regulation by another transcrip-
tion factor(s) with increased binding affinity to the C allele.
In stimulated K562, the luciferase expression driven by the
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Fig. 2 Functional annotation of theMEF2D region with SNP rs200395694. The variant is located in intron 4 of theMEF2D gene and overlaps with
strong regulatory marks including DNase I hypersensitivity region (DNase Clusters), open regulatory region associated with active gene expression
(ORegAnno), conserved transcription factor binding sites (TFBS Summary) and region conservation across 100 vertebrates (Cons 100 Verts)
(http://genome.ucsc.edu/). The histone modification marks (H3K27ac, H3K4me1) associated with active enhancers mapped for blood cell
populations according to Roadmap Epigenomics (http://egg2.wustl.edu/roadmap/web_portal/) indicate the presence of a cell type-specific
enhancer. The known GWA signals located in theMEF2D gene region for migraine and blood cell traits are shown by green vertical lines (GWAS
Catalog) [31–33]
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risk allele A remains higher compared to the reference allele
C (1.4-fold, p= 0.0001) (Supplementary Fig. 1).

Given the reported alternative tissue-specific splicing of
the exon located 22 bp downstream of rs200395694 [17, 24]
we also studied the potential effect of the rare allele A on
splicing using minigenes (Fig. 4a). Both isoforms are
expressed in human peripheral blood mononuclear cells
(PBMC), monocytic cells THP-1, myelogenous leukemia
cells K562, B-cell line Daudi, and murine myoblasts
C2C12, but only the major α1 transcript was detected in
Jurkat, cervical cancer cells HeLa and human embryonic
kidney cells HEK293 (Supplementary Fig. 2). The mini-
gene constructs with different genotypes were transfected
into two cell lines, not expressing the α2 isoform, Jurkat and
HEK293, and two lines with detected expression of α2,
THP-1, and C2C12 cells. The latter cell line was chosen as a
control, since the splicing of the MEF2D isoforms has
previously been thoroughly examined in C2C12 cells [17].
No allelic difference was detected for the α1 isoform tran-
scribed from the minigenes in THP-1, HEK293 and Jurkat,
and only a marginally significant increase was detected in
the A allele-containing constructs transfected in C2C12
cells (Fig. 4b–e and Supplementary Fig. 3). The alternative
isoform α2 generated from the minigene with the rare A
allele was significantly repressed in all tested cells. Both
isoforms were downregulated upon stimulation of Jurkat
and THP-1, while in C2C12 the major α1 isoform was also
downregulated upon cell differentiation, and the minor α2
isoform was upregulated in the reference allele and
remained inhibited in the rare A allele (Fig. 4). The
downregulation of α1 and induction of α2 upon cell C2C12
differentiation is in agreement with the previously reported
results [17].

Association analysis of the candidate variant with
clinical manifestations

Finally, we investigated whether the rs200395694 variant
was specifically associated with any of the clinical pheno-
types within the SLE cohort (140 SLE Swedish patients
from the discovery set for which we have close to complete
clinical information). The clinical characteristics for all
patients and for the patients carrying the alternative allele
for the candidate SNP are presented in Table 1. We
observed a nominally significant association between the
MEF2D rs200395694-A allele and presence of anti-Sm
antibodies (p= 0.0058) and anti-RNP antibodies (p=
0.017) with Fisher’s exact test. Previous autoantibody pro-
file analyses have shown that anti-RNP and anti-Sm anti-
bodies cluster together in SLE cohorts and that anti-RNP
antibodies are associated with Raynaud’s phenomenon [25].
In our data, all three individuals carrying the MEF2D
rs200395694-A allele were positive for these three pheno-
types, as compared to 11 individuals (8.5%) of all the
patients, with a significant association between this triad of
disease manifestations and the rs200395694-A allele (p=
0.00037; Fisher’s exact test).

Discussion

SLE is considered as the prototype of complex autoimmune
diseases with significant contribution from genetic back-
ground. In an attempt to map loci associated with the dis-
ease, numerous GWA studies have been performed in
diverse populations (reviewed in ref. [2]). The main draw-
back of such studies is the inability to detect genetic effects
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Fig. 3 Binding and regulatory potential of rs200395694 alleles. a EMSA results with nuclear extract from Jurkat cells. b Luciferase reporter assay
performed in Jurkat. Bars represent mean values ± SD. RLU relative light units. Statistical analysis was done using an unpaired t-test
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from rare and low frequency variants that may have direct
causal effects on genes. While whole-genome sequencing is
still a demanding experiment, the use of targeted sequen-
cing of specific regulatory regions in selected genes could
be a strategy of choice when analyzing large patient cohorts.
As a proof of principle, we focused on coding and con-
served regulatory regions in 215 genes selected for their role
in immune pathways or for being previously associated with
SLE in humans or dogs.

The power to detect rare disease-associated variants
depends on the ability to study specifically variants that
are likely to have functional consequence. At present, it is
much easier to assign potential detrimental function to
coding variants. However, based on common variants
associated with common diseases (majority of GWA
studies signals reside outside coding regions [26]), it is
likely that also non-coding variants are involved in the
disease pathogenesis and that they can have both low and

high effect sizes. For example, for a scenario where
selection is relatively weak (s= 10−3) we would need 260
cases to detect an allele with and odds ratio of 20, while a
variant with a twofold increased risk would require
28,000 cases [27]. In this study, we attempted to hedge
our bets for discovery of novel rare variants affecting SLE
in multiple ways, we: (1) targeted genes in pathways
associated to SLE in humans or dogs, (2) targeted evo-
lutionarily conserved non-coding elements in addition to
coding regions of these genes, (3) we used multiple
functional genomics data sets to point out variants with
candidate functions, and (4) looked for novel variants not
present in controls and available databases, thus increas-
ing the likelihood that the detected variants would be
detrimental. Based on this we were able to find one variant
that was both functional and associated to disease sub-
phenotypes. However, it is worth realizing that the current
data set will include a lot of false negatives.

Fig. 4 Analysis of alternative splicing with minigenes. a Minigenes with alternative alleles were cloned into pcDNA3.1 vector between the CMV
promoter and the polyadenylation site. Neomycin gene was used for transfection normalization. b–e Levels of alternative isoforms transcribed
from minigenes transfected into THP-1 cells (b, c) and C2C12 cells (d, e) were measured by quantitative RT-PCR. THP-1 cells were stimulated
with 100 ng/ml of LPS and 10 ng/ml of interferon gamma for 12 h. C2C12 cells were differentiated with 2% horse serum for 64 h. Bars represent
mean values ± SEM
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We identified a rare variant located in intron 4 ofMEF2D
gene significantly enriched in Swedish SLE patients. This
gene was selected for targeted sequencing based on its role
in the NFAT pathway. The genetic association signals in the
NFAT pathway genes with SLE were identified in dogs [7],
thereby making canine associated genes and pathways
valuable candidates for investigation in human disease.
MEF2D encodes for a member of the myocyte enhancer

factor 2 family of transcription factors, widely expressed in
different tissues, including all hematopoietic cell popula-
tions [28]. MEF2D is an essential transcriptional activator
of the interleukin 2 (IL-2) gene [29]. The dysregulation of
IL-2 production is a common characteristic of T cells in
SLE [30]. Interestingly, several common SNPs in the
MEF2D gene have been reported to be strongly associated
with migraine [31, 32] and blood cell phenotypes [33], but
none of them have been implicated in association with any
autoimmune disease.

The A allele of the MEF2D SNP rs200395694 was also
significantly associated with the triad of disease manifes-
tations comprising of anti-Sm, anti-RNP antibodies, and
Raynaud’s phenomenon in our patient cohort. The asso-
ciation between anti-RNP and anti-Sm antibodies to Ray-
naud’s phenomenon has been previously established [25],
implying a common mechanism involved in the etiology of
these manifestations; nonetheless to our knowledge, no
gene has been associated with this combined phenotype to
date.

The combined evidence from genomic annotations sug-
gested the presence of an active cell type-specific enhancer
in the region harboring the SNP. This is fully supported by
the results obtained in our in vitro experiments, where they
indicate that both alleles bind specifically to protein com-
plexes, but that these are different for the two alleles. This
suggests that different transcription factors may recognize
the fragment depending on the allele present and eventually
participate in gene regulation (Fig. 3a). The luciferase
reporter assay confirmed the cell line-specific enhancer with
significant differential allelic effect: the two alleles had
different levels of expression for both unstimulated and
stimulated Jurkat cells (Fig. 3b and Supplementary Fig. 1).

The MEF2D gene produces two alternatively spliced
transcripts [17, 24] generating the ubiquitous α1 isoform
and the inducible tissue-specific α2 isoform. Previously, the
α2 transcript was detected only in muscle tissue and was
studied in the murine myoblast cells C2C12 in more detail
[17]. We detected low levels of the α2 isoform in human
PBMC, as well as in THP-1, K562 and Daudi cell lines,
which may suggest a putative role of the isoform in these
cells. Interestingly, we found that the novel risk allele
inhibits splicing of the α2 isoform transcribed from the
minigene, while not affecting the α1 isoform.

The α2 isoform overexpressed in C2C12 cells regulated
expression of a specific set of genes, only partially over-
lapping with those controlled by the α1 isoform [17]. Of
note, two of the genes, specifically induced only by the α2
isoform, were DNASE1L3 and AIM2, both previously
shown to be involved in SLE pathogenesis [34–37]. The
role of the α2 isoform in immune cells remains unclear at
this stage, but in the light of our current results it certainly
requires a comprehensive investigation. We do not know if

Table 1 Clinical data of Scandinavian patients and patients carrying
candidate SNPs in MEF2D

Swedish
patients (140)

MEF2D
rs200395694-A
(n= 3)

p-value

Females/males 125/15 2/1

Age, mean (range) 48 (20–85) 47 (39–51)

Disease duration, mean
(range)

17 (0–63) 17 (8–27)

Smoking (ever), no. (%) 50 (36) 2 (67)

ACR criteria (1982), no. (%)

1. Malar rash 91 (65) 2 (67) 1

2. Discoid rash 43 (31) 1 (33) 1

3. Photosensitivity 97 (69) 2 (67) 1

4. Oral ulcers 41 (29) 1 (33) 1

5. Arthritis 101 (72) 3 (100) 0.56

6. Serositis 50 (36) 2 (67) 1

7. Renal disorder 33 (24) 1 (33) 0.557

8. Neurologic disorder 7 (5) 0 1

9. Hematologic
disorder

87 (62) 3 (100) 0.289

10. Immunologic
disorder

87 (62) 3 (100) -

11. Anti-nuclear
antibodies

137 (98) 3 (100) 1

Total ACR criteria,
median (range)

5 (4–9) 7 (5–8) 0.179

SLICC DI, median
(range)

0 (0–6) 2 (0–3) 0.202

Presence of, no. (%)

Anti-dsDNA antibodies 82 (59) 3 (100) 0.267

Anti-Sm antibodies 26 (19) 3 (100) 0.0058

Anti-RNP antibodies 37 (26) 3 (100) 0.017

Anti-SSA antibodies 67 (48) 1 (33) 1

Anti-SSB antibodies 31 (22) 2 (67) 0.123

Anti-cardiolipin
antibodies (IgM or IgG)

52 (39) 1 (33) 1

Major cardiovascular
event

16 (11) 1 (33) 0.307

Raynaud 64 (50) 3 (100) 0.244

Raynaud, anti-RNP and
anti-Sm antibodies

11 (8.7) 3 (100) 0.00037

p-values were calculated using Fisher’s exact test and Mann–Whitney
U -test. ACR criterion 10 (Immunologic disorder) was excluded from
the association analyses as it was strongly correlated with presence of
anti-dsDNA, anti-RNP, and anti-Sm. Missing data (n) for Raynaud: 13;
Anti-cardiolipin antibodies: 5; Smoking: 1; remaining parameters: 0

ACR American College of Rheumatology, SLICC Systemic Lupus
International Collaborating Clinics, SLICC DI SLICC damage index,
Age age at time of data collection, Major cardiovascular event
transient ischemic attack, stroke, or myocardial infarction

438 F. H. G. Farias et al.



the cell-specific enhancer with rs200395694 that pre-
sumably affects MEF2D expression could have an effect on
α2 cell type-specific splicing, or if these two events are
unrelated. For instance, in T cells, that do not express the α2
isoform, the main outcome of the risk allele would be on the
regulation of gene expression. On the other hand, in
monocytes normally producing the α2 isoform, the inhibi-
tion of it would have an effect on the pattern of the
downstream target genes. It is tempting to speculate, for
example, that direct correlation between the expression of
the α2 transcript and DNASE1L3 would result in suppres-
sion of DNASE1L3 in monocytes in the risk genotype where
the α2 is inhibited. The loss-of-function of DNASE1L3
causes severe familial SLE [38].

In summary, in search for rare disease variants, usually
missed in GWA studies, we used targeted re-sequencing of
regulatory highly conserved regions in selected genes in a
well-characterized cohort of SLE patients. We present evi-
dence of genetic association of a rare variant rs200395694:
G > T with SLE in Swedish patients. The risk allele is
associated also with the triad of disease manifestations
comprised of anti-Sm, anti-RNP antibodies, and Raynaud’s
phenomenon. The SNP rs200395694:G > T is located in a
cell type-specific enhancer and appears to influence
expression and splicing of the MEF2D mRNA. While
MEF2D is a widely expressed transcription factor, fine-
tuning of its transcription and splicing in relevant cells may
have an effect on downstream target genes and may con-
tribute to the disease pathogenesis. We believe that our
results support the omnigenic model for complex traits
where MEF2D shows a rather modest association with SLE
in our cohort of Swedish patients but apparent functional
effect. Therefore, MEF2D could be considered as a per-
ipheral gene for SLE.
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