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Abstract
Our goal in developing the MultiWaver software series was to be able to infer population admixture history under various
complex scenarios. The earlier version of MultiWaver considered only discrete admixture models. Here, we report a newly
developed version, MultiWaver 2.0, that implements a more flexible framework and is capable of inferring multiple-wave
admixture histories under both discrete and continuous admixture models. MultiWaver 2.0 can automatically select an
optimal admixture model based on the length distribution of ancestral tracks of chromosomes, and the program can estimate
the corresponding parameters under the selected model. Specifically, for discrete admixture models, we used a likelihood
ratio test (LRT) to determine the optimal discrete model and an expectation–maximization algorithm to estimate the
parameters. In addition, according to the principles of the Bayesian Information Criterion (BIC), we compared the optimal
discrete model with several continuous admixture models. In MultiWaver 2.0, we also applied a bootstrapping technique to
provide levels of support for the chosen model and the confidence interval (CI) of the estimations of admixture time.
Simulation studies validated the reliability and effectiveness of our method. Finally, the program performed well when
applied to real datasets of typical admixed populations, such as African Americans, Uyghurs, and Hazaras.

Introduction

Admixture history inference is a fundamental problem for
studies on admixed populations [1]. Several methods have
been developed to analyze the problem based on various
kinds of population admixture information, such as break

points of recombination [2], admixture linkage dis-
equilibrium [3–6], and ancestral tracks [7–12]. The length
distribution of ancestral tracts provides direct information
concerning the decay of the ancestral segment length, which
is closely related to the admixture history. Therefore, many
methods have been developed based on this type of infor-
mation [7–11, 13, 14]. The history of several classical
admixed populations (African Americans, Mexicans, and
Uyghur) have been well studied using these methods
[15–21]. However, there are two shortcomings involved in
these methods. First, before estimating the parameters of
admixture history, a prior admixture model was required.
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Second, the prior admixture model was often an overly
simplified scenario, such as a hybrid-isolation (HI), gradual
admixture (GA), or continuous gene flow (CGF) models.
Knowledge of admixture history is often lacking when real
data are analyzed, especially for complex admixed popu-
lations [2, 15, 22–24]. Therefore, results can be unreliable
in cases where the selected prior model deviates from the
real admixture history.

In our previous work [13], we proposed some principles of
parameter estimation and model selection under a general
model, but our previous method could handle only three
typical two-way admixture models. To solve this problem, we
developed the MultiWaver program [25], which could select
the optimal admixture model and estimate the corresponding
parameters under a general discrete model. Our method could
deal with complex admixture scenarios involving multiple
ancestral populations with multiple admixture events. In
principle, our model could also be used to analyze a popu-
lation with continuous admixture, since the model can deal
with admixture events at any generation. However, if the true
admixture model is continuous, the number of parameters
could be very large (each wave has two parameters, one
admixture time and one admixture proportion); consequently,
the model could become very complex. In MultiWaver, we
applied a likelihood ratio test (LRT) to select the best-fit
model. Using this method, more parameters means greater
penalties. Thus, the method tends to select an optimal
multiple-wave (discrete) model rather than a continuous
model, and the continuous model is often neglected.

In this work, we extend the MultiWaver software to Mul-
tiWaver 2.0, which can handle both discrete and continuous

models. In the new method, we consider four different models
(the HI, GA, CGF, and multiple-wave models) (Fig. 1). Our
new method can automatically select the optimal model
among those candidate models, and the confidence interval
(CI) of admixture time and supporting rate for each candidate
model can be obtained via a bootstrapping procedure. We
conducted simulation studies to demonstrate the effectiveness
of our method. Finally, we applied our method to African
Americans from the HapMap project phase III dataset [26]
and to Uyghurs and Hazaras from the Human Genome
Diversity Project (HGDP) dataset [27].

Materials and methods

Model selection and parameter estimation

In order to infer the admixture history, we need to select an
optimal model from the four different models listed above.
For discrete admixture models (the HI model and multiple-
wave models), we apply the LRT method to select the
optimal discrete model. The results are the same as those
obtained using the MultiWaver software [25]. Next, we
compare the optimal discrete model with continuous
admixture models (GA and CGF). However, when we
include the GA and CGF models in the analysis, we find
that any pairs of GA, CGF, and discrete model are all not
nested, which means that no model is a special case of
another. The LRT method is unavailable in this case.
Therefore, we apply another method, Bayesian Information
Criterion (BIC) [28, 29], to select the optimal model. The

Fig. 1 Four different types of admixture model. a Hybrid isolation (HI)
model; b Gradual admixture (GA) model; c Continuous gene flow
(CGF) model. POP1: the reference population 1; POP2: the reference
population 2; m is the proportion of population 1 and α= 1−m1/T.

d The multiple-wave model, where POPki is the ancestral population
of the ith admixture, αi is the admixture proportion of the ith admix-
ture, and ti is the admixture time of the ith admixture
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value of the BIC can be calculated by the formula:

BIC ¼ k lnðnÞ � 2 ln Lmaxð Þ;
where k is the number of parameters, n is the sample size, and
Lmax is the maximized value of the likelihood function. Details
of the model selection procedure are illustrated in Fig. 2.

Whether one uses the LRT or BIC method, it is necessary
to calculate Lmax and to estimate the parameters of the
admixture models. In our previous study [13], we employed
the length distributions of ancestral tracks under the HI,
GA, and CGF models. These models involve only two
parameters, the admixture proportion m and the admixture
time T (Fig. 1a−c). Thus, we can easily calculate Lmax and
the estimates of m and T via a binary search algorithm. For
multiple-wave models, the length distribution of the
ancestral tracks can be written as a mixed exponential dis-
tribution [25]. We can then use the expectation–max-
imization algorithm [30] to calculate Lmax and to estimate
the admixture time (ti) and proportion (αi) (Fig. 1d); this
produces the same estimates as the MultiWaver method
[25]. After obtaining Lmax for the four models, we then
select an optimal model via the LRT and BIC methods. The
optimal model and the corresponding estimators of admix-
ture time and proportion can then be used to describe the

inferred admixture history. The details concerning the LRT
are described in Supplementary Text 1.

Bootstrapping procedures

To assess the uncertainty in optimal model selection and
estimated parameter values, we also apply the bootstrapping
technique in MultiWaver 2.0 to obtain a degree of support for
the chosen model and the CI of the admixture time. We
conduct the bootstrapping by resampling the same number of
segments with replacement and use these resampled segments
to infer the admixture model and its corresponding admixture
time. Details of the bootstrapping procedure are described in
Supplementary Text 1. MultiWaver 2.0 can be downloaded at
http://www.picb.ac.cn/PGG/resource.php.

Simulation studies

We conducted simulations to evaluate the performance of
MultiWaver 2.0. The simulation data were generated by the
forward-time simulator AdmixSim [31]. AdmixSim can be
downloaded at http://www.picb.ac.cn/PGG/resource.php.
The population size of the admixed population was arbi-
trarily set to 5000 and remained constant in our simulations,

Fig. 2 Flow chart of the algorithm for model selection. Lmax (GA), Lmax

(CGFR), Lmax (CGFD), and Lmax (multi-wave) are the maximized
values of the likelihood function under GA, CGFR, CGFD, and

multiple-wave models, respectively. Best M is the optimal model,
where M is the set of GA, CGFR, CGFD, and multiple-wave models
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and the length of the simulated chromosome was 3.0
Morgans, which approximates the length of chromosome 1
of the human genome. At the end of the simulation, 100
“individuals” (pairs of chromosomes) were sampled, and
the ancestral tracks were recorded.

For the symmetric admixture models (HI and GA)
(Fig. 1a, b), the proportions of admixture varied from 20 to
50% in steps of 10%. For the asymmetric admixture model
(CGF) (Fig. 1c), we divided the analysis into two sub-
models. If population 1 was a gene flow recipient, we
denoted it as a CGFR model; otherwise we denoted it as a
CGFD model. We set the proportions of admixture in CGF
model from 20 to 90% in steps of 10%, and we set the
admixture time to 20, 40, 60, 80, and 100 generations. For
the multiple-wave model (Fig. 1d), we considered a sce-
nario of two ancestral populations with two-wave admix-
ture. For simplicity, we assumed that in each wave of
admixture the proportions (αi,1 ≤ i ≤ n) were equal. We used
four values of admixture proportions: 0.2, 0.3, 0.4, and 0.5.
The admixture time were set as five cases: (a) t2= 10, T=
20, (b) t2= 20, T= 40, (c) t2= 40, T= 60, (d) t2= 60, T=
80, and (e) t2= 80, T= 100. Each simulation setting was
repeated ten times for a total of 1400 simulations across the
four admixture models. MultiWaver 2.0 was applied to the
simulated data with the default settings and the results were
recorded and summarized.

Application to analysis of real datasets

Several real admixed populations histories were analyzed
by our method. First, we applied our method to African
Americans. The data for African Americans and reference
populations CEU and YRI were obtained from HapMap
Project Phase III [26]. Next, we applied our method to
reconstruct the population history of Uyghurs and Hazaras.
We used the Han and French populations as the proxies for
Eastern ancestry and Western ancestry, respectively [4]. Data
used in this analysis were obtained from the HGDP dataset.
Haplotype phasing was performed by SHAPEIT 2 [32]. Local
ancestry was inferred by HAPMIX [33]. MultiWaver 2.0 was
used to select the optimal model and to estimate the admixture
time and proportion using tracks longer than 1 cm.

Results

MultiWaver 2.0 performed well in parameter
estimation and model selection

With the extensively simulated data, we could system-
atically evaluate the performance of our method in regard to
parameter estimation and model selection. The model was
correctly selected in 88% of the simulations. For the

simulations using the HI and GA scenarios, our method was
able to distinguish the correct model in nearly all simula-
tions; for the CGFR, CGFD, and multiple-wave models, our
method identified the correct model with an accuracy of
82.0% (Table 1). We found that the simulations in which
our method failed were often those including very recent
admixture time and small admixture proportion.

We also evaluated the performance of our method for
time estimation. Our method was able to estimate admixture
time with high accuracy (Fig. 3). Figure 3 shows one set of
simulations and the corresponding bootstrap results for
CGFR, CGFD, GA, HI, and multiple-wave models. For the
HI, CGF, and GA models, the results were highly consistent
with the time simulated, while there was a slight over-
estimation for the multiple-wave model. We conclude that
regardless of model selection or parameters estimated, our
method performed well.

Real data analysis

For African Americans, the program inferred the GA
admixture model and the admixture time to be 12 genera-
tions (Fig. 4a, Table S1). In our previous study [13, 25], the
African American population was inferred as a GA scenario
with AdmixInfer and as a two-wave admixture model with
MultiWaver. While both results are supported by various
historical records, a best-fit model is desirable. The Multi-
Waver 2.0 program was able to solve this problem using a
decision-making framework. We compared the likelihood
of the two methods with the BIC and found that the GA
model was the most likely scenario. In other words, the GA
model appears to be superior to multiple-wave admixture
models for African Americans.

In addition, we applied our method to reconstruct the
admixture histories of Uyghurs and Hazaras. These two
admixed populations were inferred as GA types by
AdmixInfer [13] and inferred as multiple-wave types by

Table 1 The accuracy of our method in model selection

Model Number of simulations Correct model Accuracy

HI 200 198 0.99

GA 200 200 1.00

CGFD 400 328 0.82

CGFR 400 338 0.85

Multiple-wave 200 164 0.82

Total 1400 1228 0.88

Correct model: the number of simulations that could be distinguished
as the correct model by Multiwaver 2.0

HI represents hybrid isolation model; GA represents gradual admixture
model; CGFD represents continuous gene flow model (population 1 as
donor); CGFR represents continuous gene flow model (population 1 as
recipient)
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MultiWaver [25]. The results of MultiWaver 2.0 confirmed
that the admixture pattern of Uyghurs and Hazaras followed

a multiple-wave admixture model, rather than a GA or a
CGF model (Fig. 4b, c, Table S1).

Fig. 3 Admixture time estimated under four different types of
admixture models. a CGFR model; b CGFD model; c GA model; d HI
model; and e multiple-wave model. The x-coordinate is the
admixture time in generations ago, with 0 being the present time. The
y-coordinate is the density of admixture time estimated from 100

bootstrap-resampling datasets. There are five subgraphs for each
model. Each subgraph represents the result from one simulation
assuming a certain admixture time. The red dashed lines represent the
given admixture time for the simulation. The admixture proportion
was 0.3

Fig. 4 Inferred admixture history based on analysis of real datasets.
Inferred admixture history of a African Americans (ASW), where
CEU and YRI were taken as the representative ancestral source

populations of ASW; b Uyghurs, and c Hazaras. Han is Han popu-
lation representing Asian ancestry, Fre is French population repre-
senting European ancestry
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Discussion

MultiWaver 2.0 is an improved version of MultiWaver in
that it can consider both discrete and continuous admixture
models simultaneously. In MultiWaver 2.0, we apply the
principles of the BIC to select the optimal model. Simula-
tion studies suggest that our method is precise and efficient
in model selection and parameter estimation.

Admixture history of a real population is often very
complex. Previous methods have always required some
strong pre-knowledge of the admixture pattern. If the
admixture pattern is wrongly selected, the inferred admix-
ture history may deviate from the actual history. Here, we
provide a general framework to try to deal with this
problem. MultiWaver 2.0 can automatically select the best-
fit model from the candidates. Indeed, when the true
admixture histories deviate from any of the given candidate
models, our method might not have a good inference.
However, the models we provided cover most admixture
cases in the real data analysis and the framework of our
method is much more flexible. In the future, if a new
representative model is proposed, it can be easily introduced
into this framework.

However, some problems remain. First, we found that the
penalty for the number of parameters in the BIC method was
not sufficient for our method of model selection; thus, the
simulations under the CGFR and CGFD models were often
wrongly determined as multiple-wave models. This was
especially true for population with recent admixture time and
small admixture proportion. Second, overestimation occurred
for the admixture time when inferring admixture history under
the multiple-wave model. This problem also occurred in
MultiWaver. However, the overestimation was related to the
admixture time and the admixture proportion of each wave. In
our previous study, we used this relationship to adjust the
estimation of admixture time [25].

Similar to other ancestral tracts information-based
methods, our method is sensitive to the accuracy of local
ancestry inference (LAI). For existing LAI methods, short
ancestral tracts are very difficult to detect. To remove the
influence of short ancestral segments, we suggest using only
the ancestral tracks longer than a certain threshold C in our
software. Besides the small tracts effect, the admixture
model used by the LAI method is also a strong priori
assumption. The history inference results might tend to be
similar to those of the LAI model. To overcome this pro-
blem, joint inference of ancestral tracts and admixed history
may be implemented in the future.

Acknowledgements This work was supported by the Strategic Priority
Research Program (XDB13040100) and Key Research Program of
Frontier Sciences (QYZDJ-SSW-SYS009) of the Chinese Academy of
Sciences (CAS), the Fundamental Research Funds for the Central
Universities (2017JBM071, 2017YJS197), the National Natural

Science Foundation of China (NSFC) (91731303, 31771388,
11426237, and 31711530221), the National Science Fund for Dis-
tinguished Young Scholars (31525014), the Program of Shanghai
Academic Research Leader (16XD1404700), the National Key
Research and Development Program (2016YFC0906403), and
Shanghai Municipal Science and Technology Major Project
(2017SHZDZX01), the China Postdoctoral Science Foundation
(2017M620595), the National Center for Mathematics and Inter-
disciplinary Sciences of CAS. SX also gratefully acknowledges the
support of the National Program for Top-Notch Young Innovative
Talents of the “Wanren Jihua” Project.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Yuan K, Zhou Y, Ni X, Wang Y, Liu C, Xu S. Models, methods
and tools for ancestry inference and admixture analysis. Quant
Biol. 2017;5:236–50.

2. Xu S, Huang W, Qian J, Jin L. Analysis of genomic admixture in
Uyghur and its implication in mapping strategy. Am J Hum Genet.
2008;82:883–94.

3. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y
et al. Ancient admixture in human history. Genetics. 2012;
192:1065–93.

4. Loh PR, Lipson M, Patterson N, Moorjani P, Pickrell JK, Reich D
et al. Inferring admixture histories of human populations using
linkage disequilibrium. Genetics. 2013;193:1233–54.

5. Pickrell JK, Patterson N, Loh PR, Lipson M, Berger B, Stoneking
M et al. Ancient west Eurasian ancestry in southern and eastern
Africa. Proc Natl Acad Sci U S A. 2014;111:2632–7.

6. Zhou Y, Yuan K, Yu Y, Ni X, Xie P, Xing E et al. Inference of
multiple-wave population admixture by modeling decay of link-
age disequilibrium with polynomial functions. Heredity.
2017;118:503–10.

7. Pugach I, Matveyev R, Wollstein A, Kayser M, Stoneking M.
Dating the age of admixture via wavelet transform analysis of
genome-wide data. Genome Biol. 2011;12:R19.

8. Jin W, Li R, Zhou Y, Xu S. Distribution of ancestral chromosomal
segments in admixed genomes and its implications for inferring
population history and admixture mapping. Eur J Hum Genet.
2014;22:930–7.

9. Jin W, Wang S, Wang H, Jin L, Xu S. Exploring population
admixture dynamics via empirical and simulated genome-wide
distribution of ancestral chromosomal segments. Am J Hum
Genet. 2012;91:849–62.

10. Gravel S. Population genetics models of local ancestry. Genetics
2012;191:607–19.

11. Pool JE, Nielsen R. Inference of historical changes in migration
rate from the lengths of migrant tracts. Genetics. 2009;181:711–9.

12. Hellenthal G, Busby GB, Band G, Wilson JF, Capelli C, Falush D.
et al. A genetic atlas of human admixture history. Science.
2014;343:747–51.

13. Ni X, Yang X, Guo W, Yuan K, Zhou Y, Ma Z et al. Length
Distribution of Ancestral Tracks under a General Admixture
Model and Its Applications in Population History Inference. Sci
Rep. 2016;6:20048.

14. Pugach I, Matveev R, Spitsyn V, Makarov S, Novgorodov I,
Osakovsky V et al. The Complex Admixture History and Recent
Southern Origins of Siberian Populations. Mol Biol Evol.
2016;33:1777–95.

138 X. Ni et al.



15. Feng QD, Lu Y, Ni XM, Yuan K, Yang YJ, Yang X et al. Genetic
History of Xinjiang's Uyghurs Suggests Bronze Age Multiple-
Way Contacts in Eurasia. Mol Biol Evol. 2017;34:2572–82.

16. Kidd JM, Gravel S, Byrnes J, Moreno-Estrada A, Musharoff S,
Bryc K et al. Population genetic inference from personal genome
data: impact of ancestry and admixture on human genomic var-
iation. Am J Hum Genet. 2012;91:660–71.

17. Baharian S, Barakatt M, Gignoux CR, Shringarpure S, Errington
J, Blot WJ et al. The Great Migration and African-American
Genomic Diversity. PLoS Genet. 2016;12:e1006059.

18. Moorjani P, Patterson N, Hirschhorn JN, Keinan A, Hao L,
Atzmon G et al. The history of African gene flow into Southern
Europeans, Levantines, and Jews. PLoS Genet. 2011;7:e1001373.

19. Price AL, Patterson N, Yu F, Cox DR, Waliszewska A, McDonald
GJ et al. A genomewide admixture map for Latino populations.
Am J Hum Genet. 2007;80:1024–36.

20. Tian C, Hinds DA, Shigeta R, Adler SG, Lee A, Pahl MV et al.
A genomewide single-nucleotide-polymorphism panel for
Mexican American admixture mapping. Am J Hum Genet.
2007;80:1014–23.

21. Wang S, Ray N, Rojas W, Parra MV, Bedoya G, Gallo C et al.
Geographic patterns of genome admixture in Latin American
Mestizos. PLoS Genet. 2008;4:e1000037.

22. Xu S, Jin L. A genome-wide analysis of admixture in Uyghurs
and a high-density admixture map for disease-gene discovery. Am
J Hum Genet. 2008;83:322–36.

23. Lipson M, Loh PR, Patterson N, Moorjani P, Ko YC, Stoneking
M et al. Reconstructing Austronesian population history in Island
Southeast Asia. Nat Commun. 2014;5:4689.

24. Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL. The
genetic ancestry of African Americans, Latinos, and European
Americans across the United States. Am J Hum Genet.
2015;96:37–53.

25. Ni X, Yuan K, Yang X, Feng Q, Guo W, Ma Z et al. Inference of
multiple-wave admixtures by length distribution of ancestral
tracks. Heredity. 2018:1.

26. International HapMap C, Altshuler DM, Gibbs RA, Peltonen L,
Altshuler DM, Gibbs RA et al. Integrating common and rare genetic
variation in diverse human populations. Nature. 2010;467:52–8.

27. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Rama-
chandran S et al. Worldwide human relationships inferred from
genome-wide patterns of variation. Science. 2008;319:1100–4.

28. Schwarz G. Estimating the dimension of a model. Ann Stat.
1978;6:461–4.

29. Wit E, van den Heuvel E, Romeijn JW. ‘All models are wrong…’:
an introduction to model uncertainty. Stat Neerl. 2012;66:217–36.

30. Dempster AP, Laird NM, Rubin DB. Maximum likelihood
from incomplete data via the EM algorithm. J R Stat Soc
B.1977:39:1−38.

31. Yang X, Ni X, Zhou Y, Guo W, Yuan K, Xu S. AdmixSim: a
forward-time simulator for various and complex scenarios of
population admixture. bioRxiv. 2016:037135.

32. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing
method for thousands of genomes. Nat Methods. 2012;9:179–81.

33. Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N,
Ruczinski I et al. Sensitive detection of chromosomal segments of
distinct ancestry in admixed populations. PLoS Genet. 2009;5:
e1000519.

MultiWaver 2.0: modeling discrete and continuous gene flow to reconstruct complex population admixtures 139


	MultiWaver 2.0: modeling discrete and continuous gene flow to�reconstruct complex population admixtures
	Abstract
	Introduction
	Materials and methods
	Model selection and parameter estimation
	Bootstrapping procedures
	Simulation studies
	Application to analysis of real datasets

	Results
	MultiWaver 2.0 performed well in parameter estimation and model selection
	Real data analysis

	Discussion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




