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Abstract
Testing for gene–environment (GE) interactions in a gene-set defined by a biological pathway can help us understand the
interplay between genes and environments and provide insight into disease etiology. A self-contained gene-set analysis can
be performed by combining gene-level p-values using approaches such as the Gamma Method. In a gene-set analysis of
genetic main effects, permutation approaches are commonly used to avoid inflated probability of a type 1 error caused by
correlation of genes within the same pathway. However, when testing interaction effects, it is typically not possible to
construct an exact permutation test. We therefore propose using a parametric bootstrap. For testing an interaction term, this
approach requires fitting the null model, which only contains main effects; however, for a gene-set GE interaction model, the
number of main effects can be large and therefore they may not be estimable. To estimate the main effects of SNPs in a gene-
set, we propose modeling them as random effects. We then repetitively simulate null data from this model and analyze it to
generate the null distribution of gene-set GE p-values, allowing for an empirical assessment of significance of the global GE
effect in the gene-set of interest. Through simulation, we demonstrate that this approach maintains correct type I error, and is
well powered to detect GE interactions. We apply our method to test whether the association of obesity with bipolar disorder
(BD) is modified by genetic variation in the Wnt signaling pathway.

Introduction

Studying how environmental factors interact with single
nucleotide polymorphisms (SNPs) to moderate or modify
their effects on disease risk can advance our understanding
of disease etiology. The genome–environment-wide inter-
action study (GEWIS) strategy has been used to agnosti-
cally search for SNP × environment interactions over the
entire genome [1]. However, this strategy suffers from a
large multiple testing burden. Additionally, to maintain
comparable power, the detection of interactions generally
requires sample sizes around four times greater than those
required to test main effects [2]. Thus, most studies are

underpowered to perform genome-wide scans of SNP ×
environment interactions.

Methods have been proposed to combine
gene–environment (GE) interactions across a gene to test
for interaction of an environment with a gene, rather than
SNP, of interest [3–5]. This approach not only reduces
multiple testing, but can also increases power by aggre-
gating multiple small SNP-level GE effects. Gene-level
interaction tests can be further combined into gene-set (or
pathway) tests to evaluate whether genetic variation in a
given gene-set/pathway interacts with the environment to
influence the outcome.

Gene-set analyses have been used extensively to study
the main effects of genes, with methods for testing two
different types of hypotheses: competitive and self-
contained [6]. In a competitive gene-set analysis (GSA),
data across the entire genome are used to assess whether
observed associations cluster in the gene-set of interest
more than in the rest of the genome. In contrast, self-
contained GSAs only consider data for a given pathway of
interest to test whether genetic variants in the gene-set are
associated with the outcome. In the context of self-
contained analysis of genetic main effects, two-step
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approaches were shown to be more powerful than one-step
approaches [6]. In a two-step approach, gene-level p-values
are first computed, and then the gene-level p-values within a
pathway are combined using strategies such as Fisher’s
Method or the Gamma Method [7]. A key assumption of
these p-value combination methods is that the gene-level p-
values are independent. However, because gene-level p-
values may be correlated due to SNPs in genes within the
same pathway being in linkage disequilibrium (LD), this
assumption may be incorrect resulting in inflated probability
of a type I error for the pathway-level test. To avoid this
problem, permutation techniques are typically used to
control type I error in pathway-level tests of genetic main
effects

There has been a lot of progress in developing methods
to study genetic main effects in a gene-set [6–8]. One
popular pathway tool, MAGMA [9], can also jointly test
genetic effects and GE interactions. However, no methods
have been proposed for solely assessing GE interactions in a
gene-set. In this paper, we address the challenges of
assessing GE interactions in a two-step self-contained GSA
(GE-GSA). We consider the analysis of pre-defined gene-
sets, for example, a set of genes within a specific biological
pathway defined in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/kegg/
pathway.html) or the Gene Ontology (GO) Consortium
database (http://www.geneontology.org). We apply a two-
step approach in which gene-level p-values are combined
using the Gamma Method [7]. While permutation approa-
ches can be used to obtain a valid pathway-level p-value in
a GSA of genetic main effects, in a GE interaction analysis,
it is typically not possible to construct an exact permutation
test. Bužková et al. [10] showed that a parametric bootstrap,
originally proposed by Efron [11], can be used instead when
testing GE interactions at the gene level. Here we extend
this approach to develop a test for GE interactions for a
gene-set, and perform simulations to evaluate the type I
error and power of our method.

We demonstrate the proposed method by testing whether
the risk of obesity associated with bipolar disorder (BD) is
modified by genetic variation in the Wnt signaling pathway
using data from the Genetic Association Information Net-
work (GAIN) study of BD. A previous analysis of the
GAIN data revealed a genome-wide significant association
of BD with the interaction between body mass index (BMI)
and an SNP in the gene TCF7L2 [12]. TCF7L2 codes for
the transcription factor TCF/LF, which plays a role in the
Wnt signaling pathway [13]. The Wnt signaling pathway
has crucial implications in neurodevelopment, neurogen-
esis, and neuroplasticity, and is involved in mechanisms of
action of medications used to treat BD [14, 15]. Therefore,
here, we extend the prior findings of the association of BD
with the TCF7L2 SNP × BMI interaction, to investigate

interaction effects with other genetic variants in the Wnt
signaling pathway. We run the GE-GSA including and
excluding TCF7L2 from the gene-set to study interactions
involving genetic variation in the pathway and to assess
whether observed associations at the pathway level are due
solely to the previously described TCF7L2 interaction.

Methods

Assume n unrelated subjects are genotyped for a set of
variants in a gene-set or pathway consisting of K genes with

pk SNPs in the Kth gene and P ¼ PK
k¼1 pktotal SNPs. Let

the genotypes (coded, for example, as the number of copies
of the minor allele) at the pk SNPs for the kth gene for the

ith subject be denoted as G kð Þ
i ¼ G kð Þ

i1 ; ¼ ;G kð Þ
ipk

� �
. Denote

the phenotype (e.g., disease or quantitative trait), covariates,
and environment for the ith subject as Yi, X, and Ei,
respectively. We model the GE interactions for both con-
tinuous and binary outcomes in a generalized linear model
(GLM) framework. In particular, we model continuous
traits using linear regression and binary (disease) traits
using logistic regression. Thus, we consider the model:

μið Þ ¼ α0 þ α1Xi þ α2Eiþ
XK
k¼1

α kð Þ
3 G kð Þ

i þ
XK
k¼1

β kð ÞðG kð Þ
i �EiÞ;

ð1Þ

where g(.) be the canonical link function for the mean,

μi ¼ E Yi Xi;Ei;G
1ð Þ
i ; ¼ ;G Kð Þ

i

���
� �

, of the phenotype, and

ðG kð Þ
i � EiÞ ¼ ðGðkÞ

i1 Ei; ¼ ;GðkÞ
ipk EiÞ is the vector of pk GE

interactions. We are interested in testing the null hypothesis
H0:β

(k)= 0 for all k= 1,…,K.
A two-step GE-GSA begins by testing for GE interaction

in each gene within the gene-set. There are many options for
performing a gene-level GE interaction test [5]. Here we use
principal components (PCs) to reduce the dimensionality of
SNP data within a gene: for the Kth gene, we calculate PCs
using all pk SNPs within the gene and retain the first qk
components (qk < pk) that explain 80% of the variance
within the gene. We then test the GE interactions for the Kth
gene by performing a score test of the β(k) term in the fol-
lowing model:

g μið Þ¼αðkÞ0 þ αðkÞ
1 Xi þ αðkÞ2 Ei þ αðkÞ

3 PC kð Þ
i þ β kð Þ PC kð Þ

i �Ei

� �
;

ð2Þ
where PCi

(k) is the set of pk PCs in the Kth gene for the ith
person and ðPC kð Þ

i � EiÞ ¼ ðPCðkÞ
i1 Ei; ¼ ;PCðkÞ

iqk EiÞ is the
vector of qkPC × E interactions. By using PCs to model the
effects of SNPs in a gene, the collinearity of correlated
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SNPs within a gene is removed, and the number of
parameters in the model is reduced by 2(pk–qk).

Gamma Method

Once the K gene-level GE interaction p-values (pval1, …
pvalK) are computed, we propose aggregating them to the
gene-set using the Gamma Method. The test statistic for the
Gamma Method can be written as

T ¼
XK
k¼1

G�1
ω;1 1� pvalkð Þ; ð3Þ

where G�1
ω;1ð�Þ is the inverse gamma distribution with shape

parameter ω and scale parameter 1. More emphasis can be
given to p-values below a particular threshold, referred to as
a soft truncation threshold (STT), by varying ω ¼ G�1

ω;1ð1�
STTÞ [6]. The uncorrected p-value Pval for a pathway can
be calculated for the test statistic T using its null
distribution; when the p-values are independent and have
a standard uniform distribution, the null distribution of T is
a Gamma distribution with shape parameter ω and scale
parameter 1. When ω= 1, the null distribution of T is a χ2

distribution with degrees-of-freedom (df) equal to 2K. This
specific case of the Gamma Method, which corresponds to
an STT of 1/e, was first described by Fisher [16] and is
known as Fisher’s method. Because the optimal STT is
unknown for a given dataset, it may be beneficial to search
over multiple STTs and use the STT that leads to the
smallest p-value. However, the minimum p-value resulting
from this search (minGamma) will have inflated probability
of a type I error unless the multiple testing is correctly taken
into account. Additionally, the Gamma Method assumes
that gene-level GE interaction p-values are independent.
Violation of this assumption can lead to inflated probability
of a type I error. Typically, permutations are used to control
type I error when evaluating genetic main effects at a
pathway level, but this approach is not applicable when
assessing interactions [10]. Thus, we propose using a
parametric bootstrap approach to control the type I error.

Parametric bootstrap

Bužková et al. [10] proposed a parametric bootstrap to test
for GE interaction at the gene-level. For a GE-GSA, the
parametric bootstrap can be applied to estimate p-values
using the following steps:

1. Compute the uncorrected gene-set p-value (Pval) for
the original data as described above in the section on
the Gamma Method.

2. Obtain parameter estimates of SNP and environment
effects from the original data by fitting the gene-set

model under the null hypothesis H0:β
(K)= 0 for all k.

3. For all subjects, simulate responses Y(b) from the
model obtained in Step 2.

4. Using the data simulated in Step 3, perform a two-step
GE-GSA using the same PC-Gamma gene-set level
GE test that was used in the original data, i.e.,
compute gene-level GE interaction p-values using the
simulated response, and then combine the gene-level
p-values in the gene-set using the Gamma Method
with a chosen STT (or the minGamma method) to
obtain the simulated gene-set p-value Pval(b).

5. Repeat Steps 3–4 B times to approximate the
distribution of the p-values under the null hypothesis.

6. Compute the corrected (parametric bootstrap) p-value by
comparing the uncorrected p-value from Step 1 with the
simulated null p-values: PvalPB= 1

B

PB
b¼1 IðPval<PvalðbÞÞ

where I(·) is the indicator function. Standard error for PvalPB
can be calculated using the binomial distribution:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PvalPB 1�PvalPBð Þ=Bp
.

Fitting the gene-set model under the null hypothesis (i.e.,
Step 2 above) requires estimating effects for the environ-
ment, covariates, and all SNPs in the gene-set. Since the
number of SNPs in a gene-set is typically very large (P > n),
this model usually cannot be fit using a standard GLM.
Even if the parametric bootstrap was based on modeling the
effects of PCs (rather than SNPs) under the null hypothesis
of no GE effects, problems with estimation would still
likely to be encountered unless very few PCs were used,
which may not appropriately model the main effect.
Instead, we propose fitting the null model by treating the
genetic main effects as random effects in the following
model:

g μið Þ ¼ α0 þ α1Xi þ α2Ei þ γ; ð4Þ

where γ � MVNð0; σ2GGGTÞ and

G ¼

Gð1Þ
1 Gð2Þ

1 � � � GðKÞ
1

Gð1Þ
2 Gð2Þ

2 � � � GðKÞ
2

..

. ..
. . .

. ..
.

Gð1Þ
n Gð2Þ

n � � � GðKÞ
n

2
666664

3
777775
;

which is an n × P matrix. This model is similar to that used
in Genome-wide Complex Trait Analysis (GCTA) but is
confined to only the SNPs in the gene-set of interest [17].
This formulation of our model avoids estimating the
proportion of variance explained by each SNP and instead
estimates the total proportion of variation explained by all
of the SNPs in the gene-set. It can be shown that the above
model is equivalent to using a ridge penalty to penalize the
genetic main effects [18, 19]. With this parameterization,
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the approximate null gene-set model requires fitting only
3+ L parameters, where L is the number of covariates. This
model can be fit using the R package GMMAT [20].
Responses can then be simulated from this null model (Step
3 above) using the best linear unbiased prediction. Code for
performing the described parametric bootstrap approach
can be found at https://github.com/bcoombes/Parametric_
Bootstrap.

Simulations

To illustrate the proposed approach, we analyzed Wnt sig-
naling pathway data in a subset of 388 BD cases and 1020
controls from the GAIN study. We considered models with
BD as the outcome predicted by gene–BMI interactions,
and with BMI as the outcome predicted by gene–BD
interactions. Before analyzing the BD data, we performed
simulations to study type I error and power of the proposed
approach. For the simulations, we generated data with
properties similar to the GAIN-BD Wnt signaling pathway
data.

To simulate each replicate dataset, we first sampled
genotypes in the Wnt signaling pathway from the GAIN-
BD data without replacement N= 1000 times. Sex was
independently sampled from a Bernoulli distribution with
Pr(Male)= 0.5. We used the GAIN Wnt signaling pathway
data to estimate each SNP effect and SNP × BD interaction
effect on BMI, using regression models with scaled BMI as
the outcome and with sex as a covariate. The directionality
of the main and interaction effects for the top SNP in each
gene was recorded. We randomly selected J different
“causal” SNPs (J= 2, 20, or 100) from this list to have a
main effect and an interaction in the simulations. We then
simulated a quantitative trait conditional on sex, genotypes
from the gene set, and BD status sampled from the real data
using a linear model with a standard normal error term. The
variation in the quantitative trait explained by the chosen
causal SNPs and their interactions was held fixed to explain
30% of the variation throughout the simulations so that
under models with more causal SNPs, the per-SNP effects
would be smaller. We also analyzed a binary trait derived
by dichotomizing the quantitative outcome at the median, to
study the methods’ properties when the outcome is binary.

We calculated gene-level p-values using the PC method
described above using the simulated quantitative or
dichotomized quantitative variable as the outcome variable
in the model and testing for the presence of G × BD
interactions. Sex was included as a covariate in both ana-
lyses. We combined the gene-level results using the Gamma
Method with STT equal to 0.01, 0.05, 0.10, 0.15, 0.2, or 1/e
(Fisher’s method) as well as the minGamma approach, and
computed uncorrected as well as parametric bootstrap gene-
set level p-values (i.e., Pval and PvalPB, respectively) for

each simulated dataset, in order to evaluate the performance
of the proposed method in the absence or presence of GE
interactions.

For type I error estimation, we simulated data where the
top J SNPs had a main effect and no GE interactions. To
estimate power, for the same J SNPs with main effects, we
included interaction terms with BD. Type 1 error was
estimated at the α= 0.05 and 0.01 levels based on 10,000
null replicate datasets, while power was estimated at the
α= 0.05 level based on 1000 replicate datasets under each
scenario.

GE-GSA of the GAIN-BD dataset

To illustrate the proposed GE-GSA approach, we used
genetic data from the Wnt signaling pathway in a subset of
subjects from the GAIN-BD study with available BMI data.
The dataset [21] was obtained from dbGaP (phs000017.v3.
p1), and includes the same set of subjects as the paper that
originally reported the genome-wide significant association
between BD and the TCF7L2-BMI interaction [12]. The
analyzed gene-set was the Wnt canonical pathway as
defined by KEGG. Gene regions were defined as 20 kb up/
downstream of the RefSeq transcription start/end sites
according to the Human Genome Browser build hg18 [37].
The analysis included 143 genes in the gene-set that had
more than one SNP mapping to the gene; 3767 SNPs in
these genes were included in our analysis. For each gene,
we computed PCs accounting for 80% of the variation,
which resulted in a total of 580 PCs in the pathway. We
used either BD or log BMI as the outcome testing for either
G × BMI or G × BD interactions in the Wnt pathway. BMI
was log-transformed to create an approximately normal
distribution. Sex was included as a covariate in the model.

Results

Type I error

We first assessed the empirical type I error of the proposed
GE-GSA strategies for α= 0.05 and 0.01 (Table 1). We
present results for a scenario with J= 2 SNPs that have a
main effect but no GE interaction. Other choices of J
yielded similar results (not shown). Results in Table 1
demonstrate that the uncorrected (asymptotic) Gamma
Method, which assumes the gene-level tests are indepen-
dent, has inflated probability of a type I error. As expected,
the type I error for the minGamma method is even more
inflated due to the search over multiple STTs. Using our
parametric bootstrap strategy, the type I error for the
Gamma and minGamma methods was controlled at the
correct level, for either choice of α.
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Empirical power

We next compared the power of the GE-GSA strategies
which maintained type I error. To evaluate empirical power
at α= 0.05, we varied the number of SNPs with main effect
and interaction with BD status (J= 2, 20, or 100). Figure 1
shows the power for the Gamma Method using either the
largest or smallest choice of STT searched as well as the
minGamma method across different choices of J. For J= 2,
the smallest values of STT were most powerful and as J
increased, larger values of STT performed better. The
minGamma method was robust to choices of J and was
always powerful. Fisher’s method (STT= 1/e) was most
powerful than other options of STT when J was very large.
As expected, using a dichotomized outcome resulted in a
loss of power.

GSA of the Wnt signaling pathway in GAIN-BD data

To test for GE interaction in the Wnt signaling pathway in
the GAIN-BD data, we first computed gene-level p-values
using the PC method. The gene-level p-values from the G ×
BMI or G × BD models were highly correlated (r2= 0.95).
The top genes with interaction are listed in Table 2. The
majority of gene-level results were more significant when
testing for G × BD association with BMI rather than G ×
BMI association with BD; TCF7L2 was the second most
significant gene in both analyses.

We next combined the gene-level results for each model
using the strategies described in the Methods section. For
the parametric bootstrap, 10,000 p-values were generated
from the null model to generate an empirical p-value for the
observed data. We report the gene-set GE interaction p-
values for all choices of STT in Table 3. The asymptotic
Gamma Method p-values are provided to show how the
parametric bootstrap adjusts the p-value to control the type I
error. When testing for association of BD with G × BMI
interactions, significant evidence of interaction in the Wnt
pathway was only obtained with Fisher’s method when
TCF7L2 was included in the gene-set. When we tested for
association of BMI with G × BD interaction, the Gamma
with STT >0.1, and minGamma methods, provided sig-
nificant evidence of interaction in the pathway regardless of
whether TCF7L2 was included or excluded. Fisher’s
method produced the smallest p-value throughout our
analyses, which indicates that there are likely many
genes with small GE interaction effects that contributed
to the significant pathway-level interaction result. It is
not surprising that the pathway-level results were more
significant for models with BMI as the outcome, because
the gene-level p-values for this model were typically
smaller than the p-values for the model with BD as the
outcome.

Discussion

In this paper, we proposed a variation of the parametric
bootstrap to test for GE interaction in a gene-set. In a GE-
GSA, the null model requires estimating a large number of
genetic main effects. Instead of fitting all of the genetic
main effects, we treated the effects as a random effect,
which allowed us to substantially reduce the number of
parameters in the model. Treating the genetic main effects
as a random effect can be shown to be equivalent to
penalizing the effects with a ridge penalty. The proposed
parametric bootstrap technique corrected the inflated type-I
error probability associated with using an asymptotic
Gamma Method in a GE interaction GSA. The parametric
bootstrap also maintained correct type I error when
searching over multiple values of STT, which provides a
GE-GSA test that is powerful across a range of different
underlying situations.

In our analysis of the GAIN-BD data using the para-
metric bootstrap, we found statistically significant evidence
that the association of BD with BMI is modified by genetic
variation in the Wnt signaling pathway. For this analysis,
Fisher’s method produced the smallest p-value which
indicates that this pathway may contain many genes with
G × BD interaction effects on BMI. Our results also suggest
that the previously reported relationship between BD, BMI,

Table 1 Empirical type I error for each choice of STT for the Gamma
Method

α=0.05 α=0.01

Outcome BD BMI BD BMI

STT=

Uncorrected/
Asymptotic

0.01 0.049 0.057 0.011 0.013

0.05 0.059 0.066 0.017 0.018

0.1 0.072 0.075 0.020 0.023

0.15 0.084 0.084 0.024 0.027

0.2 0.094 0.090 0.028 0.029

1/e (Fisher’s) 0.119 0.096 0.041 0.032

minGamma 0.167 0.156 0.056 0.053

STT=

Parametric bootstrap 0.01 0.051 0.053 0.009 0.010

0.05 0.051 0.049 0.011 0.010

0.1 0.052 0.047 0.009 0.011

0.15 0.050 0.048 0.010 0.011

0.2 0.049 0.049 0.010 0.010

1/e (Fisher’s) 0.050 0.044 0.010 0.009

minGamma 0.048 0.046 0.009 0.010

Inflated type I error probabilities are denoted in bold

Application of the parametric bootstrap for gene-set analysis of gene–environment interactions 1683



and TCF7L2 genetic variation [12] may be reversed
where obesity risk is affected by interactions between
BD status and the SNPs in the Wnt pathway rather than
BD risk being affected by G × BMI interactions. This is

in agreement with our simulation results where we
generated BMI as dependent on sex, genetics, BD, and
G × BD interactions and found the model that treated
BMI as the outcome performed better than the model
with BD as the outcome. However, directionality of the BD-
BMI association cannot be conclusively determined
from these analyses, and other approaches such as
Mendelian Randomization would be required to assess
causality.

One limitation of the parametric bootstrap is that like all
sampling-based techniques, it can be computationally
intensive. Our analysis of one candidate pathway required
us to analyze 10,000 samples generated from the null
model. If we were interested in testing GE interactions for
many gene-sets in a hypothesis-generating context, the
parametric bootstrap would become computationally
infeasible. In this situation, we recommend using the much
faster uncorrected (asymptotic) Gamma or minGamma
method, followed by analysis of the top resulting gene-sets
using the parametric bootstrap to ensure proper control of
type I error. Another limitation to the parametric bootstrap
is that it assumes the null model is correct, and thus a severe

Fig. 1 Empirical power at α=
0.05 level for different choices
of STT and varying number of
causal genes. Pathway analysis
was performed using a
quantitative trait (top row) or
dichotomous trait (bottom row)
as the outcome. The y-axis
shows the empirical power

Table 2 Top ten gene-level interaction p-values for the GAIN dataset
using either BD status (G × BMI p-value) or log BMI (G × BD
p-value) as the outcome

Gene name # SNPs # PCs G × BMI p-value G × BD p-value

VANGL1 39 6 0.0090 0.0020

TCF7L2 52 11 0.0073 0.0028

NFATC3 6 2 0.0067 0.0051

CHP2 14 2 0.0217 0.0089

SMAD3 73 9 0.0244 0.0097

SFRP1 23 4 0.0178 0.0143

ROCK2 24 2 0.0313 0.0179

CTBP2 87 12 0.0507 0.0226

SMAD4 5 1 0.0326 0.0254

DAAM1 72 5 0.0297 0.0296

Rows are sorted by the far-right column. Gene-level p-values are not
corrected for multiple testing of genes across the Wnt pathway
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misspecification of the null model could result in inflated
probability of a type I error. However, the parametric
bootstrap is currently one of the only approaches that can be
used to simulate a null distribution for GE interaction tests.
Further investigation of the impact of null model mis-
specification and ongoing method development is therefore
needed to address this issue. The current simulations also
only considered the case where G and E are independent.
More study is necessary to investigate GE dependence.
Finally, while our simulations only used one type of gene-
level GE interaction test, there are other gene-level GE
interaction tests that could be implemented in this frame-
work. In our future work, we plan to incorporate the pro-
posed parametric bootstrap to explore which of these gene-
level GE interaction tests are most powerful in a two-step
pathway analysis.

In this paper, we used a parametric bootstrap approach to
derive a valid GE-GSA test with correct type 1 error. It was
previously shown that the parametric bootstrap can be a
useful tool when the asymptotic distribution of a test sta-
tistic is difficult or impossible to derive. However, the
parametric bootstrap requires fitting the null model, which
sometimes poses a challenge. The parametric bootstrap
approach that we proposed for GE-GSA overcame this
challenge, and may prove useful in other “big data” appli-
cations, such as tests of interactions among SNPs in a gene-
set, and gene-level tests of interactions when the number of
SNPs in a gene is very large.
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