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Abstract
Adiposity has been associated with the risk of coronary artery disease (CAD) in observational studies, but their association
may differ according to specific characteristics of studies. In Mendelian randomization (MR) analyses, genetic variants are
used as instrumental variables (IVs) of exposures to examine causal effects to overcome confounding factors and reverse
causation. We performed MR analyses for adiposity (n= 322,154) on risk of CAD (60,801 cases and 123,504 controls)
based on the currently largest genome-wide association studies. The estimated associations between adiposity traits and
CAD were calculated by an inverse-variance weighted method with and without excluding the IVs, which are associated
with the well-known risk factors of CAD. Genetic variants are identified to be associated with the well-known risk factors of
CAD by a cross-phenotype meta-analysis method. Our results furnished strong evidence for a causal role of adiposity in risk
of CAD, with the odds ratios (ORs) for CAD being 1.53 (95% CI 1.36–1.72) for body mass index (BMI), 1.48 (1.20–1.96)
for waist–hip ratio (WHR), and 1.34 (1.07–1.59) for WHR adjusted for BMI (WHRadjBMI), respectively. After excluding
mediators-associated IVs from the MR analyses, the corresponding ORs were 1.46 (1.28–1.67) for BMI, 1.39 (1.01–1.93)
for WHR, and 1.38 (1.04–1.84) for WHRadjBMI, respectively. Furthermore, our results suggested that central adiposity and
general adiposity might pose a similar risk for CAD. In summary, our data supported that genetically driven adiposity traits
imposed the risk of CAD independent of blood pressure, dyslipidaemia, glycaemic traits, and type 2 diabetes.

Introduction

Obesity is a chronic metabolic disorder, mainly character-
ized by excessive body fat. According to National Health
and Nutrition Examination Survey 2013 to 2014, the pre-
valence of obesity among US adults increased from 1999 to
2000 through 2013 to 2014 from 30.5 to 37.7% [1, 2],
making it a major contributor to the rise of prevalence of
coronary artery disease (CAD) [3].

Epidemiological studies have identified obesity as an
independent risk factor of cardiovascular disease. A sys-
tematic review and meta-analysis of 37 studies showed that
high childhood body mass index (BMI) was associated with
an increased incidence of adult CAD (Odds ratio—OR:
1.20, 95% confidence interval—CI: 1.10–1.31) [4]. Simi-
larly, a large meta-analysis showed that obese subjects had a
significantly greater risk of CAD (relative risk—RR: 1.81,
95% CI: 1.56–2.10) after adjustment for age, sex, physical
activities, and smoking [5]. Despite the association between
obesity with an increased occurrence of CAD, studies have
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reported the obesity paradox phenomenon, in which over-
weight and obese patients with established CAD have better
clinical outcomes than normal weight patients [6, 7].
Inconsistent findings may be partly a result of different
sample sizes and length of follow-up periods for these
studies, or the inclusion of individuals with different clinical
characteristics [4–7].

Studies have reported that the impact of adiposity on
CAD risk is determined by the degree to which fat accu-
mulates as well as where it accumulates [8]. When deter-
mining adiposity in research and clinical diagnosis, BMI
was widely used. However, it may overestimate body fat in
people who are very muscular and underestimate body fat in
those who have lost muscle mass [9]. Increasing studies
suggested that the accumulation of abdominal adipose tis-
sue appears to be an independent risk predictor of CAD,
while the accumulation of abdominal adipose tissue (mea-
sured by waist–hip ratio (WHR)) is associated with greater
CAD risk [10, 11]. Another recent study reported that
measures of adiposity (BMI, WHR) were related to CAD,
but did not improve risk discrimination when adjusted for
the well-known risk factors of CAD, including diabetes
mellitus, blood pressure, and blood lipids [12]. However, a
publication showed that the association between adiposity
and CAD was attenuated to null apart from blood pressure,
cholesterol level, and blood glucose level [13].

In observational studies, adiposity has been associated
with CAD [14]. However, unmeasured factors might con-
found observational studies that link BMI and WHR with
CAD [15]. Moreover, adiposity was often based on self-
reported or measured values of weight/BMI and height,
which tend to be under-reported and over-reported,
respectively [16]. Additionally, reverse causality could
similarly lead to a statistically robust but non-causal rela-
tionship. For example, individuals with subclinical CAD
might develop abdominal adiposity because of an inability
to exercise. It is unclear whether the relationship found
between adiposity traits and CAD in observational studies is
causal. Mendelian randomization (MR) method may help to
investigate the possible causal associations between adip-
osity traits and CAD as it could eliminate potential reverse
causality and reduce confounding bias [17, 18]. Several
recent MR studies have estimated the effect of adiposity
traits on CAD risk [19–21]. However, these studies inclu-
ded various numbers of adiposity-associated genetic var-
iants that are associated with the well-known risk factors of
CAD, thereby allowing for the possibility that such variants
have effects on the risk factors of CAD, thus the relation-
ship between adiposity and CAD may be mediated by these
factors. Some studies just estimated the association of WHR
adjusted for BMI with CAD [19, 20]. However, the collider
bias might exist, whereby the BMI adjustment biases the
causal estimate due to the collinearity with WHR and its

likely mediating or confounding role in the association of
WHR and CAD.

Here we applied MR analyses to quantify and contrast
the association of adiposity traits on the risk of CAD based
on summary statistics from the largest published genome-
wide association studies (GWAS) [22, 23]. In our study, we
applied a cross-phenotype meta-analysis method to identify
such variants that are associated with the well-known risk
factors of CAD, including blood pressure, dyslipidaemia,
glycemic traits and type 2 diabetes. With excluding the
mediators-associated variants from MR analyses, we could
specifically investigate the estimated associations between
adiposity traits and CAD independent of the well-known
risk factors of CAD. We investigated the association of
WHR both adjusted and unadjusted for BMI with CAD to
discuss whether the collider bias influences the results.

Materials and Methods

Data sources

The summarized data sets for adiposity traits were obtained
from the largest meta-GWAS performed by the Genetic
Investigation of Anthropometric Traits (GIANT) Con-
sortium and downloaded from the site: http://portals.broa
dinstitute.org/collaboration/giant/index.php/GIANT_consor
tium_data_files. Effect estimates of SNPs associated with
BMI were obtained from a two-stage meta-analysis to
identify BMI-associated loci in European adults (n=
322,154), where BMI was adjusted for age, age squared,
and any necessary study-specific covariates in a linear
regression model [22]. Effect estimates of SNPs associated
with WHR and WHR adjusted for BMI (WHRadjBMI)
were obtained from meta-GWAS of waist and hip
circumference-related traits in European individuals (n=
224,459) [23]. Estimates of the effects of these trait-
associated SNPs on risk of CAD were obtained from the
meta-GWAS of mainly European descent (60,801 CAD
cases and 123,504 controls), conducted by the Coronary
ARtery DIsease Genome wide Replication and Meta-
analysis (CARDIoGRAM) plus the Coronary Artery Dis-
ease (C4D) Genetics consortium (CARDIoGRAMplusC4D)
[24] and downloaded from the site: http://www.cardiogra
mplusc4d.org/data-downloads. Further details of the GWAS
samples and methods employed within each group were
presented in the original references [22, 23, 25].

SNP selection

An important assumption of MR analyses is that the SNP
was associated with the exposure (e.g., adiposity traits).
Several steps were involved to select the adiposity-
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associated SNPs as instrumental variables (IVs) for analy-
sis. First, we identified the adiposity-associated SNPs that
achieved the standard threshold of genome-wide sig-
nificance (p < 5 × 10−8) in the GIANT consortium, respec-
tively. Then for these selected SNPs, we applied the linkage
disequilibrium (LD)-based pruning method to remove the
large correlations between pairs of variants. The data sets
were pruned using the HapMap3 genotypes of the corre-
sponding ethnicity references. SNPs were removed from
our analysis if their measured LD had an r2 > 0.001. We
retained the SNP that was most strongly associated with
adiposity traits by p value when two or more SNPs were in
LD. Last, we gathered summary-level results for each SNP
from the CAD GWAS data and excluded the SNPs that
were associated with CAD (For the SNPs, the p values from
summary-level results were smaller than 5 × 10−8 in the
CAD GWAS). The summary associations of candidate IVs
were harmonized as described [26]. Overall, we identified
the SNPs as IVs, which are associated with adiposity traits
and are not associated with the outcome (e.g., CAD).

Pleiotropic variants detected by cross-phenotype
meta-analysis

Accumulative evidence indicated that pleiotropic effect
exists, a single gene or SNP is associated with more than
two distinct phenotypes [27]. Especially, it is relevant for
studies conditioning on the pleiotropic effect that will lead
to the inclusion of adiposity-associated IVs, which are
associated with risk factors that may increase or protect
against CAD. Additional exclusion of genetic variants that
are associated with the well-known risk factors of CAD
could help us investigate the association between adiposity
and CAD independent of these risk factors of CAD,
including blood pressure, dyslipidaemia, glycaemic traits
and type 2 diabetes. Thus, the cross-phenotype meta-ana-
lysis (CPMA) method was used to detect potential pleio-
tropic effect between the adiposity traits with the other well-
known risk factors of CAD [28]. This method could identify
any SNP for which there is statistical evidence of potential
pleiotropic effects on possible mediators, ignoring the
strength or the direction of genetic effect. Previous studies
reported that the well-known risk factors may increase or
protect against CAD, we included cohort-specific summary-
level results from the currently largest GWAS meta-
analyses for each trait, where such data were publicly
available: (1) blood lipids (low-density lipoprotein choles-
terol (LDL), high-density lipoprotein cholesterol (HDL),
and triglycerides (TG), total cholesterol (TC)) [29], (2)
systolic and diastolic blood pressure [30], (3) glycemic traits
(fasting glucose, 2 h glucose) [31], (4) type 2 diabetes [32].
In our study, we applied the restrictive threshold of
pleiotropic associations (p < 0.01) on possible mediators.

Meta-analysis literature revealed MR-Egger regression to be
a valuable means of testing for directional pleiotropy [33].
Thus, MR-Egger method was applied for visual inspection
of pleiotropic effects of the included SNPs. If an intercept of
MR-Egger regression test was not distinct from the origin, it
indicated that the included SNPs were free of pleiotropic
effect.

Statistical analyses

We used an inverse-variance weighted (IVW) meta-analysis
of ratio estimates method by weighting the genetic effect
estimate of each SNP on CAD by its effect on adiposity trait
[34]. This method was reported to have equivalent statistical
power with two-stage least squares method and successfully
applied to various diseases [35–37]. In this method, SNP j
(j= 1,…, j) was associated with an observed Xj mean
change in the exposure per additional variant allele with
standard error σXj and an observed Yj mean change in the
outcome per allele with standard error σYj . For SNP j, the
causal effect estimate of the exposure on the outcome is
equivalent to the ratio of Yj/Xj. The standard error of the
ratio can be calculated as the ratio of σYj=Xj. When putting
each SNP into a fixed-effect meta-analysis model, the causal
effect estimate of the exposure on the outcome can be
calculated as the ratio
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Heterogeneity of the overall identified SNPs for adipos-
ity traits was assessed using the Q statistic and reported as a
p value of heterogeneity. Cook’s distance was used to
estimate heterogeneity of each SNP associated with adip-
osity traits.

Results

Instrument Validation

Where possible, we tested the following three fundamental
MR assumptions to ensure the validity of IVs [38]: (i) SNPs
used as IVs must be associated with the exposure of interest
(e.g., BMI, WHR, WHRadjBMI); (ii) SNPs must not be
associated with potential confounders; and (iii) SNPs must
be only associated with the outcome variable (CAD) via the
exposure of interest.
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For assumption (i), several steps were conducted to
ensure that the included SNPs are associated with the
exposure of interest, thus validating this assumption.
Additionally, population stratification is a potential source
of bias, the GWAS used in our study included only
individuals of European descent and thus selected
to control the bias. Overall, we identified 68 BMI SNPs, 28
WHR SNPs and 36 WHRadjBMI SNPs as IVs for the
exposure, respectively. Details of individual SNPs were
given in Supplemental Tables 1–3. There was no overlap
between BMI SNPs and WHR SNPs, WHRadjBMI SNPs.
For assumption (ii), MR-Egger regression was used to
investigate whether the association was biased by any
unbalanced horizontal pleiotropy or not. The CPMA
method was used to identify the IVs which are associated
with the well-known risk factors of CAD, so we can
assess the vertical pleiotropy between the IVs and these
factors in our study. Briefly, we included these factors as
mediators and considered the restrictive pleiotropic thresh-
old of pleiotropic associations (p < 0.01). Details of pleio-
tropic associations for each SNP across potential mediators
were described in Supplementary Tables 4–6. At last,
MR-Egger regression was performed to test and correct for
bias as a result of directional pleiotropic effect. According
to the results of MR-Egger regression test, the estimated
intercept terms were all centered at the origin which
indicated that genetic pleiotropic effect had not influenced
the causal effect estimates, as shown in Table 1. For
assumption (iii), it was difficult to test directly. However,
SNPs used as IVs had been identified to be associated with
the exposure and yet had no obvious biological link to other
potential confounders (smoking status and educational
attainment).

Instrumental variable analysis

BMI on the risk of CAD

Detailed information on the included SNPs of BMI was
shown in the Supplementary Table 1. According to the
results of the MR-Egger regression test, the intercept was
near zero (Intercept: −0.004, p= 0.440), indicating
that the causal estimate of BMI with the risk of CAD was
not biased by any unbalanced directional pleiotropy. In the
IV analysis using a polygenic instrument of 68 BMI SNPs,
we found a positive association of BMI with the risk of
CAD from the IVW results (OR: 1.53, per standard
deviation (SD) increase of BMI, 95% CI: 1.36–1.72, p=
5.1 × 10–12). However, the heterogeneity test supported
heterogeneity in the IVs of BMI (p= 0.0009). As suggested
in the study by Jack Bowden and coworkers [38], we
conducted a sensitivity analysis using a median-weighted
MR method to take into account the heterogeneity in the
IVs. The results from the weighted median were consistent
with the IVW results (OR= 1.50, per SD increase of BMI,
95% CI: 1.30–1.75, p= 1.3 × 10−8). Next, we investigated
each of the BMI SNPs for potential pleiotropic effects. At a
conservative threshold of the CPMA method (p < 0.01),
there were 22 pleiotropic SNPs, resulting in 46 BMI SNPs
being treated as IVs which were not associated with the
analyzed known mediators (Supplementary Table 4).
Using the IVs of 46 BMI-associated SNPs, one-SD
genetically elevated BMI was associated with a 46%
increase in odds of CAD (OR= 1.46, per SD increase
of BMI, 95% CI: 1.28–1.67, p= 2.9 × 10−8, heterogeneity
p= 0.30) (Table 1).

Table 1 Instrumental variable
analyses of the causal effects of
adiposity traits on risk of CAD

Exposure N IVW results MR-Egger
regression

Heterogeneity

OR 95% CI p value Intercept p value p value

BMI 68 1.53 1.36–1.72 5.1 × 10–12 −0.01 0.44 0.0009

WHR 28 1.48 1.20–1.67 0.006 −0.15 0.91 1.7 × 10−6

WHRadjBMI 36 1.34 1.07–1.59 0.009 −0.03 0.70 5.6 × 10−6

BMIa 46 1.46 1.28–1.67 2.9 × 10−8 0.00 0.80 0.30

WHRa 12 1.39 1.01–1.93 0.04 0.02 0.27 0.09

WHRadjBMIa 16 1.38 1.04–1.84 0.03 0.02 0.33 0.61

Estimates for the effect of adiposity traits with coronary artery disease were derived from Mendelian
randomization analyses

IVW inverse-variance weighted method, BMI body mass index, WHR waist–hip ratio, WHRadjBMI
waist–hip ratio adjusted for BMI, OR odds ratio, CI confidence interval, N numbers of included instrumental
variables in the Mendelian randomization analyses
aIndicates that the results were derived from the sensitivity analyses, excluding the pleiotropic variants which
were associated with intermediate factors by the cross-phenotype meta-analysis
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WHR on the risk of CAD

Detailed information on the included SNPs for WHR and
WHRadjBMI was shown in Supplementary Tables 2 and 3,
respectively. On the basis of the results of the MR-Egger
regression test, the estimated causal effect of WHR on the
risk of CAD was not biased by any unbalanced horizontal
pleiotropy (Intercept for WHR: −0.002, p= 0.913; inter-
cept for WHRadjBMI: −0.005, p= 0.702). In the IV ana-
lyses ignoring the SNPs that might be associated with
possible mediators, our results suggested a causal effect of
WHR on the risk of CAD (OR= 1.48, per SD increase of
WHR, 95% CI: 1.20–1.96, p= 0.006, heterogeneity p=
1.7 × 10–6; OR= 1.34, per SD increase of WHRadjBMI,
95% CI: 1.07–1.59, p= 0.009, heterogeneity p= 5.6 × 10−6).
When taking into account the heterogeneity in the IVs, the
results from the weighted median was consistent with the
IVW results (OR= 1.44, per SD increase of WHR, 95% CI:
1.11–1.87, p= 0.005; OR= 1.32, per SD increase of
WHRadjBMI, 95% CI: 1.08–1.62, p= 0.009). After
excluding the pleiotropic SNPs identified by CPMA method
(Supplementary Tables 5 and 6), we showed that the
association of increased WHR and CAD was preserved
(OR= 1.39, per SD increase of WHR, 95% CI: 1.01–1.93,
p= 0.04, heterogeneity p= 0.09; OR= 1.38, per SD
increase of WHRadjBMI, 95% CI: 1.04–1.84, p= 0.03,
heterogeneity p= 0.61).

Discussion

The present study utilized an MR design applied to the
studies within the GIANT consortium to address the
potential causal role of central adiposity (measured by
WHR and WHRadjBMI) and general adiposity (measured
by BMI) on the risk of CAD. Our MR investigation con-
firmed that genetically driven adiposity traits, determined by
adiposity-associated genetic variants, could significantly
increase in odds of CAD. After excluding the variants
which are associated with the major known risk factors of
CAD, there was still a significantly increased risk of CAD
that is independent of the analyzed blood pressure, dysli-
pidaemia, glycaemic traits and type 2 diabetes. Addition-
ally, central adiposity and general adiposity might pose a
similar risk for CAD (p values from the t test > 0.05).

Some MR analyses have been applied to test the asso-
ciation of adiposity with CAD. However, these studies
mainly focused on BMI as an exposure proxy solely for
adiposity [21, 39, 40], while our study extended to other
measures of adiposity and fat distribution as exposure
proxies, including WHR with and without adjustment for
BMI. Moreover, the earlier studies included smaller sample
sizes, leading to weaker IVs due to the limited numbers of

SNPs identified as IVs for MR analyses [21, 39, 40].Our
results were in line with two recent MR studies based on the
analysis of both summary statistics and individual-level data
[19, 20]. Moreover, we quantified and contrasted causal
associations of central adiposity and general adiposity with
CAD.

In line with our results, cohort investigations have
demonstrated that adiposity is related to CAD apart from its
association with the well-known risk factors, including
blood pressure, dyslipidaemia and glycaemic traits [41, 42].
Several mechanisms could underlie an effect of adiposity on
CAD independent of the well-known risk factors. In addi-
tion to these well-known risk factors, other consequences of
adiposity are also likely to contribute to the risk of CAD,
including a state of low-grade inflammation [43, 44],
endothelial dysfunction [45], impaired endothelial vasodi-
latory responses [46]. In anatomical structure, obese indi-
viduals are associated with increases in total blood volume,
stroke volume, and cardiac output which may lead to
abnormal left ventricle remodeling and left ventricle
hypertrophy over time, and withdrawal of vagal activity and
sympathetic predominance may lead to reduced heart rate
variability, all of which combine may further increase the
likelihood of developing CAD [47].

Our results may allow several conclusions. First, central
obesity has a causal effect on CAD that is independent of
BMI. This finding demonstrates the potential of MR
approaches for investigating highly correlated adiposity
traits that have proved challenging to disentangle in
observational studies [48]. Second, it is not only the volume
of adiposity, but also its location had the impact on the risk
of CAD that is independent of total fat. For example, at a
given BMI, there is considerable inter-individual variation
in the amount of visceral fat, which shows associations with
diseases [49]. Third, efforts to quantify the effect of obesity
on the burden of CVD should include multiple measure-
ments of body fat distribution to avoid underestimating the
true burden of obesity on health [50].

This study has several strengths. First, independent SNPs
were used as IVs to investigate the estimates effect of
central and general obesity on CAD. Second, the CPMA
method was applied to identify the variants which are
associated with the well-known risk factors of CAD, so that
we could investigate the estimated effects of adiposity traits
on CAD independent of dyslipidaemia, blood pressure, and
glycemic traits and type 2 diabetes in the present study. This
study may also have several potential limitations. First,
although several methods were used in an attempt to rule
out pleiotropy, it is possible that the results represent a
shared genetic basis between obesity and CAD rather than a
causal relationship [51]. Second, the association of adip-
osity traits with CAD was assessed in linear regression
model, but a log-linear association may not exist between
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adiposity traits and cardiometabolic traits in observational
studies [52]. However, when a BMI value is greater than 25
kg/m2, the association has been reported to be linear [53]
and therefore our findings are primarily applicable to those
individuals. Third, this analysis was only included indivi-
duals of European descent, the association of genetically
determined adiposity traits with CAD may differ by ethni-
city or genetic ancestry.

In conclusion, our study supported evidence for a causal
role of both central and general adiposity in risk of CAD
independent of the well-known risk factors of CAD,
including dyslipidaemia, blood pressure, and glycemic traits
and type 2 diabetes. Furthermore, our results suggested that
central adiposity separated from general adiposity and
general adiposity might pose a similar risk for CAD. Our
findings suggested that the impact of adiposity on risk of
CAD is determined by the degree to which fat accumulates
as well as where it accumulates. In clinic in practice, phy-
sicians should therefore pay attention to the potential effects
of different obesity-related traits with CAD.
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