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Abstract
The main genetic factors for familial melanoma remain unknown in >75% of families. CDKN2A is mutated in around 20%
of melanoma-prone families. Other high-risk melanoma susceptibility genes explain <3% of families studied to date. We
performed the first genome-wide linkage analysis in CDKN2A-negative Spanish melanoma-prone families to identify novel
melanoma susceptibility loci. We included 68 individuals from 2, 3, and 6 families with 2, 3, and at least 4 melanoma cases.
We detected a locus with significant linkage evidence at 11q14.1-q14.3, with a maximum het-TLOD of 3.449 (rs12285365:
A>G), using evidence from multiple pedigrees. The genes contained by the subregion with the strongest linkage evidence
were: DLG2, PRSS23, FZD4, and TMEM135. We also detected several regions with suggestive linkage evidence (TLOD
>1.9) (1q, 6p, 7p, 11q, 12p, 13q) including the region previously detected in melanoma-prone families from Sweden at 3q29.
The family-specific analysis revealed three loci with suggestive linkage evidence for family #1: 1q31.1-q32.1 (max. TLOD
2.447), 6p24.3-p22.3 (max. TLOD 2.409), and 11q13.3-q21 (max. TLOD 2.654). Future next-generation sequencing studies
of these regions may allow the identification of new melanoma susceptibility genetic factors.

Introduction

Melanoma etiology is complex and involves environmental,
phenotypic, and genetic factors. Approximately 10% of
melanoma cases occur in a familial context. To date,
CDKN2A (NG_007485.1, NM_000077.4 (p16INK4A) and
NM_058195.3 (p14ARF), LRG_11) is the main high-risk
susceptibility gene and germline pathogenic variants are
detected in around 20% of melanoma-prone families world-
wide [1]. The prevalence of CDKN2A pathogenic variants
varies across populations (5–72%) [2]. In the Mediterranean
population, due to the low incidence of the disease,
melanoma-prone families are considered as those with at least
two melanoma patients in first- or second-degree relatives [3,
4]. Overall, 14% of Spanish melanoma-prone families carry
CDKN2A pathogenic variants, with prevalence increasing
with the number of cases in the family: 11% in families with 2
cases, 23% in families with 3 cases, and 36–43% in families
with at least 4 melanoma cases [5, 6].

Beyond CDKN2A, other high-risk melanoma genes have
been identified, but they account for <3% of the families
studied worldwide [1]. Thus, the genetic factors underlying
melanoma susceptibility remain unknown in a substantial
number of high-risk melanoma families [1].
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Previous genome-wide linkage analyses, either using
microsatellite marker sets or high-density single-nucleotide
polymorphism (SNP) arrays, have been conducted in
CDKN2A wild-type melanoma-prone families, mostly from
pedigrees of Northern European ancestry [7–9]. Altogether,
these studies suggest 1p22, 9q21, and 17p12-p11 as mela-
noma susceptibility loci. Notably, the regions detected in
these studies were restricted to each geographic population
without overlap between studies, and results typically
achieved suggestive evidence for linkage. To date, only one
study has been conducted in Mediterranean melanoma
pedigrees from Italy [10], which failed to detect results with
suggestive or significant linkage evidence.

With the goal of identifying new familial melanoma
susceptibility loci, we report the first genome-wide linkage
analyses conducted in Spanish melanoma-prone families.
This is the first study carried out in Mediterranean mela-
noma pedigrees that has been able to detect genomic
regions reaching significant genome-wide linkage evidence.

Subjects and methods

Samples and pedigrees

The study included 29 melanoma cases and 39 non-affected
individuals belonging to 11 Spanish melanoma-prone
families (10 CDKN2A-negative families and one family
with CDKN2A-positive and two CDKN2A-negative cases),
with genome-wide genotyping data available from at least
two melanoma cases (Figure S1). The family set was enri-
ched with families with a high number of cases for our
geographic location: six families with ≥4 melanoma cases,
three families with 3 melanoma cases, and two families with
2 melanoma cases. All patients belonged to melanoma-
prone families under dermatological follow-up at the Mel-
anoma Unit of Hospital Clinic of Barcelona. For family and
individual de-identification, the families included in the
study were numbered consecutively from 1 to 11 and sex
has been hidden on purpose.

The study was approved by the ethical committee of
Hospital Clinic of Barcelona. All patients provided written,
informed consent.

Linkage analysis

Subjects were genotyped on either the HumanOmni2.5
(Illumina) array versions v1.0 (81% of subjects) or v1.1
(19% of subjects). The GEO accession number for the
genotyping data reported in this paper is GSE109208. Only
SNPs common to both versions were included in the
study (2,426,511 SNPs). We also excluded SNPs with
missing genotypes in >95% of samples (2,332,767 SNPs

remaining). Since linkage disequilibrium between markers
can artificially inflate evidence for linkage [8], we reduced
the set of markers to a non-linkage disequilibrium set by
iteratively removing markers with heterozygosity <0.3, r2 >
0.16 with a previously selected marker and a minimum
distance of 0.1 cm between markers, which resulted in
24,225 SNPs for analysis [8].

Mcsim software was used to perform parametric linkage
analysis. Mcsim uses Monte Carlo Markov Chain techni-
ques to provide haplotype reconstructions to extract
inheritance information in pedigrees [11]. In addition to
standard multipoint logarithm of the odds (LOD) scores, the
program calculates robust multipoint LOD scores (referred
to as TLODs). TLOD score is preferable to standard mul-
tipoint because it incorporates the recombination frequency
(theta) in the statistic’s parameterization, preserving the
robustness of the two-point LOD statistic to model mis-
specification while taking advantage of multipoint informa-
tion [12]. The TLOD statistic follows the same theoretical
distribution as other LOD score statistics (e.g., two-point,
multipoint, and heterogeneity-LOD (het-LOD) scores) and
can be interpreted with the same conventions. Lander and
Kruglyak proposed using LOD >0.588 for nominal evi-
dence, >1.9 for suggestive evidence, and >3.3 for significant
evidence [13]. Evidence from multiple pedigrees was
assessed with the heterogeneity-TLOD statistic (het-TLOD)
[14]. Allele frequencies were estimated internally and gen-
eral dominant and recessive models were used. We analyzed
all pedigrees using an affected-only model that assumed a
disease gene frequency of 0.005 for a dominant model and
0.05 for a recessive model. The penetrance estimates for
carriers and non-carriers were 0.5 and 0.0005, respectively.
The genome version GRCh37/hg19 was used to establish
genomic positions. Reference sequence (RefSeq) database at
NCBI and GeneCards Human Gene Database (http://www.
genecards.org/) were used to obtain information on the
genomic features in the regions of interest [15, 16].

Haplotype phasing

Regions of interest linked to multiple families were assessed
for the presence of common haplotypes shared between
linked families. The software SHAPEIT2 was used for
haplotype phasing [17]. All genotyped SNPs in regions of
interest were used for phasing.

Results

Genome-wide linkage analysis

The het-TLOD genome-wide analysis, using evidence
summed across the pedigrees, revealed a region with
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significant linkage (het-TLOD >3.3) on chromosome 11
(Table 1 and Fig. 1). This region had a maximum het-TLOD
of 3.449 (rs12285365:A>G) and spanned the 11q14.1-q14.3
locus (when using one het-TLOD score support interval).
The region contains 52 genomic features of which 38 are
protein-coding genes. The strongest linkage evidence at this
locus (all markers with het-TLOD >3.3) was detected in two
regions: between rs1940085:G>A and rs7108021:T>G
(chr11: 84.3–84.6 Mb) and between rs12285365:A>G and
rs607530:T>C (chr11: 86.6–87.6 Mb). These regions con-
tain four protein-coding genes: DLG2 (NG_021375.1,
NM_001142699.1), PRSS23 (NM_007173.5), FZD4
(NG_011752.1, NM_012193.3), and TMEM135
(NM_022918.3). We phased haplotypes in the linked ped-
igrees using all available markers to determine whether the
same haplotypes appeared in multiple linked families, but

failed to identify any such haplotype. Other regions showed
suggestive linkage evidence (TLOD >1.9) at chromosome
1q, 6p, 7p, and 11q under a dominant model, and at chro-
mosome 3q, 12p, and 13q under a recessive model
(Table 1). SNPs description based on a genomic reference
sequence is shown in Table S1.

Family-specific genome-wide linkage analysis

Data from previous studies suggest that certain high-risk
melanoma factors may be restricted to a limited number of
pedigrees such as germinal variants in TERT
(NG_009265.1, NM_198253.2, LRG_343) [18, 19]. Thus,
we conducted a separate genome-wide analysis for each
family. We detected three regions with suggestive evidence
for linkage (TLOD >1.9) in family #1 under a dominant

Table 1 Genome-wide suggestive het-TLODs (>1.9) and significant het-TLODs (>3.3)

Cytogenetic band Genome location (GRCh37/hg19) Model Maximum score SNP ID Gene

1q31.1-q32.1 chr1: 186,946,386–205,336,875 Dom 2.456 rs7517688 None

3q29 chr3: 194,219,913–197,744,198 Rec 2.099 rs11185544 None

6p24.3-p23 chr6: 8,193,128–15,089,151 Dom 2.024 rs6925772 HIVEP1

7q21.11-q21.2 chr7: 85,216,272–91,167,397 Dom 2.546 rs10268943 None

11q14.1-q14.3 chr11: 82,498,536–92,106,781 Dom 3.449 rs12285365 PRSS23

11q22.1 chr11: 97,804,083–100,498,349 Dom 2.462 rs17577073 CNTN5

12p13.1 chr12: 13,066,220–13,617,099 Rec 1.950 rs12815655 None

13q12.3-q14.11 chr13: 30,484,862–43,478,867 Rec 2.365 rs2312972 None

The threshold used to define the boundary region was 1 het-TLOD difference from the maximum regional score. The significant het-TLODs (>3.3)
are highlighted in bold

Dom dominant, Rec recessive

987654321

0 
   

   
   

1 
   

   
   

2 
   

   
   

 3
 

X22120291817161514131211101

chr

chr

he
t-T
LO
D

he
t-T
LO
D

0 
   

   
   

1 
   

   
   

2 
   

   
   

 3
 

Fig. 1 Genome-wide het-TLOD
scores. Genome-wide het-TLOD
scores in dominant (continuous
line) and recessive (dashed line)
models are plotted. Significant
linkage evidence threshold (het-
TLOD >3.3) is denoted by the
horizontal dashed line
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model (Fig. 2). This is a family with six CDKN2A-positive
melanoma cases, two CDKN2A-negative melanoma cases, and
other cancers in blood relatives (liver, lung, cervix, endometrial,
and breast cancer cases). The CDKN2A-negative cases devel-
oped melanoma at a young age (32, 33 years old (y.o)) similar
to the CDKN2A-positive cases (27, 34, 37, 37 y.o). Since,
CDKN2A-negative cases did not carry medium melanoma risk
variants such as MC1R (NG_012026.1, NM_002386.3) red-
hair color variants or MITF (NG_011631.1, NM_000248.3,
LRG_776) variant c.952G>A (p.(Glu318Lys)), we hypothe-
sized that the melanoma risk observed in CDKN2A-negative
cases may result from other melanoma susceptibility variants.
We genotyped the CDKN2A-negative melanoma cases along
with two CDKN2A-positive melanoma cases. The analyses
identified three regions that segregate with all melanoma cases
independently of CDKN2A status. The first region was in
1q31.1-q32.1 (chr1: 187.5–205.3Mb) with a maximum TLOD
of 2.447 at markers rs2246083:G>A and rs11590469:C>T
(Figure S2). This region spans 17.8Mb and contains 133
genomic features, of which 103 are protein-coding genes. The
second region was in 6p24.3-p22.3 (chr6: 8.2–19.5Mb) with a
maximum TLOD of 2.409 at marker rs4712415:T>C (Figure
S3). The region spans 11.3Mb and contains 63 genomic fea-
tures, of which 44 are coding protein genes. The third region
was in 11q13.3-q21 (chr11: 68.7–95.5Mb) with a maximum
TLOD of 2.654 spanning >100 markers (Figure S4). This
region spans 26.8Mb and contains 239 genetic features, of
which 171 are protein-coding genes.

Discussion

In Spain, the genetic background in melanoma-prone
families remains unknown in >80% of families [5, 6].

Linkage analysis is likely to detect regions containing high-
risk variants or genetic features segregating with the dis-
ease. Here, we report the results of a genome-wide linkage
screen performed on 11 melanoma-prone families in which
we detected significant linkage to the 11q14.1-q14.3 locus
for melanoma susceptibility. Although the number of
families included in the study is lower than previous studies,
the subset of families was enriched by inclusion of highly
informative families since 54.4% families had ≥4 melanoma
cases.

A previous genome wide association study (GWAS)
study performed in melanoma patients reported a melanoma
locus at the 11q14.3 region. The study detected the stron-
gest evidence of association near rs1393350:G>A encom-
passing TYR (NG_008748.1, NM_000372.4) gene, which
plays a key role in human pigmentation and is a low-risk
melanoma gene [20]. In the present study, the two sub-
regions with strongest linkage evidence within 11q14.1-
q14.3 do not include the TYR gene, suggesting that this
genomic region is associated with melanoma susceptibility
due to genetic factors other than pigment related alleles in
the TYR gene. The DLG2, PRSS23, FZD4, and TMEM135
genes are located in the regions with the strongest linkage
evidence. The biological information about this set of genes
is limited, but they are all plausible candidates for cancer
susceptibility [21, 22]. However, further sequencing data
and molecular studies are necessary to elucidate the possible
role of these genes in melanoma susceptibility.

Moreover, we have detected seven additional loci
(1q31.1-q32.1, 3q29, 6p24.3-p23, 7q21.11-q21.2, 11q22.1,
12p13.1, 13q12.3-q14.11) with suggestive linkage evidence
in the studied families. Notably, the 3q28-q29 locus has
been previously detected with suggestive evidence of mel-
anoma linkage in CDKN2A wild-type Swedish families [9].
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models are plotted. The
suggestive linkage evidence
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denoted by the horizontal
dashed line
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A subsequent analysis of those families reported a narrower
region spanning 3.5 Mb (chr3: 192.1–195.6 Mb) [23],
overlapping the linked region detected in Spanish families.
The rest of the suggestive regions detected have not been
previously reported. The finding of a common region in
Spanish and Swedish melanoma-prone families, strongly
suggests that this region may contain genetic factors asso-
ciated with melanoma susceptibility. The overlap region
from both populations contains 20 genetic features, of
which 10 are protein-coding genes (Table S2) including
plausible candidates involved in proliferation and apoptosis,
lipid transport, serin/threonin phosphatase PP1 inhibition, or
Notch activation [24–27].

Melanoma is one of the tumors with highest heritability
[28]. In families with melanoma aggregation, melanoma
susceptibility follows an autosomal dominant inheritance
pattern with incomplete penetrance. Multiple genes can play a
role in melanoma susceptibility in a family, by combination of
high-risk gene/s and presence of medium-/low-risk variants
modulating expressivity of the high-risk gene/s. High-risk
variants or genetic features segregate with the disease in most
affected cases in the family and may be detected by linkage
analysis studies. We expect to identify one or very few high-
risk variants in an individual. However, in >70% of families
worldwide, these have still not been identified. Thus, studies
such as the present one are needed to provide clues to new
genomic regions to focus on in order to identify new high-risk
variants that may explain part of the missing heritability of
melanoma susceptibility. The combination of medium-/low-
risk variants modulates the penetrance and expressivity of
high-risk genes, but may vary within the family and may be
inherited from different ancestors. Multiple medium-/low-risk
variants have been described to date [1]. However, their
specific role in the modulation of the expressivity of patho-
genic variants in high-risk genes has only been well estab-
lished for the highly polymorphic pigmentation gene MC1R.
CDKN2A variant carriers with melanoma-associated variants
inMC1R have an increased risk of developing melanoma than
CDKN2A variant carriers with wild-type MC1R [29].
Although co-existence of a CDKN2A pathogenic variant with
the rare MITF c.952G>A (p.(Glu318Lys)) variant has also
been described [30], the implication of MITF in the mod-
ulation of melanoma penetrance in CDKN2A variant carriers
is still unknown.

In our study, we included a CDKN2A-positive family in
which two melanoma cases did not carry known high-risk
nor medium-risk melanoma susceptibility variants. We
detected three loci with suggestive linkage evidence indi-
cating that, in addition to the CDKN2A pathogenic variant,
other genetic factors underlie the increased melanoma risk
observed in the members of this family. Knowing the gene,
or combination of genes, involved in melanoma suscept-
ibility is crucial for identification and better management of

at-risk individuals. Furthermore, it allows the refinement of
genetic counseling in melanoma, as specific measures can
be included when genetic testing detects germline variants
in known susceptibility genes [5, 30–32].

In conclusion, using linkage evidence from multiple
pedigrees, we have identified a familial melanoma sus-
ceptibility locus at 11q14.1-q14.3, in Spanish melanoma-
prone families. We have also detected suggestive evidence
of linkage at 3q29, previously described in Swedish
families. Future next-generation sequencing studies or
candidate gene targeted sequencing from these regions may
allow the identification of new genetic factors implicated in
melanoma susceptibility.
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