
European Journal of Human Genetics (2018) 26:740–744
https://doi.org/10.1038/s41431-018-0114-6

BRIEF COMMUNICATION

Periodic reanalysis of whole-genome sequencing data enhances the
diagnostic advantage over standard clinical genetic testing

Gregory Costain1
● Rebekah Jobling1,2

● Susan Walker3,4 ● Miriam S. Reuter3,4 ● Meaghan Snell1 ● Sarah Bowdin1,5,6
●

Ronald D. Cohn1,4,5,6
● Lucie Dupuis1 ● Stacy Hewson1

● Saadet Mercimek-Andrews1,4,6 ● Cheryl Shuman1,7
●

Neal Sondheimer1,4,6 ● Rosanna Weksberg1,4,6
● Grace Yoon1,6,8

● M. Stephen Meyn 1,5,6,7
●

Dimitri J. Stavropoulos2,9 ● Stephen W. Scherer3,4,5,7 ● Roberto Mendoza-Londono 1,5,6
● Christian R. Marshall 2,3,5,9

Received: 24 September 2017 / Revised: 11 December 2017 / Accepted: 23 January 2018 / Published online: 16 February 2018
© European Society of Human Genetics 2018

Abstract
Whole-genome sequencing (WGS) as a first-tier diagnostic test could transform medical genetic assessments, but there are
limited data regarding its clinical use. We previously showed that WGS could feasibly be deployed as a single molecular test
capable of a higher diagnostic rate than current practices, in a prospectively recruited cohort of 100 children meeting criteria
for chromosomal microarray analysis. In this study, we report on the added diagnostic yield with re-annotation and
reanalysis of these WGS data ~2 years later. Explanatory variants have been discovered in seven (10.9%) of 64 previously
undiagnosed cases, in emerging disease genes like HMGA2. No new genetic diagnoses were made by any other method in
the interval period as part of ongoing clinical care. The results increase the cumulative diagnostic yield of WGS in the study
cohort to 41%. This represents a greater than 5-fold increase over the chromosomal microarrays, and a greater than 3-fold
increase over all the clinical genetic testing ordered in practice. These findings highlight periodic reanalysis as yet another
advantage of genomic sequencing in heterogeneous disorders. We recommend reanalysis of an individual’s genome-wide
sequencing data every 1–2 years until diagnosis, or sooner if their phenotype evolves.

Introduction

Whole-genome sequencing (WGS) has the potential to
revolutionize our approach to clinical genetic diagnostics

[1–5]. One proposed advantage of whole-exome sequencing
(WES) and WGS is the opportunity for periodic reanalysis
of the data in individuals not diagnosed on initial testing [2,
6–10]. The Genome Clinic at The Hospital for Sick Chil-
dren (Toronto, Canada) is a longitudinal multifaceted
research project designed to integrate WGS into mainstream
clinical practice [1, 2]. In a previous study, we prospectively
recruited 100 paediatric patients referred for a clinical
genetics assessment and meeting criteria for chromosomal
microarray analysis (CMA) [1]. We found that singleton
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WGS identified diagnostic variants in 34 participants. This
represented a 4-fold increase in diagnostic rate over CMA
alone (8%), and a >2-fold increase over all genetic tests
ordered by the clinicians (13%). In only two cases did tar-
geted genetic tests lead to diagnoses not detectable by
WGS: microsatellite analysis of parents and offspring for
UPD14 (heterodisomy) and a methylation test for
Silver–Russell syndrome. We have now systematically re-
annotated and reanalyzed the WGS data from our original
study, 3 years after the initial annotation. Explanatory var-
iants have been discovered in seven (10.9%) of 64 pre-
viously undiagnosed cases, thereby increasing the
cumulative diagnostic yield of WGS in the study cohort to
41%. These results provide further support for WGS as a
first-tier genetic test.

Subjects and methods

The prospective recruitment and phenotyping of the study
participants is described in detail elsewhere [1]. Families
were eligible for this study if the proband met clinical cri-
teria for CMA. The study was approved by the Research
Ethics Board at The Hospital for Sick Children, and
informed written consent was obtained for each participant.
WGS was done as a singleton (not trio) experiment, using
standard methods [1]. The WGS data were initially anno-
tated in 2014, with all analyses completed by the end of
2015. These data were deposited in the European
Genome–Phenome Archive (www.ebi.ac.uk/ega/) under
accession number EGAS00001001623. The primary aims
of the study were to compare the diagnostic rate of WGS
with that of CMA alone, and with that of all genetic testing
ordered in the course of routine clinical practice.

WGS variant calls were re-annotated in February 2017 at
The Centre for Applied Genomics (Toronto, Canada) using
a custom pipeline [1, 2]. This used recent downloads from
publicly available databases for allele frequency, gene
function, and human disease association. Molecular and
clinical geneticists examined variant files and prioritized
clinically relevant nuclear DNA variants using the follow-
ing parameters: (i) sequence quality, (ii) allele frequency,
(iii) conservation and predicted impact on coding and non-
coding sequence, (iv) presence in ClinVar [11] or Human
Gene Mutation Database (HGMD) [12], (v) genic pheno-
type in Online Mendelian Inheritance in Man (OMIM) and
Clinical Genomic Database (CGD) [13], (vi) zygosity and
genetic mode of inheritance, and (vii) relevance to clinical
phenotype provided. One variant had initially been identi-
fied using an alternative analysis method [14], and another
was previously identified and included in a case series
describing a novel disease gene [15]. Updated phenotype
data were extracted from the medical record. Candidate

variants were classified according to the American College
of Medical Genetics and Genomics (ACMG) guidelines
[16], discussed with the referring clinician, and designated
as diagnostic by consensus. These variants were then con-
firmed by Sanger sequencing in a laboratory with Clinical
Laboratory Improvement Amendments (CLIA)/College of
American Pathologists (CAP) certification. Inheritance of
variants was determined via targeted analysis of parental
DNA samples.

Results

New diagnostic variants were identified in seven (10.9%) of
the 64 cases after reassessment of all sequence and struc-
tural variation in the WGS data (Table 1). All were single
nucleotide variants (SNVs), and were successfully con-
firmed by Sanger sequencing. Five were designated as
likely pathogenic or pathogenic using ACMG criteria [16].
The remaining two (in SMAD6 and ZNF711) were desig-
nated as variants of uncertain significance and returned to
the families by the clinician as probable contributors to the
respective proband’s phenotype. No diagnoses were made
in these 64 study participants by any clinical genetic testing
arranged in the interval period. No diagnoses were made by
systematic reanalysis of the existing CMA data (data not
shown). Thus, the seven new diagnoses increased the
cumulative diagnostic yield of WGS in the entire study
cohort to 41%, which represents a >5-fold increase over
CMA and a >3-fold increase over all testing arranged in the
course of routine clinical practice (Fig. 1).
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Fig. 1 Diagnostic yield in a prospective cohort study after systematic
reanalysis of whole-genome sequencing data. Bar plot showing per-
centage of study participants (n= 100) with molecular diagnoses via
chromosomal microarray analysis (CMA), all clinical genetic testing
performed in this cohort (CMA+), and whole-genome sequencing
(WGS). The CMA and CMA+ diagnostic yields are significantly
different (p< 0.0001) from the WGS diagnostic yield using a chi-
square proportion test. Lighter blue colouring represents the new
diagnoses made upon reanalysis of the WGS data
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All seven variants were detected by the initial WGS
experiments but not recognized as pathogenic. At the time
of the first data annotation in 2014, five of the seven genes
(AP3B2, HMGA2, KCNB1, SON, and WAC) were not
recognized in OMIM to cause human disease [17–22]. In
one case (SMAD6), the phenotypes of the individuals
reported in the literature did not overlap the clinical pre-
sentation of our patient. Variants in SMAD6 have since been
associated with craniosynostosis, in conjunction with
incomplete penetrance [23]. For the SNV in ZNF711, there
was felt to be insufficient evidence in support of patho-
genicity at the time of the initial review. The identification
of additional cases has now bolstered the argument for
causality [24].

Discussion

A diagnostic rate of ~10% after reanalysis is consistent with
that of a previous study that reanalyzed singleton WES data
after a 1–3 year period (10%; 4 of 40) [7]. Reassessment of
pre-existing data can be performed rapidly relative to per-
forming new genetic testing. Currently, a main advantage is
the ability to immediately capitalize on the discovery of new
disease genes. For example, since 2015 the first three pro-
bands have been reported in the literature with HMGA2
sequence variants and a phenotype resembling
Silver–Russell syndrome [17, 18]. The phenotype of Case
1096 was notable for intrauterine growth restriction, short
stature, and other features (Supplemental file). Clinical
genetic testing included CMA, methylation-specific multi-
plex ligation-dependent probe amplification (MS-MLPA)
for 11p15.5 gene dosage and H19 hypomethylation, short
tandem repeat analysis with DNA markers on chromosome
7 for uniparental disomy, and sequencing of PIK3R1. All
results were negative or normal. Reanalysis of his WGS
data identified the novel loss-of-function variant in exon 5
of HMGA2 (Table 1). Databases used for clinical annotation
lag behind the fast pace of the published literature, and
many diagnostic laboratories cannot afford to frequently
validate new pipelines with updated downloads from these
databases. The variant could have been missed, for exam-
ple, because as of December 2017 there is no phenotype
associated with HMGA2 in either OMIM or CDG. This
further emphasizes the importance of periodic reanalysis.

This study was not designed to compare WGS with
WES. Although the SNVs in Table 1 could potentially have
been found with WES, other diagnoses we have made with
WGS were (or would have been) missed [1, 2]. In one study
that re-annotated and reanalyzed six undiagnosed WES
trios, it was necessary in some cases to add coverage to
detect the causal variant [8]. There are several reasons why

periodic reanalysis of WGS data may result in more diag-
noses over time than WES, such as: (i) more uniform and
more comprehensive coverage, including within the exome;
(ii) our improving ability to interpret variation in regulatory
regions, deep intronic regions, and non-coding DNA; and,
(iii) the superior detection of structural variation.
More generally, advances in clinical annotation of genome-
wide sequencing data [25], a trio (as opposed to singleton)
design, and pairing WGS with ancillary RNA sequencing,
may all further increase the diagnostic yield in our
cohort.

These findings highlight periodic reanalysis as yet
another advantage of genomic sequencing in the diverse
paediatric population meeting criteria for CMA. The revised
diagnostic yield of 41% in this cohort is similar to that
observed in the second WGS study from the Genome Clinic
(42%), which involved a heterogeneous group of 103
patients recruited from non-genetic paediatric subspecialty
clinics and where data were annotated in 2016 [2]. We
recommend reanalysis of an individual’s genome-wide
sequencing data every 1–2 years until diagnosis, or sooner
if their phenotype evolves. This should be part of pre-test
counselling. Detailed phenotyping and the opportunity for
reverse-phenotyping are essential, as WGS is both
hypothesis-free and hypothesis generating. One limitation
of clinical WGS is the relative shortage of those trained to
medically interpret a genome. Another major practical and
financial consideration is long-term data storage. With
decreasing costs of sequencing and advancements in
sequencing technology, it may become cost effective in
time to periodically re-sequence a banked DNA sample
rather than store and reanalyze pre-existing WGS data.
Regardless of these factors, the data suggest that utilization
of WGS early in the diagnostic odyssey warrants further
consideration in routine clinical genetics practice.
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