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Abstract
Linear mixed models (LMM) are widely used to estimate narrow sense heritability explained by tagged single-nucleotide
polymorphisms (SNPs). However, those estimates are valid only if large sample sizes are used. We propose a Bayesian
covariance component model (BCCM) that takes into account the genetic correlation among phenotypes and genetic
correlation among individuals. The use of the BCCM allows us to circumvent issues related to small sample sizes, including
overfitting and boundary estimates. Using expression of genes in breast cancer pathway, obtained from the Multiple Tissue
Human Expression Resource (MuTHER) project, we demonstrate a significant improvement in the accuracy of SNP-based
heritability estimates over univariate and likelihood-based methods. According to the BCCM, except CHURC1 (h2= 0.27,
credible interval= (0.2, 0.36)), all tested genes have trivial heritability estimates, thus explaining why recent progress in
their eQTL identification has been limited.

Introduction

For many phenotypes, there is a substantial difference
between estimates of narrow sense heritability from family
studies and variance explained by discovered single-
nucleotide polymorphisms (SNPs) from genome-wide
association studies (GWAS) [1, 2]. This gap is a key
component of the missing heritability problem [3]. Existing
genotyping technologies have allowed narrow sense herit-
ability to be estimated from unrelated individuals using all
SNPs in the genotyping platform (typically most common
with a minor allele frequency >0.05) [4]. However, given
that we cannot exclude the possibility of existing rare

variants with large effects that have not been detected by
genotyping arrays, this SNP-specific heritability is only a
lower bound of the true narrow sense heritability. Never-
theless, we do not yet fully understand the gap between
SNP heritability and the variance explained by replicated
SNPs.

Several hypotheses have been investigated to explain this
problem. Recent attempts suggest that previous estimates
are biased and that large sample sizes are required to obtain
accurate results [5–7]. Naturally, violation of model
assumptions can result in biased estimates. For example,
using a model that does not capture existing epistatic effects
will risk biasing the SNP heritability estimates [6]. More-
over, linear mixed models (LMM) implicitly assume that all
SNPs have an effect on the phenotype as part of the infi-
nitesimal assumption. Violation of this assumption was
thought to be a possible source of bias given the widespread
belief that the majority of SNPs are null [8]; however,
recent studies found that the effect of this assumption is
negligible on SNP heritability estimates [7, 9]. Furthermore,
in twin studies, the phenotypic variation due to any shared
environment might be significant. Therefore, a model that
accounts for only a unique environment can inflate herit-
ability estimates.

Biased estimates are not necessarily caused by model
assumptions violations; they can also be a result of the
assumptions of the estimation procedure itself. For example,
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the “set to zero” convention, a numerical adjustment used to
ensure that variance estimates are positive, will upwardly
bias the heritability. Additionally, in many cases, when
small sample sizes are used, the variance components are
inaccurately estimated taking boundary values. These
potential sources of bias are all associated with heritability
estimates from variance components models.

The restricted maximum likelihood (REML) method [10]
is the mainstream method for estimating variance compo-
nents. It is implemented in a variety of genome-wide soft-
ware packages, such as the genome-wide complex trait
analysis GCTA [11], efficient mixed-model association
EMMA eXpedited [12], FAST LMM [13], and the genome-
wide efficient mixed-model association GEMMA [14]. All
these methods are equivalent in the sense that they are all
based on the same classical univariate LMM. Indeed, some
of these methods—e.g., EMMA, FAST LMM, and
GEMMA—even produce identical p-values in genetic
association testing applications [14]. However, these
methods differ in their computational complexity, with
GEMMA being the most efficient in this regard [14].

REML produces unbiased estimates of the variance
components if they are allowed to be negative [15]; other-
wise, its estimates are very likely to degenerate in the
boundary of the parameter space when small samples are
used. When a variance parameter is estimated as zero, this
should not imply that it is close to zero. Instead, it com-
monly indicates a large amount of uncertainty about it [16–
18]. In multiple-phenotype models, the problem with esti-
mates extends to another class of degeneracy, namely, non-
positive definite estimates of the covariance matrices. Such
estimates not only are uninterpretable but also can result in
underestimated standard errors for the fixed-effect part of an
LMM [19]. This feature is misleading in GWAS because an
SNP of interest is typically tested by modeling its effect as
fixed; therefore, an underestimated standard error will lead
to overconfidence about the estimated effect.

Multivariate LMM have recently emerged as a tool to
increase statistical power by incorporating correlations
among multiple phenotypes. Such models can be fitted
using, for example, multi-trait mixed-model MTMM [20]
and GCTA [21], both of which are limited to bivariate
phenotypes. A popular multivariate method that extended
the number of phenotypes to more than two was recently
proposed by Zhou and Stephens [22] and implemented in
GEMMA software. Both the univariate and multivariate
versions of GEMMA are widely used in genetic epide-
miology. Therefore, we use them as our benchmark given
that they have one advantage over the aforementioned
methods: speed [14, 22]. GEMMA relies on the maximum
likelihood (ML) method including its restricted version. In
this study, however, we propose that an improved estima-
tion is obtained using a full Bayes approach, specifically,

the use of inverse Wishart (IW) prior for the covariance
matrices and a diffuse normal distribution on the covariate
coefficients.

The outline of this article is as follows. First, we provide
some definitions and notations about the matrix-normal
distribution. Second, we discuss the widely used model for
multiple phenotypes and subsequently state the definition of
marginal SNP heritability. Third, we unravel the equiva-
lence between the multivariate model under study and
multivariate ridge regression. This equivalence indicates
that the model has the advantage of including all tagged
SNPs while accommodating inevitable correlations among
them (linkage disequilibrium). The ridge representation is
used further to (a) explain the degeneracy problem asso-
ciated with estimates of the covariance matrices in genome-
wide studies and (b) provide a fast evaluation of the pos-
terior distribution of the SNP effect sizes, which can sub-
sequently be used for predictions as model checking. Next,
we present the Bayesian covariance component model
(BCCM) and its simplified form, which facilitates the use of
many “off-the-shelf” Bayesian software. Via simulations, we
show that the BCCM can accurately retrieve the real SNP
heritability value under different structures of genetic cor-
relations. The simulated data are used further to evaluate the
SNP heritability estimates from GEMMA. The benefits of
our model are shown further using expression of genes
involved in a breast cancer (BC) pathway. Finally, a scaled
version of the inverse Wishart (SIW) is used to assess for
prior sensitivity.

Methods

Definitions and notations

The matrix-normal distribution is a generalization of the
multivariate normal distribution, which allows us to model
correlations among and within subjects [23]. The prob-
ability density function for the random matrix X (d× n) that
follows the matrix-normal distribution with mean matrix M
(d × n) column covariance matrix A (n × n) and row
covariance matrix B (d× d) denoted by X ~MNn,d(M,A,B)
has the following form:

p XjM;A;Bð Þ ¼ expf� 1
2 Tr½A�1ðX �MÞtB�1ðX �MÞ�g

ð2πÞnd2 Aj jd2 Bj jn2
:

ð1Þ
Its expected value and second-order expectations are given
by E[X]=M, E X �Mð Þ X �Mð Þt� � ¼ BTrðAÞ and
E X �Mð Þt X �Mð Þ� � ¼ ATrðBÞ, respectively.

One way to understand how the matrix normal gen-
eralizes the multivariate normal distribution is to assume we
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have n one-dimensional variates that are independent and
identically distributed as normal with zero mean and var-
iance σ2, i.e., xi ~ N(0, σ

2). This can be written equivalently
as a multivariate normal distribution Xn×1 ~Nn(0,σ

2In).
Now, assume we have n d-dimensional variates that are
independent and identically distributed as multivariate
normal with zero mean and covariance matrix B, i.e., the
vectors Xi ~Nd(0,B). Because these variates are indepen-
dent, concatenating them will result in a vector with a block
diagonal covariance matrix ½Xt

1; :::;X
t
n� � Nnd 0; In � Bð Þ,

which is itself equivalent to [X1,…, Xn] ~MNn,d(0, In, B).

Multiple-phenotype model

We consider the matrix-variate model given by

Y ¼ βX þ ηþ ϵ; η � MNn;d 0;K;Σð Þ
and ϵ � MNn;d 0; In;Σϵð Þ; ð2Þ

where n and d are the number of individuals and pheno-
types, respectively. Here, Y is a d× n phenotypic matrix; X
is a k× n matrix of covariates, such as age and sex; and β is
a d× k matrix of corresponding coefficients. η is a d× n
matrix of random effects that is independent of the d× n
matrix of errors ∈. The random effect term is used to model
any correlation between and within individuals. The n× n
relatedness matrix K represents the genetic covariance
between individuals and is typically estimated in advance
using the genotype data of p SNPs and n individuals. In
other words, it is the sample covariance matrix based on the
genotype matrix Z (p× n) with rows pre-processed to have
zero mean and unit variance, K= ZtZ/p. The d× d matrix Σ
represents the genetic covariance matrix within individuals.
Σ∈ and In specify the environmental covariance matrices
within and between individuals, respectively.

Below, we state the SNP heritability definition under this
model and discuss problems hindering its estimation.

Marginal SNP heritability

SNP heritability is defined as the proportion of additive
phenotypic variance explained by tagged SNPs. The diag-
onal elements of the genetic covariance matrix Σ represent
the polygenic variances of the d phenotypes. Therefore, the
SNP heritability of the ith phenotype according to the
multivariate model is defined as follows:

h2i ¼
ðΣÞii

Σð ÞiiþðΣϵÞii
: ð3Þ

Estimation of Σ and Σ∈ requires estimation of d(d+ 1)
different parameters. Clearly, this number increases rapidly
with the number of phenotypes. Such a large number of
parameters can make existing algorithms unstable, e.g., by

producing covariance matrices that are not positive definite
and standard error matrices with large or sometimes unin-
terpretable entries (NAN). To explain these issues in more
detail, it is instructive to first describe the nature of these
covariance matrices or, in other words, their relation to SNP
effect sizes. To this end, we proceed by writing the matrix-
variate model in Eq. (2) in terms of SNP effect sizes. In
statistics, this is referred to as ridge regression.

Generalized Bayesian interpretation of ridge
regression

The Bayesian interpretation of ridge regression assumes that
the regression coefficients of a multiple regression model
are independent and identically normally distributed [24].
Here, we aim to provide a broader Bayesian interpretation
of ridge regression in the context of matrix-normal dis-
tribution. Consider the matrix-normal regression model of p
SNP effects on d phenotypes:

Y ¼ βzZ þ ϵ; ϵ � MNn;d 0; In;Σϵð Þ ð4Þ

with matrix-normal prior to the effect sizes1

βz � MNp;d 0; Ip;Σβ=p
� �

; ð5Þ

where the Ip (p× p) and Σβ (d× d) represent the effect size
covariances between and within SNPs, respectively. Thus,
we are assuming that effect sizes are correlated within SNPs
and independent across SNPs. Exploiting the multivariate
normal equivalence of matrix-normal distribution, model 4
can be rewritten as follows:

vecðYÞ ¼ Zt � IdvecðβzÞ þ vecðϵÞ; vecðϵÞ � Nndð0; In � ΣϵÞ:
ð6Þ

Similarly, the prior on the effect sizes is written as follows:

vecðβzÞ � Ndp 0; Ip � Σβ=p
� �

; ð7Þ

which is itself equivalent to [βz]:j ~ Nd(0,Σβ/p) j= 1, …, p.

Here, vec refers to matrix vectorization. Now,

VðZt � IdvecðβzÞÞ¼ 1
p ðZt � IdÞðIp � ΣβÞ Zt � Idð Þt

¼ 1
p Zt � Σβ

� �
Zt � Idð Þt

¼ 1
p Zt � Σβ

� �
Z � Idð Þ

¼ ZtZ
p � Σβ

:

1 Note that β and βz are different. The first value corresponds to the
effect sizes of any covariates other than SNP genotypes—e.g., sex and
age—whereas the second value is specifically for the SNP genotypes,
which are stored in Z.
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The multivariate normal equivalence of model (2) without
βX is given as follows:

vec Yð Þ¼vec ηð Þþvec ϵð Þ;
vec ηð Þ � Nnd 0;K � Σð Þ and vec ϵð Þ � Nnd 0; In � Σϵð Þ :

ð8Þ
Noting that both vec(η) and Zt⊗ Id vec(βz) have the same
probability model, namely Nnd(0,K⊗ Σ), it becomes clear
that when the relatedness matrix is estimated using K¼ ZtZ

p ,
the multivariate ridge regression (Eq. (4) with (5)) is
equivalent to the multiple-phenotype model in Eq. (2). This
equivalence shows that the multiple-phenotype model has
the advantage of handling linkage disequilibrium in an
integrative manner, i.e., without the need for an initial LD
pruning step (see [25] for relevant discussion on how ridge
regression handles LD).

Boundary estimation problem

To understand the causes of non-positive definite estimates
of the genetic covariance matrix Σ, it is easier to think of
model (2) using its equivalent form from the ridge regres-
sion representation as follows:

Y¼βzZ þ ϵ; βz
� �

:j� Nd 0; p�1Σð Þ; ϵ½ �:k� Nd 0;Σϵð Þ;
j ¼ 1; ¼ ; p and k ¼ 1; ¼ ; n

ð9Þ

where βz is the D×P matrix of effect sizes for the d phe-
notypes and p SNPs. A natural estimator of the genetic
covariance matrix would be Σ̂ ¼ βz β

t
z. An estimate of this

form that is not positive definite may signal a phenotype
with zero genetic variance. This occurs when all SNP effect
sizes for a particular phenotype are equal. Another common
cause is the existence of perfect linear dependency between
the SNP effect sizes of different phenotypes. However,
given that we know that these conditions are implausible a
priori, we address the non-positive definiteness problem that
corresponds to these factors by taking a Bayesian approach
via the assignment of an IW prior to the covariance matrix.

The scaling matrix V of the IW distribution (IW(V,v)) and
its degrees of freedom v determine how informative the
prior is. For example, the least informative IW is formed by
taking the scaling matrix to be the identity matrix and the
degrees of freedom to be the least such that the distribution
remains proper. Assigning an IW to the covariance matrix is
equivalent to assigning an inverse gamma distribution to the
variances. To show the effect of the choice of the degrees of
freedom on the correlations, 50,000 d-dimensional matrices
from the IW(Id,v) with v= d, d+ 1 and d+ 2, were ran-
domly generated (supplementary note). The least informa-
tive IW corresponds to v= d+1, and use of this parameter
combination has the effect of setting an approximate uni-
form distribution on the genetic correlations.

Simplified full Bayes model

Using univariate LMM, Lippert et al. [13] showed that a
spectrally transformed model using a spectral decomposi-
tion of the relatedness matrix significantly reduces compu-
tational complexity. Similar approaches were subsequently
adopted by Zhou and Stephens [14, 22] and Pirinen et al.
[26]. Following these developments, we spectrally decom-
pose the relatedness matrix, which allows us to write the
matrix-variate model in Eq. (2) as a multivariate normal
model on the transformed data for each individual inde-
pendently as follows:

YU½ �:j¼ β XU½ �:jþ η½ �:jþ ϵ½ �:j;
η½ �:j� Nd 0; rjΣ

� �
and ϵ½ �:j� Nd 0;Σϵð Þ; ð10Þ

where U is an n× n orthogonal matrix of normalized
eigenvectors, and rj is the corresponding n eigenvalues.
Here, [A]:j is the jth column of the matrix A. Eventually, the
full Bayes model will have the following hierarchical
structure:

YU½ �:j¼ β XU½ �:jþ
ffiffiffi
rj

p
ζj þ ϵ½ �:j;

ζj � Nd 0;Σð Þ;
ϵ½ �:j� Nd 0;Σϵð Þ;

β½ �i:� Nk 0; diagð10; 000; kÞð Þ;
Σ � IW Id; d þ 1ð Þ;
Σϵ � IW Id; d þ 1ð Þ

Here, diag(10,000, k) is a k× k diagonal matrix. We
implemented the simplified full Bayes model as a module
for the existing and widely used Bayesian analysis software
rjags [27], R2jags [28], and coda [29]. The relevant BUGS
code is provided in the supplementary note. Next, we
provide an algorithm to predict unobserved phenotypic
values, which can be used as a model-checking technique.

SNP-based prediction

Prediction can be performed first by estimating the effect
sizes using the computationally efficient formula for the
mode of their posterior distribution,

b̂ ¼ Z �M�1
� �

Ind þ ZtZ �M�1
� ��1

y ð11Þ
where M= pΣ∈Σ−1. Second by incorporating the estimated
effect sizes to obtain the predicted phenotypic values of the
new sample based on its genotypes Znew:

ypred ¼ Zt
new � Id

� �
b̂: ð12Þ

Here, y=vec(Y) and the effect sizes b= vec(βz) are the
values estimated from the original data. Steps are delineated
in the supplementary note.
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Multiple Tissue Human Expression Resource
(MuTHER) project

One of the main aims of the MuTHER consortium [30] is to
quantify the variation in gene expression that is due to
genetic factors and ultimately provides insights into the
mechanisms underlying the disease susceptibility of asso-
ciated SNPs. To this end, genome-wide expression profiles
(Illumina HT-12v3 Chip) and genome-wide association data
(Illumina 610k or 1M chip) were previously obtained from
three tissues adipose, skin and lymphoblastoid cell lines
(LCL) from blood samples of 856 Caucasian female twins
aged 38.7–86.6 years and living throughout the United
Kingdom [30]. All recruited females were from the Twin-
sUK adult registry [31, 32].

In this work SNPs from the original study [30], which
were filtered at an MAF >0.01 and IMPUTE info value
>0.6 were used (p= 2,238,276). The filtered list of probes
given by Grundberg et al. [30], which excluded poly-
morphic probes and probes mapping to multiple genes or to
genes of uncertain function, was also used.

BCCM is not tailored for twins, in the sense that it does
not consider the shared environment, which can result in
inflated heritability estimates. Accordingly, only a twin of
each pair was combined with the available singletons,

resulting in 446 samples suitable for the analysis. There
were no differences in batch effects after removing the twin
structure; therefore, only age was included as a non-
genotype covariate.

In this study, gene expression measurements obtained
from LCL tissues were used. The expression data were
downloaded directly from ArrayExpress, and access to the
genotypes and covariates was granted from the TwinsUK
Steering Committee.

Results

Simulation study

We simulated 50 bivariate phenotypes using relatedness
from a publicly available genotype data, which can be
found in the “example” folder that is part of the GEMMA
software [33]. Given the genotypes of p= 12,226 SNPs
across n= 1940 subjects, with missing genotypes replaced
by the mean genotype, we simulated bivariate phenotypes,
controlling their SNP heritability and their genetic correla-
tion. Six distinct scenarios were used to simulate bivariate
phenotypes from the matrix-variate model given in equation

Fig. 1 Performance of BCCM and GEMMA for SNP heritability estimation. For a given genetic correlation, the SNP heritability of the two
phenotypes was estimated, and results across 50 replicates are shown in two separate box plots each correspond to a different phenotype. This was
done using different magnitudes of true heritability (0.25, 0.5, 0.7). We can see that the BCCM works well under all scenarios, as average estimates
almost coincide with the true heritability values (horizontal lines). There are few outliers (dots), which are expected to disappear as the number of
MCMC iterations tends to infinity. On the other hand, using the same type and number of simulated data used in assessing the BCCM, GEMMA
seems to slightly underestimate the true heritability (horizontal lines). The estimation accuracy of both methods will increase as the sample size
tends to infinity
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(2). First, assuming both weak genetic correlation r ¼
ðΣÞijffiffiffiffiffiffiffi

ðΣÞii
p

þ
ffiffiffiffiffiffiffi
ðΣÞjj

p ¼ 0:3 and low SNP heritability h2= 0.25.

Second, assuming weak genetic correlation r= 0.3 but
moderate SNP heritability h2= 0.5. Third, assuming weak
genetic correlation r= 0.3 but high SNP heritability h2=
0.7. Fourth, assuming strong genetic correlation r= 0.7 but
weak SNP heritability h2= 0.25. Fifth, assuming strong
genetic correlation r= 0.7 but moderate SNP heritability h2

= 0.5. Finally, assuming both strong genetic correlation r=
0.7 and high SNP heritability h2= 0.7.

The simplified full Bayes model (BCCM) was fitted to
the simulated data sets using the BUGS code (supplemen-
tary note), via the R2jags package [28], as its function
“autojags”, has the capacity to automatically run Markov
chain Monte Carlo (MCMC) models till convergence to the
equilibrium state is believed to be achieved, based on the
Gelman-Rubin diagnostic [34] (see supplementary note for
more information on this diagnostic). This makes R2jags a
handy tool for simulations, as it saves the user having to
inspect convergence at each replicate. Equilibrium here
refers to the situation under which states are believed to be
stochastically independent of each other.

The results from the six scenarios are shown in Fig. 1,
which suggest that the proposed BCCM can indeed retrieve
the marginal SNP heritability regardless of the strength of
genetic correlation between the two phenotypes.

In parallel, GEMMA was applied to the same type of
simulated data, i.e. phenotypes simulated under the same
assumptions that were used for the assessment of the
BCCM. Overall, in most scenarios, both methods produced
similar interval widths; however, in all scenarios (except
when both real heritability and correlation are small) the
average estimates from the BCCM are noticeably closer to
the true SNP heritability values compared to those of the
GEMMA’s type (Fig. 1).

Heritability estimation using MuTHER consortium
data

To illustrate the benefits of our method (BCCM), we
applied it to a pre-defined gene set from the MuTHER
project, namely, genes in a BC pathway [35]. We chose 20
filtered genes comprising d= 30 filtered probes. We per-
formed two types of comparisons to characterize the
variability in the heritability estimates: Bayesian versus
frequentist approaches and univariate versus multivariate
approaches. In each scenario, confidence and credible

Fig. 2 Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using univariate LMM in GEMMA
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intervals of the heritability estimates were inspected to
assess their uncertainty.

For univariate ML-based analysis, GEMMA software
was used to obtain heritability estimates, which also facil-
itates the use of Wald’s method to compute confidence
intervals. The model was separately fitted to each probe
when d= 1 using its gene expression as a response variable
and the genotypes as explanatory variables modeled via a
random term. Figure 2 presents the Wald’s confidence
intervals for the univariate likelihood-based heritability of
each probe. In almost half of the cases, the estimates are
indeed at the boundary. The remaining confidence intervals
are wide, and in many cases, they spread beyond the
parameter space (e.g., including negative values for herit-
ability), which make them difficult to interpret.

For a better characterization of the variability in the
heritability estimates, a Bayesian univariate model was
used. The model is based on a diffuse gamma prior for the
scalar precisions: G(0.001, 0.001) with a unity mean and
variance of 1000. The Bayesian estimates from the uni-
variate analysis differ significantly from their REML
counterparts (Figs. 2 and 3) as both remain susceptible to
variability. Thus, the variance/uncertainty remained large
despite the very large number of iterations (see [36] for

relevant discussion). Convergence is further discussed
below.

Although GEMMA can theoretically be applied to any
number of phenotypes, when we attempted to fit five probes
from the BC pathway using the filtered set of individuals (N
= 446), the numerical algorithm failed to produce valid
standard error matrices. In addition, the covariance matrices
were not positive definite because of the small sample size
and large covariance matrices. We overcame this problem
by assigning the IW prior, as described above.

The credible intervals of the heritability of each probe are
much narrower under the BCCM (Fig. 4) than under its
univariate counterpart (Fig. 3), suggesting very little
uncertainty about the heritability estimates. Our examina-
tion of convergence (supplementary note) showed that
convergence is not only satisfactorily achieved under the
multivariate analysis (BCCM) but also achieved with a
shorter MCMC run than under the univariate model
(supplementary note).

Finally, in contrast to both types of univariate analysis,
the BCCM provided an insight into the SNP relevancy in
explaining the variation in expression. Specifically, most
tested BC genes [35] have negligible heritability (average ~
0.03). The exception is CHURC1, which has a relatively
high heritability of 0.27 with a credible interval (0.2, 0.36).

Fig. 3 Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using Bayesian univariate analysis with a diffuse
gamma prior on the variance components
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These results were recorded after a 150,000 burn-in period
using a sample of 5000 resulting from 25,000 iterations
with a thinning interval of 5.

Model assessment

Based on credible intervals, the results from the BC path-
way support the idea that BCCM can produce more accurate
estimates of SNP heritability than classical multivariate and
univariate models. It is also clear that the genetic archi-
tectures of complex phenotypes are miscellaneous, and no
single method will be the most efficient in capturing all of
them. The “gold standard” for model assessment and com-
parison is therefore an improved phenotype prediction using
a new data set (see SNP-based prediction above).

In our example data, phenotype prediction as a model
checking technique has its pitfalls. In the BC pathway, our
method produced expression heritability estimates that are
close to zero. Therefore, any attempt to predict the
expression using SNPs is expected to fail because the her-
itability (variance explained by genotyped SNPs) is very
low. Accordingly, we had to resort to alternative approaches
in an attempt to provide evidence in support of our SNP
heritability estimates. The approaches were (a) finding

literature that could support or refute the results and (b)
using more flexible prior specifications.

Real data example

To trace back the heritability estimates, we looked at pre-
viously reported cis eQTLs for the 20 genes from the
MuTHER study tested here. According to Grundberg et al.
[30], there are 196 SNPs associated with CHURC1
expression, i.e., with p-values <10−8; however, the other 19
had no reported eQTL, supporting the finding that their
expression has limited SNP heritability. To determine
whether the same conclusion can be drawn using a different
analysis, we used univariate GEMMA to scan chromosome
14 for association with CHURC1 expression and identified
180 SNPs with p-values <10−8. Given that GEMMA fits an
LMM with the fixed-effect part being the genotypes of the
tested SNP, proximal contamination [37]; that is the situa-
tion when the tested SNP is assumed both fixed and ran-
dom, can incur power loss. To eliminate this issue, we
followed the GCTA approach and excluded chromosome 14
from the computations of the relatedness matrix. In addition
to the 180 SNPs identified before the exclusion, only one
additional significant SNP was detected because of a slight
decrease in most of the p-values after the exclusion. Overall,

Fig. 4 Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using the BCCM with a non- informative IW prior on
the covariance components
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there is a significant overlap between the SNPs from our
analysis and those obtained by Grundberg et al. [30].

We determined whether there is an effect of eQTLs on
heritability estimates.

To this end, we repeated the analysis, excluding the
SNPs previously associated with CHURC1 expression from
the model, and the trace plots for its heritability appeared
unstable using the same burn-in period and thinning interval
that was used before the exclusion. We therefore explored
additional convergence diagnostics, leading to the choice of
a million iterations with a thinning interval of 1000 after a
similar burn-in period of 150,000. Nevertheless, con-
vergence remained an issue for the heritability of CHURC1.
However, the heritability of each of the remaining genes
remained close to zero with acceptable convergence.

Sensitivity analysis of prior distributions

Possible arguments against the use of the IW are (a) the
uncertainty for all variance parameters are controlled by a
single degree of freedom, namely v=d+1, and (b) the lack
of independence between the variances and the correlations.
To overcome the first issue and alleviate the second, we
used a scaled version of the IW.

The scaled IW was first introduced by O’Malley and
Zaslavsky [38], and its relative advantage over the unscaled
IW was discussed by Gelman and Hill [39]. The basic idea
is to decompose the covariance matrix into a diagonal
matrix A ¼ diagð ffiffiffiffiffi

a1
p

;
ffiffiffiffiffi
a2

p
; :::;

ffiffiffiffiffi
ad

p Þ and a matrix V

distributed as (Id, d+ 1); Σ= AV A. This idea implies that Σ
~ IW(AIdA, d+ 1), AId A= diag (a1,…,ad). This prior will
not shrink the correlations, so their marginal prior will
remain uniform when v= d+ 1. However, the variances
now can be estimated more freely from the data. To
determine the scaling needed, we added another level of
variability by assigning a uniform prior U(0, 100) for each
scaling parameter (see supplementary for the relevant
BUGS code). The SNP heritability estimates using the SIW
are very similar to those obtained using the unscaled
method (Figs. 4 and 5), implying that the above concerns
that plague the IW do not affect the posterior distributions
of the heritability.

Discussion

Motivated by the boundary estimation problem that fre-
quently arise when attempting to estimate SNP heritability
using ML-based methods, we developed a BCCM model.
Two key problems are addressed by our model. First, it
takes into account the tendency of the ML or REML esti-
mates of the covariance matrices to be non-positive definite
even when the number of phenotypes is not very large. Our
approach overcame this problem by adding an extra level of
variability to existing multivariate models through the
assignment of a non-informative IW prior that allows the
data to dominate while guarding against positive

Fig. 5 Interval plot of the heritability of 20 BC genes (30 filtered probes) in the LCL tissue using the BCCM with a non- informative SIW prior on
the covariance components and a uniform prior on its scale parameters
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definiteness problems. Second, and as a result, the BCCM
produced heritability estimates with less uncertainty.

The advancements offered by the BCCM were shown in
comparison with state of the art methods. Specifically, using
real data, we pinpointed the convergence issues in Bayesian
univariate analyses (Fig. 3), the boundary estimation pro-
blem in classical univariate analyses, which occurred in
40% of the times (Fig. 2), the extremely wide confidence
intervals of the heritability from classical univariate ana-
lyses, which occurred in 60% of the times (Fig. 2), and
finally the boundary estimation problem in classical multi-
variate analysis. Using the same example, we showed how
BCCM overcame these problems by improving chain con-
vergence, producing results that are interpretable, prior
insensitive, and in agreement with the literature.

We argue that the significant enhancement in con-
vergence pertains to the extra amount of information used in
the BCCM, that is the multiple phenotypic values for every
individual in the study. Further, the genetic correlation
matrix from the MUTHER study does possess useful
information. Although 50% of pairwise correlations lie
between 0.05 and 0.25, there are pairs of genes with high
genetic correlation reaching −0.5 and 0.8 (supplemen-
tary note). This means that there are some probes exhibiting
shared genetic etiology, that is when alleles affecting both
phenotypes tend to be found within the same individual.
Accordingly, at first, heritability results from BCCM might
seem counterintuitive, given the strong genetic correlation
between few pairs of probes. For example, one might expect
another heritably expressed gene to come up in addition to
CHURC1. However, even though high correlation indicates
shared genetic bases, there is no reason to expect a shared
variant to explain expression variation in two correlated
genes by the same magnitude. In other words, the strength
of the variant’s effect on a pair of correlated phenotypes can
be different.

Although simulations were used to illuminate the per-
formance of BCCM under a single instance (infinitesimal
assumption) of the whole spectrum of genetic architectures,
caution should be taken when performing method com-
parison based on simulations, as conclusions from gener-
ated phenotype data are assumption-specific. Important
assumptions that can affect the interpretation of simulation-
based method comparison include model and estimation
assumptions as well as the chosen number of replicates. In
our comparison, the model assumptions used to generate the
phenotypes are of no concern, since BCCM and multi-
variate GEMMA (under the null hypothesis of no associa-
tion) differ only in the estimation method. Accordingly, the
number of iterations used in the underlying numerical
algorithm (MCMC iterations in BCCM and the combined
iterations of Newton–Raphson and the expectation-
maximization (EM) algorithm in GEMMA) is an

important determinant of our simulation results. In this
occasion, it is important to recall that, by definition the EM
algorithm does not guarantee to find the ML estimate;
however, the theoretical results associated with it, such as
the increase in the likelihood with each iteration, makes it a
numerically stable procedure, when combined with
Newton–Raphson method [40]. On the other hand, true
convergence of a Markov chain to the equilibrium occurs
only at infinity; therefore, there cannot exist any method
that can guarantee MCMC convergence. However, the
available diagnostic tools are all heuristic windows that can
suggest whether the chain is close enough to the equili-
brium. Finally, the number of replicates, which is generally
not well defined, was kept fixed for the method comparison,
but increasing it further, could improve the accuracy of the
average SNP heritability estimate.

The BCCM can be built upon to advance its use. For
example, although gene expression phenotypes were used
in this study, the BCCM can be applied to any normalized
quantitative phenotypes; however, for binary phenotypes,
e.g. case–control status, a liability threshold model that
correct for both, measurements scale and ascertainment bias
should be used. This represents a useful extension of the
univariate ML-based method for SNP heritability estimation
of binary phenotypes [41]. Further, the BCCM might be
extended to more than two covariance components, e.g. to
estimate phenotypic variation due to shared environment
between twins, or to partition heritability into the con-
tributions of genomic regions [42].

Although by definition, the BCCM can tackle any
number of phenotypes, in practice this number cannot be
increased indefinitely. The main reason would be the for-
midable computational complexity, which scales about
cubically with the number of phenotypes. Pathways are
ideal applications of BCCM, as the number of phenotypes
will be moderate and thus computational complexity will be
tractable. Also, phenotypes within pathways are expected to
be correlated, and accordingly the non-informative IW prior
will remain a reasonable choice. In contrast, with large
number of phenotypes that are not necessarily within a
pathway, we might not expect all of them to be correlated,
in which case, it may be desirable to enforce sparsity on the
covariance matrices, representing a promising avenue for
future research.

From a computational perspective, the simplified form of
the BCCM allowed the posterior distribution of SNP her-
itability to be determined at a feasible computational cost
using rjags [27]. This feature is advantageous because it
saves users from having to write their own MCMC code.
However, it should be noted that alternative software will be
needed for genome-wide association scan, as rjags [27] will
be intrinsically slow owing to the number of iterations
required for convergence. Finally, the multivariate model
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used herein is based on the infinitesimal assumption, which
might not be favored by all real data. Since in reality, the
genetic architectures of complex phenotypes are unknown,
a more flexible prior that fits a wide range of settings may
be desirable. A mixture of matrix-variate normal distribu-
tions for the effect size matrix is likely to provide a gain in
estimation accuracy and ultimately in phenotype prediction,
representing another avenue for future research.

Extrapolating from the impact that SNP heritability has
had on the genetic of complex phenotypes, we believe that
the BCCM has the potential to pave the way for a major
reshuffle in our understanding of the missing heritability
problem; in particular, the gap between estimates of SNP
heritability and variance explained by replicated SNPs. For
example, instead of taking current estimates for granted,
then approaching the missing heritability problem from an
SNP discovery perspective, one can first reevaluate such
estimates, ideally by means of predictions. In other words,
the estimate that improves the prediction of unobserved
phenotypic values would be the most accurate. The pre-
diction algorithm provided in the method section could
easily be implemented for this task.

Various consortia can benefit from implementing the
BCCM. For example, estimates of genetic variances among
the five psychiatric disorders discussed here [43] can be
improved by considering measurements of additional dis-
orders, such as obsessive compulsive disorder, generalized
anxiety disorder, tic disorder, etc. However, this could
compromise the performance of the multivariate LMM used
to obtain the previous estimates [43] due to potentially large
covariance matrices. In this case, the BCCM augmented by
a liability threshold model that correct for both scale and
bias holds significant potential in providing more accurate
estimates of both SNP heritability and correlations among
large number of disorders. Further afield, prediction results
discussed in the same paper [43] could also be improved by
applying our algorithm to a larger number of disorders.

Highly heritable gene expression could serve as candi-
date genes in other studies. For example, the statistical
power to detect genotype–phenotype associations depends,
to a non-trivial extent, on SNP heritability. Indeed, in our
example data, we have shown the intertwined between
eQTLs and the SNP heritability of gene expression. In
particular, the lack of convergence for the heritability of
CHURC1 after excluding its eQTLs, which also recapitu-
lates the role of the prior distribution. In other words, the
expected polygenic variance of CHURC1 expression is zero
after removing its eQTLs (assuming neither epistatic nor
very small effects); however, given that we are sampling
from a family of positive definite matrices (IW), the
resulting estimate will not be zero, which probably caused
the lack of convergence. Given this important observation,

efforts to detect eQTLs could be directed to genes whose
expression are indeed influenced by genotypes.

The above application has an overarching importance in
advancing our understanding of the functionality of non-
coding variants discovered from GWAS. For example, once
heritably expressed genes have been identified in a disease-
relevant tissue using BCCM, a functional follow-up of
GWAS associations can be carried by looking for an
overlap between the GWAS associations and variants
within or associated with the identified heritably expressed
genes (eQTLs). Repeating the process could eventually lead
to a network of genes involved in the pathogenesis of the
disease.

Finally, the results from the SNP heritability estimation
of the expression of the tested BC pathway genes, specifi-
cally CHURC1, and its eQTLs are provocative and under-
score the need to investigate CHURC1 effect on BC status.
We have made the first promising steps toward designing a
method orthogonal to the one in this paper to investigate the
extent to which significant heritability estimates of the
expression of BC-related genes will translate into improved
predictive accuracy of BC status.

Code implementation

BUGS codes used in this work are provided in the sup-
plementary materials.
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