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Abstract
Single-nucleotide polymorphisms (SNPs) contributing to interactions between regulatory elements that modulate gene
transcription may explain some of the uncharacterized variation for complex traits. We explored this hypothesis among 856
adult survivors of pediatric cancer exposed to curative treatments that adversely affect bone mineral density (BMD). To
restrict our search to interactions among SNPs in regulatory elements, our analysis considered 75523 SNPs mapped to
putative promoter or enhancer regions. In anticipation that power to detect higher order epistasis would be low using an
exhaustive search and a Bonferroni-corrected threshold for genome-wide significance (e.g., P< 5.6× 10−14), a novel non-
exhaustive statistical algorithm was implemented to detect chromosome-wide three-way regulatory interactions. We used a
permutation-based evaluation statistic to identify candidate SNP interactions with stronger associations with BMD than
expected. Of the six regulatory 3-SNP interactions identified as candidate interactions (P< 3.5× 10−11) among cancer
survivors exposed to treatments, five were replicated in an independent cohort of survivors (N= 1428) as modifiers of
treatment effects on BMD (P< 0.05). Analyses with publicly available bioinformatics data revealed that SNPs contributing
to replicated interactions were enriched for gene expressions (P= 3.6× 10−4) and enhancer states (P< 0.05) in cells
relevant for bone biology. For each replicated interaction, implicated SNPs were within or directly adjacent to 100-kb
windows of genomic regions that plausibly physically interact in lymphoblastoid cells. Our study demonstrates the utility of
a hypothesis-driven approach in revealing epistasis associated with complex traits.

Introduction

Survivors of pediatric acute lymphoblastic leukemia (ALL)
are at risk for long-term deficits in bone mineral density
(BMD) due to childhood cancer treatment exposures,
including cranial radiation, antimetabolites (e.g., metho-
trexate), and glucocorticoids [1–3]. Cranial radiation dimin-
ishes BMD through injury to the hypothalamic–pituitary
axis, affecting sex and growth hormone secretions that play
an important role in bone metabolism [2]. Methotrexate and
glucocorticoids decrease BMD by influencing factors that
control osteoblast and osteoclast cell activity [2]. Despite
common past treatment exposures, pediatric ALL survivors
exhibit substantial variation in BMD later in life. An unex-
plored explanation for some of this uncharacterized variation
in BMD is epistasis, where the effect of a locus on a trait is
conditional on genotypes observed at other loci.

While studies have investigated pairs of SNPs in select
candidate genes with BMD [4, 5], higher order epistasis
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involving three or more SNPs is also likely to play a vital
role in the genetic architecture of BMD. BMD reflects the
cumulative effects of interacting genetic and environmental
factors on peak bone mass and bone remodeling [6]. Sig-
naling pathways requiring both spatiotemporal cues and
epigenetic modifications of genetic loci guide the differ-
entiation of bone cells from cells of mesenchymal and
hematopoietic origin [7]. In a recent genome-wide scan of
SNP pair interactions, over half of gene expressions in
peripheral blood significantly associated with SNP pairs
were influenced by networks involving three SNPs or
more [8].

To our knowledge, no studies have explored higher order
epistasis and BMD. In general, searches for epistasis are
challenged in identifying true interactions between SNPs on
a genome-wide scale, largely due to insufficient statistical
power. Novel strategies have been applied to increase
power and identify reliable interactions. One strategy is to
restrict the search for epistasis to SNPs that are likely to
contribute to biological interactions, reducing the number of
tested interactions [9, 10]. Another strategy is to search for
interactions with large effects on phenotypes [8]. Lastly,
some epistatic interactions failing to meet conservative
genome-wide significance thresholds have been shown to
be reliable signals through replication [11].

In this study, we combined all of these strategies to
identify higher order epistatic interactions that explain some
of the variability of treatment effects on BMD among adult
survivors of childhood ALL exposed to BMD-diminishing
treatments. We leveraged knowledge that SNPs in inter-
acting enhancer and promoter regions modulate gene
expression and thus affect phenotypes [12, 13]. We applied
chromatin state annotations [14] to restrict the search for
epistasis to SNPs mapped to putative enhancer or promoter
regions. To detect interactions between regulatory regions
carrying SNPs associated with BMD (hereafter referred to
as “SNP interactions”) as potential modifiers of treatment
effects, a novel, non-exhaustive statistical algorithm was
implemented. Our specific focus was to identify regulatory
3-way SNP interactions associated with BMD in ALL
survivors. An independent cohort of cancer survivors was
used to replicate candidate regulatory SNP interaction sig-
nals as modifiers of treatment effects on BMD. Supple-
mental bioinformatics analyses were conducted to
characterize replicated SNP interactions.

Subjects and methods

Study cohorts

Individuals included in this analysis are participants in the
St. Jude Lifetime Cohort Study (SJLIFE) [15]. Eligible

survivors were divided into two cohorts: a discovery cohort
of 856 adult survivors of pediatric ALL and a replication
cohort consisting of 1428 adult survivors of any non-ALL
pediatric cancer (a second cohort of ALL survivors with
comparable BMD measurements and genotype data was
unavailable). BMD was ascertained using quantitative-
computed tomography from the mid-bodies of the first and
second lumbar vertebra. A BMD Z-score was computed for
each survivor by taking the difference between the average
of their two vertebral BMD measurements and the age-
matched and sex-matched mean of a reference population,
divided by the standard deviation in the reference popula-
tion. Cumulative doses of cranial radiation (none, >0 to
<2400, ≥2400 cGy), methotrexate (<5100, ≥5100
to <20000, ≥20000 mg/m2), and glucocorticoid (<2000,
≥2000 to <11000, ≥11000 mg/m2) treatment exposures
were considered as risk factors for BMD deficiency among
ALL survivors [1–3]. We built a multiple linear regression
model for BMD Z-scores including sex, categorical treat-
ment exposures, and genetic ancestry estimated using
STRUCTURE software [16] (to control for population
stratification in our multi-ethnic cohorts) for adjustment in
subsequent genetic association analyses. Additional study
cohort details are provided in Supplementary Methods.

Affymetrix Genome-Wide Human SNP Array 6.0
(Affymetrix, Santa Clara, CA) was used to genotype DNA
samples in SJLIFE. Genotyping quality control thresholds
for exclusion from the analysis in the discovery cohort were
as follows: <95% per-sample call rate across markers,
<95% SNP call rate across samples, MAF <1%, and
Hardy–Weinberg equilibrium P< 1× 10−6. Imputation of
missing measured genotypes was completed using BEA-
GLE [17]. An allelic R2 imputation quality score cutoff of
>0.5 was applied. For replication, a per-sample call rate of
>90% was used to avoid sample exclusion due to the
smaller set of SNPs selected for follow-up. Otherwise,
genotyping quality control thresholds were identical for
discovery and replication cohorts. Imputation was not
employed for replication to limit data uncertainty associated
with imputation. Per-SNP missingness rates were compar-
able between cohorts (Supplementary Table 1). Genetic
data is available in the European Genome-phenome Archive
under study accession number EGAS00001002645 (https://
www.ebi.ac.uk/ega/studies/EGAS00001002645).

Statistical methodology: discovery analysis

ChromHMM chromatin state annotations [14] were used to
map SNPs to putative enhancer or promoter regions. We
retained SNPs mapped to “strong enhancer” or “active pro-
moter” elements in any of nine ChromHMM-annotated
human cell types, since it was unknown which types would
be most relevant. This restriction limited the search for SNP
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interactions to 75523 SNPs. Each of these SNPs was
dichotomized to create two binary variables, or indicators
for carrying at least one non-reference allele or homozygous
non-reference alleles. Any binary-encoded SNP variable
with frequency <5% was removed to limit evaluations of
sparse 3-SNP interactions. A total of 115800 binary SNP
variables were retained genome-wide.

Despite this SNP restriction, exhaustively testing
enhancer/promoter 3-SNP interactions would entail >260
trillion tests. To decrease the number of effective tests
without compromising the search quality, we developed a
non-exhaustive, sequential conditioning algorithm based on
logic regression [18] to conduct an effective search of the 3-
SNP interaction search space. Briefly, logic regression is an
adaptive regression methodology that combines generalized
linear models with a stochastic search algorithm to identify
best-fitting models that include interaction variables (“logic
trees”) comprised of binary predictors. Logic regression
selects best-fitting models by comparing decrements in
model scores. The search for 3-SNP interactions was also
restricted by chromosome, reducing the computational
burden to a manageable level.

Our algorithm-identified 3-SNP interactions sequentially
via logic regression for each chromosome, using forward
addition to form a linear predictor that included ten 3-SNP
interaction trees per chromosome. Models for each chro-
mosome took the following form:

E½Y�¼μþδSþ
X3

j¼1
αjAj þ

X6

k¼1
γkTk þ

Xm

p¼1
βpLp;

ð1Þ
where Y is BMD Z-score, S is sex, A1–3 are the three
STRUCTURE genetic ancestry covariates, T1–6 are indi-
cator variables for the three categorical treatment variables
(i.e., three 3-level variables), and Lp are the 3-SNP inter-
action trees (m= 1, 2, …, 10 trees). By identifying 3-SNP
interaction trees conditioned on previously identified trees,
the algorithm guides the stochastic search in different
directions, yielding 3-SNP interactions that are unlikely to
be correlated.

We applied a permutation-based approach to identify
candidate 3-SNP interactions for replication follow-up. For
each of the algorithm-identified 3-SNP interaction trees,
1000 permutations of BMD Z-scores were used to compute
the corresponding empirically derived median for the
absolute value of the t-statistic and its median absolution
deviation (MAD, a robust measure of variability). Permu-
tations of BMD Z-score values were conditioned on 50
quantiles of the fitted BMD Z-score from the clinical
baseline model to approximately preserve relationships
between adjustment covariates and BMD Z-score. The
search algorithm was applied to these conditionally per-
muted BMD Z-scores in the exact same manner as the

unpermuted case. To select candidate 3-SNP interactions for
replication follow-up, we compared the observed t-statistic
of a given tree with the corresponding empirically derived
median, similar to the Significance Analysis of Microarray
method [19]. Our evaluation statistic is tobs�tmed

MADtmed
, where tobs is

the absolute value of the t-statistic for the pth tree given
(p−1) observed trees, and tmed and MADtmed are the median
and MAD, respectively, of the corresponding 1000 condi-
tioned t-statistics from 1000 permutations. If the evaluation
statistic was >2 (i.e., tobs was >2 median absolute deviations
away from its corresponding permutation-derived median),
the 3-SNP interaction tree was selected as a candidate
interaction for replication, as the tree explains an unusually
large proportion of BMD Z-score variation than expected by
chance alone.

After selecting candidate regulatory 3-SNP interaction
trees (“original” trees), a “neighborhood” analysis was con-
ducted to identify “proximal” 3-SNP interaction trees with
stronger associations with BMD Z-score than original trees.
The reasons for conducting this analysis were twofold: (1)
our non-exhaustive logic regression-based algorithm may
have missed proximal SNP interactions with stronger
associations with BMD; and (2) these strongly associated
neighborhood SNP interactions may include SNPs that “tag”
additional regulatory regions relevant for BMD. Neighbor-
hood trees were constructed with binary-encoded SNP
variables (same filtering criteria as the discovery analysis)
from SNPs ±100 kb of SNPs in the original tree, with the
same Boolean logic structure as the corresponding original
tree. Neighborhood trees selected for follow-up in the
replication cohort explained larger proportions of BMD Z-
score variation than their corresponding original trees.

Statistical methodology: replication analysis

Since every participant in the discovery cohort received
substantial cumulative doses of at least one of the three
treatments known to affect BMD, we expected that inter-
action signals observed in the discovery cohort were
potential modifiers of treatment effects on BMD. We
therefore defined evidence of replication as significant
modification of treatment effects by 3-SNP trees in the
replication cohort. We assessed modification of treatment
effects using two different approaches: (1) 3-SNP tree
interactions with each of the three treatments, and (2)
3-SNP tree main effects among those exposed to each of the
three treatments. If the 3-SNP tree had a significant inter-
action (P < 0.05) with at least one of the three treatments or
a significant main effect (P< 0.05) among those exposed to
one of the treatments, we deemed the interaction to be
replicated. We further required treatment modification
effects in the replication cohort to have the same direction
and similar magnitude as the discovery cohort.
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Additional explanation of the statistical methodology is
given in Supplementary Methods.

Comparison of the proposed method to a
benchmark 2-SNP interaction analysis method

We conducted an exhaustive, within-chromosome 2-way
SNP interaction analysis among enhancer/promoter SNPs
with the linear regression-based epistasis module in PLINK
v1.90, a benchmark methodology for epistasis analysis [20].
We also performed a simulation study under three sample
size scenarios (N= 1000, 1500, and 2000) to compare the
performance, measured by power and positive predictive
value (PPV), of our proposed method and the benchmark
method’s detection of component SNP pairs for replicated
3-SNP interactions. Details for both analyses are provided
in Supplementary Methods.

Biological characterization of replicated interactions

We evaluated whether there was an excess of significant
gene expressions (expression quantitative trait loci or
eQTLs) for SNPs in replicated 3-SNP interactions in bone-
related cells/tissues using cis-eQTLs achieving study-wide
significance from the Genotype-Tissue Expression (GTEx)
Project [21] and GHS-Express monocyte transcriptome [22]
databases. Using the BMD biology literature, we defined 16
cell or tissue groups to be related to bone out of 45 available
cell/tissue groups. Counts of significant eQTLs in bone-
related cells/tissues for SNPs of interest were compared to
all other SNPs genome-wide with at least one significant
eQTL in these databases (~2.6 million SNPs with ~26.4
million eQTLs) using a 2-sided Fisher’s exact test.

To investigate the cell- and tissue-specificity of
enhancer and promoter states for SNPs contributing to
replicated interactions, we conducted enrichment ana-
lyses using the 15-state chromatin state annotation data
for 127 consolidated human cell types from the Road-
map Epigenomics Mapping Consortium (REMC) [23].
For each cell type, we compared the set of SNPs in
replicated interactions with the set of non-overlapping
SNPs originally mapped to enhancers/promoters. Fre-
quencies of overlap between SNPs in each set and
REMC enhancer or promoter regions were counted in
each cell type. Strength of evidence for enrichments was
evaluated using a 2-sided Fisher’s exact test.

Assays based on chromosome conformation capture (3C)
enable study of physical interactions between chromatin
regions [12, 13]. We evaluated the likelihood of physical
interaction between SNP regions participating in replicated
3-SNP interactions using a publicly available Hi-C data
library generated in lymphoblastoid cells [24], visualized
with the WashU EpiGenome Browser resource [25].

Details for bioinformatics analyses are available in Sup-
plementary Methods.

Results

The discovery cohort included 856 adult survivors of
pediatric ALL. Cohort clinical characteristics are provided
in Table 1. Every ALL survivor was exposed to cranial
radiation therapy (CRT), methotrexate, and/or

Table 1 Participant characteristics

Discovery cohorta

(N= 856)
Replication cohortb

(N= 1428)

Characteristic n (%) n (%)

Age at BMD measurement (years)

Median (range) 31.3 (18.4–59.7) 31.6 (18.5–65.9)

Age at diagnosis (years)

Median (range) 5.0 (0.2–19.5) 9.2 (0–24.8)

Sex

Male 427 (49.9) 767 (53.7)

Female 429 (50.1) 661 (46.3)

Treatment profilec

Cranial radiation (cGy)

Median cumulative
dose (range)

1800 (0–5100) 0 (0–10600)

None 348 (41.2) 1235 (86.9)

>0 to <2400 215 (25.4) 14 (1.0)

≥2400 282 (33.4) 172 (12.1)

Methotrexate (mg/m2)

Median cumulative
dose (range)

5462 (85–83350) 0 (0–211900)

<5100 340 (39.9) 1306 (91.5)

≥5100 to <20,000 327 (38.3) 22 (1.5)

≥20,000 186 (21.8) 99 (6.9)

Glucocorticoids (mg/m2)

Median cumulative
dose (range)

9520 (0–27360) 0 (0–14460)

<2000 328 (38.6) 1239 (86.8)

≥2000 to <11,000 355 (41.8) 160 (11.2)

≥11,000 166 (19.6) 28 (2.0)

BMD Z-score (expressed in SD)

Median (range) −0.4 (−3.5, 5.4) −0.2 (−5.5, 6.0)

≤−1 256 (29.9) 349 (24.4)

≥1 104 (12.1) 249 (17.4)

aAdult survivors of pediatric acute lymphoblastic leukemia (ALL)
bAdult survivors of pediatric non-ALL cancers
cDiscovery cohort: missing cranial radiation, methotrexate, and
glucocorticoid cumulative dosage information for 11, 3, and 7
participants, respectively. Replication cohort: Missing cranial radia-
tion, methotrexate, and glucocorticoid cumulative dosage information
for 7, 1, and 1 participant(s), respectively

278 C. Im et al.



Ta
bl
e
2

R
ep
lic
at
ed

3-
S
N
P
in
te
ra
ct
io
ns

as
so
ci
at
ed

w
ith

B
M
D

Z
-s
co
re

id
en
tifi

ed
by

th
e
no

ve
l
lo
gi
c
re
gr
es
si
on

-b
as
ed

al
go

ri
th
m

C
hr

R
eg
ul
at
or
y
3-
S
N
P

in
te
ra
ct
io
na

S
in
gl
e-
S
N
P
rs
ID

(h
g1

9
H
G
V
S
id
en
tifi

er
)

M
ar
gi
na
l
ef
fe
ct

b

S
N
P
β
(P
)

C
om

po
ne
nt

2-
S
N
P
in
te
ra
ct
io
n

P
ai
r
ef
fe
ct

b

pa
ir
β
(P
)

D
is
co
ve
ry

co
ho

rt
S
N
P

in
te
ra
ct
io
n
βc

(9
5%

C
I;

P
-v
al
ue
;
tr
ee

fr
eq
ue
nc
y)

P
er
m
ut
at
io
n-
ba
se
d

ev
al
ua
tio

n
st
at
is
tic

d
R
ep
lic
at
io
n
co
ho

rt
e

re
pl
ic
at
ed

β i
nt
(P
-v
al
ue
;

m
od

ifi
ed

tr
ea
tm

en
t

ef
fe
ct
)

2
rs
90

14
66

=
{C

C
,C
G
}
or

(r
s7
56

95
68

=
{G

G
}
or

rs
92

13
19

=
{C

C
})

rs
90

14
66

ch
r2
:

g.
11

47
24

12
2
C
>
G

−
0.
45

7
(0
.0
02

)
rs
90

14
66

or
rs
75

69
56

8
−
0.
83

2
(5
.5
×
10

−
5 )

−
1.
30

4
(9
5%

C
I
[−

1.
66

8,
–
0.
93

9]
;

P
=
4.
7
×
10

−
12
;
81

0)

2.
06

3
−
1.
76

9
(P

=
0.
00

4;
M
et
ho

tr
ex
at
e)

rs
75

69
56

8
ch
r2
:

g.
22

52
64

59
8
G
>
A

−
0.
13

9
(0
.0
91

)
rs
90

14
66

or
rs
92

13
19

−
0.
43

7
(0
.0
04

)

rs
92

13
19

ch
r2
:

g.
62

36
77

20
T
>
C

0.
08

8
(0
.4
05

)
rs
75

69
56

8
or

rs
92

13
19

−
0.
18

1
(0
.0
36

)

12
rs
10

20
74

5
=
{A

G
,G
G
}
an
d

(r
s2
11

01
67

=
{G

A
,A
A
}
an
d

rs
10

44
44

71
=
{G

G
})

rs
10

20
74

5
ch
r1
2:

g.
53

69
29

55
G
>
A

0.
58

9
(0
.0
01

)
rs
10

20
74

5
an
d

rs
21

10
16

7
1.
21

5
(2
.8
×
10

−
8 )

1.
71

9
(9
5%

C
I
[1
.2
65

,
2.
17

4]
;

P
=
2.
9
×
10

−
13
;
22

)

2.
77

5
1.
40

2
(P

=
0.
01

3;
M
et
ho

tr
ex
at
e)

rs
21

10
16

7
ch
r1
2:

g.
57

34
31

9
A
>
G

0.
05

5
(0
.4
61

)
rs
10

20
74

5
an
d

rs
10

44
44

71
0.
79

0
(3
.5
×
10

−
5 )

rs
10

44
44

71
ch
r1
2:

g.
46

77
21

1
G
>
T

0.
08

1
(0
.5
38

)
rs
21

10
16

7
an
d

rs
10

44
44

71
0.
09

1
(0
.2
20

)

12
(r
s1
89

43
31

=
{T

T
}
or

rs
10

77
30

93
=
{T

C
,C
C
})

an
d

rs
47

68
78

3
=
{T

T
,T
C
}

rs
18

94
33

1
ch
r1
2:

g.
11

93
08

89
G
>
T

−
0.
13

7
(0
.0
91

)
rs
18

94
33

1
or

rs
10

77
30

93
−
0.
40

9
(1
.7
×
10

−
5 )

−
0.
50

8
(9
5%

C
I
[−

0.
64

9,
−
0.
36

7]
;

P
=
3.
1
×
10

−
12
;
52

2)

2.
51

4
−
0.
51

4
(P

=
0.
04

2;
M
et
ho

tr
ex
at
e)

rs
10

77
30

93
ch
r1
2:

g.
12

50
46

03
6T

>
C

−
0.
20

8
(0
.0
11

)
rs
18

94
33

1
an
d

rs
47

68
78

3
−
0.
23

6
(0
.0
05

)

rs
47

68
78

3
ch
r1
2:

g.
47

59
29

45
C
>
T

−
0.
26

3
(0
.0
05

)
rs
10

77
30

93
an
d

rs
47

68
78

3
−
0.
29

4
(1
.0
×
10

−
4 )

13
rs
73

21
81

5
=
{C

C
}
an
d

(r
s9
31

50
69

=
{T

C
,C
C
}
an
d

rs
91

30
71

=
{T

T
,T
C
})

rs
73

21
81

5
ch
r1
3:

g.
10

17
01

42
7C

>
A

0.
09

5
(0
.2
11

)
rs
73

21
81

5
an
d

rs
93

15
06

9
1.
40

3
(2
.5
×
10

−
9 )

1.
77

4
(9
5%

C
I
[1
.2
83

,
2.
26

5]
;

P
=
2.
9
×
10

−
12

;
20

)

2.
11

5
1.
41

4
(P

=
0.
04

6;
M
et
ho

tr
ex
at
e)

rs
93

15
06

9
ch
r1
3:

g.
31

37
15

44
T
>
C

0.
76

7
(2
.4
×
10

−
4 )

rs
73

21
81

5
an
d

rs
91

30
71

0.
13

5
(0
.0
76

)

rs
91

30
71

ch
r1
3:

g.
36

55
31

05
C
>
T

0.
05

1
(0
.6
66

)
rs
93

15
06

9
an
d

rs
91

30
71

0.
95

8
(2
.0
×
10

−
5 )

14
rs
88

78
90

ch
r1
4:

g.
75

69
94

38
T
>
G

0.
19

9
(0
.0
14

)
rs
88

78
90

or
rs
71

42
11

0
0.
34

0
(1
.1
×
10

−
5 )

2.
14

4
0.
56

8
(P

=
0.
00

8;
C
ra
ni
al

ra
di
at
io
n)

Genome-wide search for higher order epistasis as modifiers 279



glucocorticoids during childhood. Our linear regression
model with sex, ancestry, and treatment covariates
demonstrated that decreases in adjusted mean BMD Z-
scores were significantly associated with increasing cumu-
lative dosages for each of these treatments (Supplementary
Table 2).

Using the proposed logic regression-based algorithm, we
identified 220 3-SNP interactions (10 interactions per
chromosome) associated with BMD Z-score. Consistent
with previous observations of regulatory complexes invol-
ving enhancer–promoter, enhancer–enhancer, or
promoter–promoter interactions [26], no restrictions were
made on the composition of 3-SNP interactions. Six distinct
(uncorrelated) 3-SNP interactions were selected as candi-
date interactions for replication follow-up using our
permutation-based evaluation statistic threshold (values
>2). We considered each of these six distinct 3-SNP
interactions separately as genomic “interaction neighbor-
hoods” associated with BMD and looked for other 3-SNP
interactions in these “neighborhoods” that were more
strongly associated with BMD than the original 3-SNP
interactions in the discovery cohort. All 3-way SNP inter-
actions using any SNP located within 100-kb of regulatory
loci contributing to the originally selected 3-SNP interac-
tions were assessed. We identified ten additional “neigh-
borhood” 3-SNP interactions that explained larger
proportions of BMD Z-score variation than their corre-
sponding original interactions for four of the six selected 3-
SNP interactions: this yielded a total of 16 candidate 3-SNP
interactions for replication follow-up.

The replication cohort of SJLIFE participants (N= 1428)
with a range of non-ALL pediatric cancer diagnoses (Sup-
plementary Table 3) was comparable to the discovery
cohort with respect to age, sex, and ancestry distributions
(Table 1). Participants in the replication cohort exposed to
either CRT or methotrexate received, on average, higher
cumulative doses of these treatments compared to the dis-
covery cohort (Supplementary Table 4). Applying our
replication definition, 12 of the 16 3-SNP interactions were
replicated as modifiers of treatment effects (Supplementary
Tables 5–7). Considering the six originally selected 3-SNP
interactions, each reflecting a distinct interaction neighbor-
hood, at least one original or neighborhood 3-SNP inter-
action candidate was replicated for five of the six selected 3-
SNP interaction neighborhoods.

Table 2 shows the best replicated original or neighbor-
hood 3-SNP interaction (defined by replication P-value)
detected among the five genomic neighborhoods with
replicated interactions. Adjusted changes in mean BMD Z-
scores for these five best replicated 3-SNP interactions in
the discovery cohort ranged from −1.30 to+ 1.77 SD, with
regression coefficient t test-based (naive) P-values ranging
from 2.9× 10−13 to 3.5× 10−11. Four of these 3-SNPTa
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interactions included at least one SNP that was not nom-
inally significant. No component SNP pair fully recovered
the entire magnitude of association of its respective 3-SNP
interaction. In the discovery cohort, the breakdown of the
proportions of variance in BMD Z-score explained by the
non-genetic covariates (14.5%) and the five best replicated
3-SNP interactions (14.1%) were comparable (Supplemen-
tary Table 8).

To compare the performance of our proposed algorithm
to a benchmark SNP interaction association testing method,
we conducted an exhaustive, within-chromosome pairwise
SNP interaction analysis using the 75523 SNPs mapped to
putative regulatory regions. Of the nearly 158 million SNP
pair combinations considered, seven pairs achieved
genome-wide significance (Bonferroni-adjusted P< 3.2×
10−10). None were contributing pairs to any of the 220 3-
SNP interactions detected with our search algorithm. Con-
sidering all SNP pair results with P < 1.0× 10−9 and the
SNP pairs formed by their LD proxy SNPs, none of the 967
original or LD proxy SNP pairs were contributing pairs for
any of the 220 3-SNP interactions (Supplementary Table 9).
To further distinguish differences in performance between
our novel method and the benchmark SNP pair testing

method, we conducted a simulation study. Assuming effect
sizes observed in our discovery analysis (Table 2), our
proposed method has 18–60% power and 17–49% PPV to
detect “true” (replicated) 3-SNP interactions in smaller
samples (N= 1000), with marked improvements in both
statistics with modest increments in sample size (Supple-
mentary Table 10). In comparison, the benchmark SNP pair
method is appreciably less powerful and has low PPV for
detecting component 2-SNP interactions in underlying true
3-SNP interactions, even with larger sample sizes and under
a liberal P-value threshold (P< 1× 10−5) to select top SNP
pairs (Supplementary Table 11).

The overall biological plausibility of association with
BMD was assessed for the set of 22 unique SNPs con-
tributing to the 12 replicated original and neighborhood
interactions. First, we examined gene expression data,
specifically eQTL associations achieving study-wide sig-
nificance in GTEx Project [21] and GHS-Express [22]
databases. Our 22-SNP set had a total of 51 significant
eQTLs in 17 cells/tissues, of which 40 were observed
among 16 cell/tissue types related to bone (enrichment P=
3.6× 10−4, relative to the set of non-overlapping SNPs
genome-wide with at least one significant eQTL in any of

Fig. 1 Biological plausibility of association between identified SNPs
in replicated SNP interactions with BMD a Counts of significant gene
expressions (eQTLs) for the 22 unique SNPs in replicated 3-SNP
interactions, grouped by the 16 cell or tissue types related to bone
(above); the corresponding enrichment analysis result using ~2.6
million non-overlapping genome-wide SNPs with ~26.4 million
eQTLs for comparison (below). b Plot of Fisher’s exact test P-values

(log10(P)) from enhancer (left) and promoter (right) enrichment state
analyses for the 22 unique SNPs in replicated 3-SNP interactions,
using Roadmap Epigenomics Mapping Consortium chromatin state
annotations for two BMD-related human cell categories (muscu-
loskeletal (MS), blood) and two comparison categories (gastro-
intestinal (GI), brain). Dashed lines correspond to P< 0.05
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the 45 queried cell/tissue types) (Fig. 1a; Supplementary
Tables 12, 13). Second, we used REMC chromatin state
annotation data [23] to examine whether our 22-SNP set
was enriched in enhancer or promoter states in each of 127
consolidated cell/tissue groups. We observed suggestive
enrichment in overlap between SNPs in our 22-SNP set and
putative enhancer states in four cell types relevant to bone
biology (P< 0.05, no Bonferroni adjustment), relative to a
background set of 75508 non-overlapping enhancer/pro-
moter SNPs in our original SNP restriction set (Fig. 1b).
Consideration of weakly significant enhancer and promoter
enrichment analysis results (P< 0.10, no Bonferroni
adjustment; Supplementary Tables 14, 15) suggests the 22-
SNP set is relatively enriched for both regulatory states in
monocytes and hematopoietic stem cells, which are related
to bone metabolism [7]. For each of the distinct replicated
3-SNP interactions, chromatin contacts between putative
regulatory regions containing the three SNPs of interest
appeared supported: at least two chromatin contacts con-
necting the three target loci were observed, each with
proximity scores ≥2 (Supplementary Table 16; Supple-
mentary Figures 17–20).

The 3-SNP interaction with the strongest evidence of
association with BMD was observed between rs1020745
(hg19 chr12:g.53692955G >A; PFDN5 intronic and
C12orf10 promoter region), rs2110167 (hg19 chr12:
g.5734319A >G; ANO2, intronic region), and rs10444471
(hg19 chr12:g.4677211G >T; DYRK4 synonymous coding
variant) with an adjusted mean increase in BMD Z-score of
1.72 SD (95% CI: 1.27, 2.17). Both rs10444471 and
rs2110167 were more frequently observed in enhancer
states in bone-related cell types, whereas rs1020745 over-
lapped both enhancer and promoter states with relatively
high frequencies (Table 3). Hi-C chromatin interaction
maps in lymphoblastoid cells connecting the 3-SNP regions
showed contact selectivity for the rs1020745 locus, with
proximity scores indicating nearly 13-fold interaction
enrichment with the rs10444471 locus, and over sixfold
interaction enrichment with the rs2110167 locus. Enhancer
regions including rs10444471 and rs2110167 may interact
distally with a promoter or enhancer region bearing
rs1020745, in cell types known to play a role in osteoblast
or osteoclast differentiation (Fig. 2). Notably, the rs1020745
locus is known to reside in a region of high linkage dis-
equilibrium [27], implicating several potential gene targets
including SP7.

Discussion

Previous studies of epistasis have successfully used
exhaustive testing methods to assess SNP pair interactions.
To detect 3-SNP interactions associated with a complex traitTa
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on a genome-wide scale, we implemented a novel, non-
exhaustive logic regression-based algorithm among SNPs
mapped to regulatory genomic regions. Specifically, our
algorithm: (a) focuses on 3-way interactions that plausibly
reflect gene regulation events using SNPs mapped to
enhancers or promoters; and (b) considers many epistatic
candidates, but only allocates 1 degree-of-freedom for a 3-
SNP interaction. The strength of our method is that we use
logic regression combined with a conditioning strategy to
encourage a multi-directional, stochastic search, bypassing
an exhaustive search for 3-way interactions that may miss a
true interaction due to lack of statistical power.

Despite known limitations of logic regression (e.g., non-
exhaustive searches may miss the “best” interaction solu-
tion), we propose our method as a complementary approach
to existing exhaustive 2-SNP search methods to detect
higher order epistasis. We observed no overlap between top
2-way regulatory SNP interactions identified using a
benchmark exhaustive testing method and 3-way regulatory
SNP interactions detected with our proposed method. Fur-
thermore, our simulation results revealed that SNP pair

searches are ineffective for detecting 3-SNP interaction
patterns associated with variations in BMD, unless com-
ponent 2-SNP interactions have strong associations with
phenotype without the inclusion of an additional SNP.
These results suggest exhaustive searches for 2-SNP inter-
actions are not universally effective for detecting higher
order epistasis, and novel methods to conduct deliberate
searches for higher order epistasis are needed.

To safeguard against the reporting of false positive
results, we used a permutation-based evaluation statistic to
identify candidate 3-SNP interactions, performed a repli-
cation analysis, and conducted additional bioinformatics
analyses. We identified six regulatory 3-SNP interactions
that potentially modify treatment effects on BMD among
adult survivors of pediatric ALL. Five of these 3-SNP
interactions were replicated as treatment modification
effects in an independent sample. Our bioinformatics ana-
lyses indicated that SNPs contributing to replicated inter-
actions had both an excess of gene expressions and an
enrichment of enhancer states in cell and tissue types
important for bone biology. The plausibility of interactions

Fig. 2 Chromatin interactions for the chromosome 12 SNP interaction:
(rs1020745= {AG,GG} and (rs2110167= {GA,AA} and
rs10444471= {GG})). The WashU EpiGenome Browser was used to
visualize long-range chromatin interactions within and across three
500-kb windows centered at implicated SNPs. SNP locations are
contextualized using ideograms at the top of regional windows and
highlighted with vertical lines in the center of each window. Histone
modification (H3K4me3, H3K4me1, H3K27ac), RNA-seq, and DNase
I hypersensitivity heatmap data tracks were reviewed. Four data tracks
per assay for each of four cell/tissue samples are shown:

lymphoblastoid cells (LCLs), peripheral blood mononuclear cells or
monocytes, mobilized CD34 cells, and osteoblasts or an osteoblastic
precursor proxy (H1 mesenchymal cells). Hi-C data generated with
GM06990 LCLs was used to assess evidence for long-range chromatin
interactions between SNPs in 3-SNP interaction trees (100-kb bin
resolution, log2[observed contact/expected contact] scores). Minimum
Hi-C interaction scores were set such that interaction arcs represent
chromatin interactions with at least+ 4-fold observed contact fre-
quency over expected (scores >2)
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between regulatory regions bearing target SNP variants was
supported by observations of chromatin contacts that
occurred in greater frequencies than expected between
regions that overlapped SNPs of interest in lymphoblastoid
cells. Although these 3-SNP interactions were not func-
tionally validated, our findings represent viable leads in
identifying epistatic interactions with cancer treatment-
related effects on BMD.

There are multiple ways to interpret these 3-SNP inter-
actions. Given the long-range chromatin interaction data, it
is plausible that epistatic networks consisting of three SNPs
embedded in regulatory regions that physically interact
jointly affect gene expressions that modify BMD in pedia-
tric cancer survivors exposed to specific cytotoxic treat-
ments. For example, among those exposed to methotrexate,
the genomic regulatory region bearing rs1020745 could act
as a “hub” for the 3-way chromosome 12 genetic interaction,
with rs2110167 and rs10444471 acting as supportive reg-
ulatory elements to influence the SP7 locus (rs1020745).
SP7 has previously been reported as a candidate gene
affecting bone biology in both adult and pediatric popula-
tions [27, 28], and is known to encode an osteogenic tran-
scription factor, Osterix (Osx) [29].

Although a second independent cohort of ALL survivors
would be desirable for replication analyses, the availability
of a replication cohort of non-ALL survivors, which con-
sisted predominantly of survivors of solid tumors or lym-
phoma, provided the opportunity to assess whether genetic
interactions associated with BMD Z-score in the discovery
cohort plausibly modified cancer treatment effects on BMD.
Our replication results support the discovery findings and
underscore the relative importance of treatment exposures,
as these epistatic interactions do not appear to be patholo-
gical artifacts specific to ALL. To contextualize these
treatment effect modifications, consider the chromosome 12
interaction. This putative epistatic interaction may modulate
the effects of SP7 and as a consequence, Osx expression
levels. Exposure to methotrexate has been linked to
decreased Osx expression and significant reductions in
osteocyte precursor cells and metaphyseal trabecular bone
volume in rats [30]. As such, this interaction may counter
BMD loss in cancer survivors exposed to methotrexate.

In conclusion, our results demonstrate the feasibility of
detecting and replicating higher order interactions between
SNPs within putative regulatory regions associated with a
complex quantitative trait, using a hypothesis-driven
approach. Similar searches can be implemented in other
contexts, using known biological interaction mechanisms.
Although power to assess larger nth-order interactions
decreases as the number of participatory SNPs increases,
biologically motivated searches for SNP interaction net-
works involving more than three SNPs at a time are
warranted.
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