Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of maternal gut microbial metabolites with gestational diabetes mellitus: evidence from an original case-control study, meta-analysis, and Mendelian randomization

Abstract

Background

The associations of gut microbial metabolites, such as trimethylamine N-oxide (TMAO), its precursors, and phenylacetylglutamine (PAGln), with the risk of gestational diabetes mellitus (GDM) remain unclear.

Methods

Serum samples of 201 women with GDM and 201 matched controls were collected and then targeted metabolomics was performed to examine the metabolites of interest. Multivariable conditional logistic regression was applied to investigate the relationship between metabolites and GDM. Meta-analysis was performed to combine our results and four similar articles searched from online databases, and Mendelian randomization (MR) analysis was eventually conducted to explore the causalities.

Results

In the case-control study, after dichotomization and comparing the higher versus the lower group, the adjusted odds ratio and 95% confidence interval of choline and L-carnitine with GDM were 2.124 (1.186–3.803) and 0.293 (0.134–0.638), respectively; but neutral relationships between TMAO, betaine, and PAGln with GDM were observed. The following meta-analysis consistently revealed that L-carnitine was negatively associated with GDM. However, MR analyses showed no evidence of causalities.

Conclusions

Maternal levels of L-carnitine were related to the risk of GDM in both the original case-control study and meta-analysis. However, we did not observe any genetic evidence to establish a causal relationship between this metabolite and GDM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The boxplot of gut microbial metabolites concentrations in GDM patients and controls.
Fig. 2: Difference of gut microbial metabolites expressions in GDM patients and controls in the meta-analysis.

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and diagnosis of diabetes: standards of care in Diabetes-2023. Diab Care. 2023;46:S19–s40. https://doi.org/10.2337/dc23-S002.

    Article  CAS  Google Scholar 

  2. Sweeting A, Wong J, Murphy HR, Ross GP. A clinical update on gestational diabetes mellitus. Endocr Rev. 2022;43:763–93. https://doi.org/10.1210/endrev/bnac003.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang H, Li N, Chivese T, Werfalli M, Sun H, Yuen L, et al. IDF diabetes Atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in pregnancy study Group’s criteria. Diab Res Clin Pract. 2022;183:109050 https://doi.org/10.1016/j.diabres.2021.109050.

    Article  Google Scholar 

  4. Bar-Zeev Y, Haile ZT, Chertok IA. Association between prenatal smoking and gestational diabetes mellitus. Obstet Gynecol. 2020;135:91–99. https://doi.org/10.1097/aog.0000000000003602.

    Article  PubMed  Google Scholar 

  5. Rönö K, Masalin S, Kautiainen H, Gissler M, Raina M, Eriksson JG, et al. Impact of maternal income on the risk of gestational diabetes mellitus in primiparous women. Diabet Med. 2019;36:214–20. https://doi.org/10.1111/dme.13834.

    Article  PubMed  Google Scholar 

  6. Schwartz N, Nachum Z, Green MS. The prevalence of gestational diabetes mellitus recurrence–effect of ethnicity and parity: a metaanalysis. Am J Obstet Gynecol. 2015;213:310–7. https://doi.org/10.1016/j.ajog.2015.03.011.

    Article  PubMed  Google Scholar 

  7. Li G, Wei T, Ni W, Zhang A, Zhang J, Xing Y, et al. Incidence and risk factors of gestational diabetes mellitus: a prospective cohort study in Qingdao, China. Front Endocrinol. 2020;11:636 https://doi.org/10.3389/fendo.2020.00636.

    Article  Google Scholar 

  8. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab. 2018;29:743–54. https://doi.org/10.1016/j.tem.2018.09.004.

    Article  PubMed  CAS  Google Scholar 

  9. Malaza N, Masete M, Adam S, Dias S, Nyawo T, Pheiffer C. A systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes. Int J Environ Res Public Health 2022;19:1084; https://doi.org/10.3390/ijerph191710846.

  10. Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol. 2012;8:639–49. https://doi.org/10.1038/nrendo.2012.96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci. 2018;19; https://doi.org/10.3390/ijms19103228.

  12. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61; https://doi.org/10.1002/mnfr.201600324.

  13. Miele L, Giorgio V, Alberelli MA, De Candia E, Gasbarrini A, Grieco A. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep. 2015;17:120 https://doi.org/10.1007/s11886-015-0671-z.

    Article  PubMed  Google Scholar 

  14. Kalagi NA, Thota RN, Stojanovski E, Alburikan KA, Garg ML. Association between plasma Trimethylamine N-Oxide Levels and Type 2 diabetes: a case control study. Nutrients. 2022;14; https://doi.org/10.3390/nu14102093.

  15. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S, et al. Diabetes is associated with higher Trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes. 2016;124:251–6. https://doi.org/10.1055/s-0035-1569330.

    Article  PubMed  CAS  Google Scholar 

  16. Moldave K, Meister A. Synthesis of phenylacetylglutamine by human tissue. J Biol Chem. 1957;229:463–76.

    Article  PubMed  CAS  Google Scholar 

  17. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180:862–.e822. https://doi.org/10.1016/j.cell.2020.02.016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Romano KA, Nemet I, Prasad Saha P, Haghikia A, Li XS, Mohan ML, et al. Gut microbiota-generated phenylacetylglutamine and heart failure. Circ Heart Fail. 2023;16:e009972 https://doi.org/10.1161/circheartfailure.122.009972.

    Article  PubMed  CAS  Google Scholar 

  19. Fang C, Zuo K, Jiao K, Zhu X, Fu Y, Zhong J et al. PAGln, an atrial fibrillation-linked gut microbial metabolite, acts as a promoter of atrial myocyte injury. Biomolecules. 2022;12: https://doi.org/10.3390/biom12081120.

  20. Yu F, Li X, Feng X, Wei M, Luo Y, Zhao T, et al. Phenylacetylglutamine, a Novel biomarker in acute ischemic stroke. Front Cardiovasc Med. 2021;8:798765 https://doi.org/10.3389/fcvm.2021.798765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yahaya TO, Salisu T, Abdulrahman YB, Umar AK. Update on the genetic and epigenetic etiology of gestational diabetes mellitus: a review. Egypt J Med Hum Genet. 2020;21:13 https://doi.org/10.1186/s43042-020-00054-8.

    Article  CAS  Google Scholar 

  22. Hauspurg A, Ying W, Hubel CA, Michos ED, Ouyang P. Adverse pregnancy outcomes and future maternal cardiovascular disease. Clin Cardiol. 2018;41:239–46. https://doi.org/10.1002/clc.22887.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barzilay E, Moon A, Plumptre L, Masih SP, Sohn KJ, Visentin CE, et al. Fetal one-carbon nutrient concentrations may be affected by gestational diabetes. Nutr Res. 2018;55:57–64. https://doi.org/10.1016/j.nutres.2018.04.010.

    Article  PubMed  CAS  Google Scholar 

  24. Huo X, Li J, Cao YF, Li SN, Shao P, Leng J, et al. Trimethylamine N-Oxide metabolites in early pregnancy and risk of gestational diabetes: a nested case-control study. J Clin Endocrinol Metab. 2019;104:5529–39. https://doi.org/10.1210/jc.2019-00710.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li P, Zhong C, Li S, Sun T, Huang H, Chen X, et al. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. Am J Clin Nutr. 2018;108:603–10. https://doi.org/10.1093/ajcn/nqy116.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spanou L, Dimou A, Kostara CE, Bairaktari E, Anastasiou E, Tsimihodimos V. A study of the metabolic pathways affected by gestational diabetes mellitus: comparison with type 2 diabetes. Diagnostics. 2022;12: https://doi.org/10.3390/diagnostics12112881.

  27. Diaz SO, Pinto J, Graça G, Duarte IF, Barros AS, Galhano E, et al. Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J Proteome Res. 2011;10:3732–42: https://doi.org/10.1021/pr200352m.

  28. Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33:676–82. https://doi.org/10.2337/dc09-1848.

    Article  PubMed  CAS  Google Scholar 

  29. Mikolajczyk RT, Zhang J, Betran AP, Souza JP, Mori R, Gülmezoglu AM, Merialdi M. A global reference for fetal-weight and birthweight percentiles. Lancet. 2011;377:1855–61. https://doi.org/10.1016/S0140-6736(11)60364-4.

  30. National regional and worldwide estimates of low birthweight in 2015 with trends from 2000: a systematic analysis The Lancet Global Health 2019;7:e849–60. https://doi.org/10.1016/S2214-109X(18)30565-5.

  31. Araujo Júnior E, Peixoto AB, Zamarian AC, Elito Júnior J, Tonni G. Macrosomia. Best Pract Res Clin Obstet Gynaecol. 2017 Jan;38:83-96. https://doi.org/10.1016/j.bpobgyn.2016.08.003.

  32. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biometrical J Biometrische Z. 2005;47:458–72. https://doi.org/10.1002/bimj.200410135.

    Article  Google Scholar 

  33. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700 https://doi.org/10.1136/bmj.b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33:30–42. https://doi.org/10.1093/ije/dyh132.

    Article  PubMed  Google Scholar 

  35. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18:130–43. https://doi.org/10.1016/j.cmet.2013.06.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46:543–50. https://doi.org/10.1038/ng.2982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kuang YS, Lu JH, Li SH, Li JH, Yuan MY, He JR, et al. Connections between the human gut microbiome and gestational diabetes mellitus. GigaScience. 2017;6:1–12. https://doi.org/10.1093/gigascience/gix058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fugmann M, Breier M, Rottenkolber M, Banning F, Ferrari U, Sacco V, et al. The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep. 2015;5:13212 https://doi.org/10.1038/srep13212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ye D, Huang J, Wu J, Xie K, Gao X, Yan K, et al. Integrative metagenomic and metabolomic analyses reveal gut microbiota-derived multiple hits connected to development of gestational diabetes mellitus in humans. Gut microbes. 2023;15:2154552 https://doi.org/10.1080/19490976.2022.2154552.

    Article  PubMed  CAS  Google Scholar 

  40. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152:1679–.e1673. https://doi.org/10.1053/j.gastro.2017.01.055.

    Article  PubMed  CAS  Google Scholar 

  41. Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215:383–96. https://doi.org/10.1084/jem.20171965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–17. https://doi.org/10.2337/db08-1637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–91. https://doi.org/10.1038/nrendo.2015.128.

    Article  PubMed  CAS  Google Scholar 

  44. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10; https://doi.org/10.3390/nu10101398.

  45. Macpherson ME, Hov JR, Ueland T, Dahl TB, Kummen M, Otterdal K, et al. Gut microbiota-dependent Trimethylamine N-Oxide associates with inflammation in common variable immunodeficiency. Front Immunol. 2020;11:574500 https://doi.org/10.3389/fimmu.2020.574500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut. 2019;68:263–70. https://doi.org/10.1136/gutjnl-2018-316155.

    Article  PubMed  CAS  Google Scholar 

  47. Lanz M, Janeiro MH, Milagro FI, Puerta E, Ludwig IA, Pineda-Lucena A, et al. Trimethylamine N-oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model. Mech Ageing Dev. 2022;204:111668 https://doi.org/10.1016/j.mad.2022.111668.

    Article  PubMed  CAS  Google Scholar 

  48. Fennema D, Phillips IR, Shephard EA. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos. 2016;44:1839–50. https://doi.org/10.1124/dmd.116.070615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jia J, Dou P, Gao M, Kong X, Li C, Liu Z, et al. Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bidirectional mendelian randomization analysis. Diabetes. 2019;68:1747–55. https://doi.org/10.2337/db19-0153.

    Article  PubMed  CAS  Google Scholar 

  50. Zeng Q, Zhao M, Wang F, Li Y, Li H, Zheng J, et al. Integrating choline and specific intestinal microbiota to classify type 2 diabetes in adults: a machine learning based metagenomics study. Front Endocrinol. 2022;13:906310 https://doi.org/10.3389/fendo.2022.906310.

    Article  Google Scholar 

  51. Vidal-Casariego A, Burgos-Peláez R, Martínez-Faedo C, Calvo-Gracia F, Valero-Zanuy M, Luengo-Pérez LM, et al. Metabolic effects of L-carnitine on type 2 diabetes mellitus: systematic review and meta-analysis. Exp Clin Endocrinol Diab. 2013;121:234–8. https://doi.org/10.1055/s-0033-1333688.

    Article  CAS  Google Scholar 

  52. Raubenheimer PJ, Nyirenda MJ, Walker BR. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes. 2006;55:2015–20. https://doi.org/10.2337/db06-0097.

    Article  PubMed  CAS  Google Scholar 

  53. Kathirvel E, Morgan K, Nandgiri G, Sandoval BC, Caudill MA, Bottiglieri T, et al. Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1068–1077. https://doi.org/10.1152/ajpgi.00249.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fenkci SM, Fenkci V, Oztekin O, Rota S, Karagenc N. Serum total L-carnitine levels in non-obese women with polycystic ovary syndrome. Hum Reprod. 2008;23:1602–6. https://doi.org/10.1093/humrep/den109.

    Article  PubMed  CAS  Google Scholar 

  55. Qi S, Liu L, He S, Wang L, Li J, Sun X. Trimethylamine N-Oxide and related metabolites in the serum and risk of type 2 diabetes in the Chinese population: a case-control study. Diab Metab Syndr Obes. 2023;16:547–55. https://doi.org/10.2147/dmso.S398008.

    Article  Google Scholar 

  56. Ringseis R, Keller J, Eder K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr. 2012;51:1–18. https://doi.org/10.1007/s00394-011-0284-2.

    Article  PubMed  CAS  Google Scholar 

  57. Zamani M, Pahlavani N, Nikbaf-Shandiz M, Rasaei N, Ghaffarian-Ensaf R, Asbaghi O, et al. The effects of L-carnitine supplementation on glycemic markers in adults: a systematic review and dose-response meta-analysis. Front Nutr. 2022;9:1082097; https://doi.org/10.3389/fnut.2022.1082097.

  58. Muoio DM, Noland RC, Kovalik JP, Seiler SE, Davies MN, DeBalsi KL, et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 2012;15:764–77. https://doi.org/10.1016/j.cmet.2012.04.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Molfino A, Cascino A, Conte C, Ramaccini C, Fanelli Rossi, Laviano F. A. Caloric restriction and L-carnitine administration improves insulin sensitivity in patients with impaired glucose metabolism. J Parenter Enter Nutr. 2010;34:295–9. https://doi.org/10.1177/0148607109353440.

    Article  CAS  Google Scholar 

  60. Ma L, Fu G, Liu R, Zhou F, Dong S, Zhou Y, et al. Phenylacetyl glutamine: a novel biomarker for stroke recurrence warning. BMC Neurol. 2023;23:74 https://doi.org/10.1186/s12883-023-03118-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hazekawa M, Ono K, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M. In vitro anti-inflammatory effects of the phenylbutyric acid metabolite phenylacetyl glutamine. Biol Pharm Bull. 2018;41:961–6. https://doi.org/10.1248/bpb.b17-00799.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank the participants and investigators of the Framingham Heart Study, the TwinsUK study, the Kooperative Gesundheitsforschung in der Region Augsburg study, and the FinnGen study.

Funding

JY is currently receiving grant from the National Natural Science Fund of China (grant number: 82273635). XZ is currently receiving grant from the Gusu Health Talents Program Training Project in Suzhou (grant number: GSWS2023064).

Author information

Authors and Affiliations

Authors

Contributions

MY: Conceptualization, Software, Validation, Investigation, Writing - Original Draft. YX: Methodology, Investigation, Data Curation, Formal analysis. YS: Writing - Review & Editing. BZ: Writing - Review & Editing, Resources. YD: Investigation, Data Curation, Visualization. QM: Conceptualization, Resources, Supervision. FL: Software, Investigation, Data Curation. ZY: Investigation, Data Curation. WG: Investigation, Data Curation, Visualization. SL: Resources, Supervision. LX: Conceptualization. JY: Conceptualization, Writing - Review & Editing, Supervision, Funding acquisition. XZ: Resources, Writing - Review & Editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Jieyun Yin or Xiaoyan Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This original study was approved by the ethics committee of Soochow University and First People’s Hospital of Taicang. Written informed consent was obtained from all the patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Xiao, Y., Sun, Y. et al. Association of maternal gut microbial metabolites with gestational diabetes mellitus: evidence from an original case-control study, meta-analysis, and Mendelian randomization. Eur J Clin Nutr (2024). https://doi.org/10.1038/s41430-024-01502-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41430-024-01502-z

Search

Quick links