Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mediation effect of body mass index on the association between serum magnesium level and insulin resistance in children from Mexico City



Reduced serum magnesium (Mg) levels have been associated with obesity, insulin resistance (IR), type 2 diabetes, and metabolic syndrome in adults. However, in the children population, the evidence is still limited. In this cross-sectional study, we aimed to analyze the association of serum Mg levels with the frequency of overweight and obesity and cardiometabolic traits in 189 schoolchildren (91 girls and 98 boys) between 6 and 12 years old from Mexico City.


Anthropometrical data were collected and biochemical parameters were measured by enzymatic colorimetric assay. Serum Mg level was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The triglyceride-glucose (TyG) index was used as a surrogate marker to evaluate IR.


Serum Mg level was negatively associated with overweight (Odds ratio [OR] = 0.377, 95% confidence interval [CI] 0.231–0.614, p < 0.001) and obesity (OR = 0.345, 95% CI 0.202–0.589, p < 0.001). Serum Mg level resulted negatively associated with body mass index (BMI, β = −1.16 ± 0.26, p < 0.001), BMI z-score (β = −0.48 ± 0.10, p < 0.001) and TyG index (β = −0.04 ± 0.04, p = 0.041). Through a mediation analysis was estimated that BMI z-score accounts for 60.5% of the negative association of serum Mg level with IR (Sobel test: z = 2.761; p = 0.005).


Our results evidence that BMI z-score mediate part of the negative association of serum Mg level and IR in Mexican schoolchildren.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Serum Mg level in children with normal weight, overweight and obesity.
Fig. 2: Simple mediation model evaluating the effect of body mass index (BMI) z-score as a mediator of the association between serum Mg level and insulin resistance.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.


  1. Okati-Aliabad H, Ansari-Moghaddam A, Kargar S, Jabbari N. Prevalence of Obesity and Overweight among Adults in the Middle East Countries from 2000 to 2020: A Systematic Review and Meta-Analysis. J Obes. 2022;2022, 8074837.

  2. Shamah-Levy T, Gaona-Pineda E, Cuevas-Nasu L, Morales-Ruan C, Valenzuela-Bravo D, Méndez-Gómez Humarán I, et al. Prevalencias de sobrepeso y obesidad en población escolar y adolescente de México. Ensanut Continua 2020-2022. Salud Publica Mex. 2023;65:S218–S22.

    Article  PubMed  Google Scholar 

  3. Piché ME, Poirier P. Obesity, ectopic fat and cardiac metabolism. Expert Rev Endocrinol Metab. 2018;13:213–21.

    Article  PubMed  Google Scholar 

  4. Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol. 2021;12:706978.

    Article  Google Scholar 

  5. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article  PubMed  Google Scholar 

  6. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23:120–33.

    Article  CAS  PubMed  Google Scholar 

  7. Piuri G, Zocchi M, Della Porta M, Ficara V, Manoni M, Zuccotti GV, et al. Magnesium in Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients. 2021;13:320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ricciuto L, Fulgoni VL 3rd, Gaine PC, Scott MO, DiFrancesco L. Intakes of Added Sugars, with a Focus on Beverages and the Associations with Micronutrient Adequacy in US Children, Adolescents, and Teens (NHANES 2003-2018). Nutrients. 2023;15:3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients. 2021;13:320.

    Article  Google Scholar 

  10. Maguire D, Talwar D, Shiels PG, McMillan D. The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review. Clin Nutr ESPEN. 2018;25:8–17.

    Article  PubMed  Google Scholar 

  11. Mishra S, Padmanaban P, Deepti G, Sarkar G, Sumathi S, Toora B. Serum magnesium and dyslipidemia in type-2 diabetes mellitus. Biomed Res. 2012;23:295–300.

    CAS  Google Scholar 

  12. Zhang Y, Huang B, Jin J, Xiao Y, Ying H. Recent advances in the application of ionomics in metabolic diseases. Front Nutr. 2022;9:1111933.

    Article  PubMed  Google Scholar 

  13. Al Shammaa A, Al-Thani A, Al-Kaabi M, Al-Saeed K, Alanazi M, Shi Z. Serum Magnesium is Inversely Associated with Body Composition and Metabolic Syndrome. Diabetes Metab Syndr Obes. 2023;16:95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu L, Chen C, Yang K, Zhu J, Xun P, Shikany JM, et al. Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur J Nutr. 2020;59:3745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Askari M, Mozaffari H, Jafari A, Ghanbari M, Darooghegi Mofrad M. The effects of magnesium supplementation on obesity measures in adults: a systematic review and dose-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;61:2921–37.

    Article  CAS  PubMed  Google Scholar 

  16. Barbagallo M, Veronese N, Dominguez LJ. Magnesium in Type 2 Diabetes Mellitus, Obesity, and Metabolic Syndrome. Nutrients. 2022;14:714.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chutia H, Lynrah KG. Association of Serum Magnesium Deficiency with Insulin Resistance in Type 2 Diabetes Mellitus. J Lab physicians. 2015;7:75–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li W, Jiao Y, Wang L, Wang S, Hao L, Wang Z, et al. Association of Serum Magnesium with Insulin Resistance and Type 2 Diabetes among Adults in China. Nutrients. 2022;14:1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akyuz O, Gucun M, Demirci R, Celik M. Relationship Between Serum Magnesium Level and Insulin Resistance in Turkey Non-obese Adult Population. Biol Trace Elem Res. 2022;200:3070–7.

    Article  CAS  PubMed  Google Scholar 

  20. Shamnani G, Bhartiy SS, Jiwane R, Gupta V, Verma N, Verma D. Correlation of Serum Magnesium with Insulin Resistance in North Indian Adult Population. Curr Diabetes Rev. 2020;16:254–61.

    Article  CAS  PubMed  Google Scholar 

  21. Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, et al. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care. 2005;28:1175–81.

    Article  CAS  PubMed  Google Scholar 

  23. Yakinci C, Pac A, Kucukbay FZ, Tayfun M, Gul A. Serum zinc, copper, and magnesium levels in obese children. Acta Paediatr Jpn. 1997;39:339–41.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan SAU, Ahmed I, Nasrullah A, Haq S, Ghazanfar H, Sheikh AB, et al. Comparison of Serum Magnesium Levels in Overweight and Obese Children and Normal Weight Children. Cureus. 2017;9:e1607.

    PubMed  PubMed Central  Google Scholar 

  25. Guerrero-Romero F, Flores-Garcia A, Saldana-Guerrero S, Simental-Mendia LE, Rodriguez-Moran M. Obesity and hypomagnesemia. Eur J Intern Med. 2016;34:29–33.

    Article  CAS  PubMed  Google Scholar 

  26. Celik N, Andiran N, Yilmaz AE. The relationship between serum magnesium levels with childhood obesity and insulin resistance: a review of the literature. J Pediatr Endocrinol Metab. 2011;24:675–8.

    CAS  PubMed  Google Scholar 

  27. Guerrero-Romero F, Rodriguez-Moran M, Hernandez-Ronquillo G, Gomez-Diaz R, Pizano-Zarate ML, Wacher NH, et al. Low Serum Magnesium Levels and Its Association with High Blood Pressure in Children. J Pediatr. 2016;168:93–8.e1.

    Article  CAS  PubMed  Google Scholar 

  28. WHO. Physical status: the use and interpretation of anthropometry. Geneva: World Health Organization. 1995.

  29. WHO. Growth Reference Data for School-aged Children and Adolescents of 5-19 Years. World Health Organization. 2007. Retreived from:

  30. DeLong DM, DeLong ER, Wood PD, Lippel K, Rifkind BM. A comparison of methods for the estimation of plasma low- and very low-density lipoprotein cholesterol. The Lipid Research Clinics Prevalence Study. JAMA. 1986;256:2372–7.

    Article  CAS  PubMed  Google Scholar 

  31. Guerrero-Romero F, Simental-Mendia LE, Gonzalez-Ortiz M, Martinez-Abundis E, Ramos-Zavala MG, Hernandez-Gonzalez SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95:3347–51.

    Article  CAS  PubMed  Google Scholar 

  32. Mohd Razali N, Yap B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J Stat Model Anal. 2011;2:21–33.

    Google Scholar 

  33. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.

    Article  CAS  PubMed  Google Scholar 

  34. Preacher KJ, Hayes AF. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput. 2004;36:717–31.

    Article  PubMed  Google Scholar 

  35. Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira AR, et al. Role of Magnesium in Oxidative Stress in Individuals with Obesity. Biol Trace Elem Res. 2017;176:20–6.

    Article  CAS  PubMed  Google Scholar 

  36. Gaona-Pineda EB, Rodríguez-Ramírez S, Medina-Zacarías MC, Valenzuela-Bravo DG, Martinez-Tapia B, Arango-Angarita A. Consumidores de grupos de alimentos en población mexicana. Ensanut Continua 2020–2022. Salud Pública México. 2023;65:s248–s58.

    Article  Google Scholar 

  37. Peuhkuri K, Vapaatalo H, Korpela R. Even low-grade inflammation impacts on small intestinal function. World J Gastroenterol. 2010;16:1057–62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lefebvre PJ, Paolisso G, Scheen AJ. Magnesium and glucose metabolism. Therapie. 1994;49:1–7.

    CAS  PubMed  Google Scholar 

  39. Pelczynska M, Moszak M, Bogdanski P. The Role of Magnesium in the Pathogenesis of Metabolic Disorders. Nutrients. 2022;14:1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brito ADM, Hermsdorff HHM, Filgueiras MS, Suhett LG, Vieira-Ribeiro SA, Franceschini S, et al. Predictive capacity of triglyceride-glucose (TyG) index for insulin resistance and cardiometabolic risk in children and adolescents: a systematic review. Crit Rev food Sci Nutr. 2021;61:2783–92.

    Article  PubMed  Google Scholar 

  41. Furdela V, Pavlyshyn H, Shulhai AM, Kozak K, Furdela M. Triglyceride glucose index, pediatric NAFLD fibrosis index, and triglyceride-to-high-density lipoprotein cholesterol ratio are the most predictive markers of the metabolically unhealthy phenotype in overweight/obese adolescent boys. Front Endocrinol. 2023;14:1124019.

    Article  Google Scholar 

  42. Angoorani P, Heshmat R, Ejtahed HS, Motlagh ME, Ziaodini H, Taheri M, et al. Validity of triglyceride-glucose index as an indicator for metabolic syndrome in children and adolescents: the CASPIAN-V study. Eat Weight Disord. 2018;23:877–83.

    Article  PubMed  Google Scholar 

  43. Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315.

    Article  CAS  PubMed  Google Scholar 

  44. Paolisso G, Scheen A, D’Onofrio F, Lefèbvre P. Magnesium and glucose homeostasis. Diabetologia. 1990;33:511–4.

    Article  CAS  PubMed  Google Scholar 

  45. Reis MAB, Reyes FGR, Saad MJA, Velloso LA. Magnesium Deficiency Modulates the Insulin Signaling Pathway in Liver but Not Muscle of Rats1. J Nutr. 2000;130:133–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kostov K. Effects of Magnesium Deficiency on Mechanisms of Insulin Resistance in Type 2 Diabetes: Focusing on the Processes of Insulin Secretion and Signaling. Int J Mol Sci. 2019;20:1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bravo M, Simón J, González-Recio I, Martinez-Cruz LA, Goikoetxea-Usandizaga N, Martínez-Chantar ML. Magnesium and Liver Metabolism Through the Lifespan. Adv Nutr. 2023;14:739–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu M, Dudley SC Jr. Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxid. 2020;9:907.

    Article  CAS  Google Scholar 

  49. Matulewicz N, Karczewska-Kupczewska M. Insulin resistance and chronic inflammation. Postepy Hig Med Doswiadczalnej. 2016;70:1245–58.

    Google Scholar 

  50. Al-Beltagi M, Bediwy AS, Saeed NK. Insulin-resistance in paediatric age: Its magnitude and implications. World J Diabetes. 2022;13:282–307.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank all participants of this study.


The present work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) in the following projects: Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (Project: 315880-CONACYT) and by Hospital Infantil de México Federico Gómez (Fondos Federales HIM/2013/003).

Author information

Authors and Affiliations



MJRL, HHM, JISF, JVG, and MVM, designed the study, performed the statistical analysis, wrote the manuscript, and designed tables and figures. MJRL, HHM, MKK, MC, JISF, ECP, IMN, JVG, and MVM, collect the data and critically reviewed the manuscript. MJRL, HHM, ECP, and IMN, samples treatment and analysis by ICP-MS. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jenny Vilchis-Gil or Miguel Vazquez-Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This observational study was conducted according to the guidelines established in the Declaration of Helsinki and based on the Regulations of the General Health Law on Health Research in Mexico. The research protocol was approved by the Hospital Infantil de México Federico Gómez Research, Ethics, and Biosecurity Committees (approval register: HIM/2013/003).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios-Lugo, M.J., Serafín-Fabián, J.I., Hernández-Mendoza, H. et al. Mediation effect of body mass index on the association between serum magnesium level and insulin resistance in children from Mexico City. Eur J Clin Nutr (2024).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Quick links