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BACKGROUND: Obesity is an important and growing health problem whose treatment involves dietary changes. In this context,
studying the role of macronutrients in weight loss is required in order to understand which strategies may be applied for weight
loss. We aimed to evaluate the effects of diets rich in polyunsaturated (PUFAs) and monounsaturated fatty acids (MUFAs) on resting
energy expenditure (REE), substrate oxidation, and weight loss in women with obesity.
METHODS: Randomized, controlled, single blind, parallel-group clinical trial was conducted for 60 days. Participants (n= 32) were
divided into three groups: G1= normocaloric PUFAs-rich diet (12% of total energy expenditure (TEE), 10% of n-6 and up to 2% of n-
3); G2= normocaloric MUFAs-rich diet (15–20% TEE); and G3= maintenance of the usual diet. Anthropometric and metabolic
variables (REE and substrate oxidation by indirect calorimetry) were evaluated.
RESULTS: G2 decreased body weight (−1.92 ± 1.99 kg, P= 0.02), body mass index (BMI) (−0.69 ± 0.70 kg/m2; P= 0.02), waist
circumference (WC) (−1.91 ± 1.82 cm; P= 0.02), and body fat (−1.14 ± 1.53 kg; P= 0.04).
CONCLUSION: MUFAs-rich diet reduces body weight, BMI, body fat, and WC. Clinical Trials: NCT02656940.
CLINICAL TRIAL REGISTRATION: Clinical Trials: NCT02656940.
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INTRODUCTION
In the last decades, studies have searched for nutritional strategies
to optimize body weight loss [1]. Some authors believe that
decreasing energy is more relevant than managing the distribu-
tion of macronutrients [2, 3]. However, studies have emphasized
the impact of changing the amount of protein, carbohydrate or fat
in the treatment of obesity [4, 5].
Manipulation of dietary fats has been suggested as an option to

control the obesity epidemic. Studies showed fatty acids may
affect the balance between intake and energy expenditure (EE)
through different factors related to adipogenesis, such as resting
energy expenditure (REE), substrate oxidation [6], diet-induced
thermogenesis (DIT) [7], and satiety [8], reducing body mass and/
or fat storage in adipose tissue [6]. However, these effects have
not been fully elucidated in humans and the results are still
controversial.
The benefits of high-unsaturated fats diets, such as Mediterra-

nean diet, have been explored in the last years. However, there are
few studies evaluating the isolated effect of high-monounsaturated

fatty acids (MUFAs) or high-polyunsaturated fatty acids (PUFAs)
diets on health and weight loss [9, 10].
A systematic review showed weight loss after high-MUFAs diet,

in which some studies evaluated the acute effects of high-MUFAs
meals and others studies verified the effects of high-MUFAs diets
in varying intervention periods [11]. On the other hand, some
studies investigated the effects of PUFAs, especially n-3 PUFAs, in
the treatment of obesity [12, 13]. However, most studies used n-3
PUFAs supplementation, and few studies had control diet for n-3
and n-6 PUFAs. In this context, our study aimed to evaluate the
effects of high n-3 and n-6 PUFAs or high-MUFAs diets on REE,
substrate oxidation, and body weight loss in obese women
without comorbidities.

SUBJECTS AND METHODS
Study subjects
The study was performed at the Laboratory of Nutritional Assessment
(LANUTRI) of the Institute of Nutrition Josué de Castro of the Federal
University of Rio de Janeiro. Volunteers were recruited from March 2013 to
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June 2014. Inclusion criteria were as follows: (1) adult women (aged
between 20–40 years); (2) any ethnic; (3) obesity classes I and II (body mass
index (BMI) between 30 and 39.9 kg/m2); (4) pre-menopause; (5) without
weight loss greater than 3 kg in 3 months; (6) and elementary school
complete.
The exclusion criteria were: (1) women previously diagnosed with

diabetes mellitus, cardiovascular, kidney, liver or autoimmune diseases,
thyroid disorder, inflammatory bowel diseases, acquired immunodefi-
ciency syndrome, or cancer; cholecystectomy and other surgeries (last
12 months); (2) pregnant or breastfeeding; (3) smoking; (4) using lipid-
lowering, hypoglycemic, diuretics, antidepressants, or antihypertensive
drugs, supplements, herbal products, and/or diets for weight loss in the
last 4 weeks; (5) and those with food allergy or intolerance to vegetable
oils (olive, soy, or canola oil), fish oil, fish, and/or seafood.
The research was approved by the Research Ethics Committee of the

University Hospital Clementino Fraga Filho (Rio de Janeiro, RJ, Brazil)
(protocol n.072/10) according to the declaration of Helsinki. All participants
provided written informed consent. In addition, the present study was
registered at ClinicalTrial.gov (NCT02656940).

Experimental design and characteristics of dietary
intervention
A parallel, single blind, randomized, controlled clinical trial was conducted
for 60 days with a convenience sample. Randomization was determined in
advance, through a list of allocation groups, before the volunteer
recruitment steep. Based on the previously established list, the women
were continuously assigned to one of three groups: G1 (N= 10) -
normocaloric n-3 and n-6 PUFAs-rich diet; G2 (N= 11) - normocaloric
MUFAs-rich diet; or G3 (N= 11) - placebo and their usual diet.
The energy value of prescribed diets (G1 and G2) was calculated based

on the REE obtained by indirect calorimetry (Vmax 29®, Viasys Healthcare,
USA), using Weir equation [14] and corresponding physical activity factor
[15]. The diets were previously calculated using the diet analysis program
Diet Pro®5i (Federal University of Viçosa) based to the Brazilian Table of
Food Composition [16].
The G1 and G2 diets were adequate in carbohydrates (50–55% of total

energy expenditure (TEE)), proteins (15–20% of TEE), and fats (30–35% of

TEE) [17]. The G1 diet contained 12% of TEE of PUFAs (10% of n-6 PUFAs and
up to 2% of n-3 PUFAs), and G2 17% of TEE of MUFAs [18]. Both groups were
oriented to consume up to 10% saturated fatty acids (SFA) [18]. The average
chemical composition of the prescribed diets is described in Table 1.
Sachets containing soy oil and extra virgin olive for G1, sachet with extra

virgin olive oil for G2 (amounts according to the prescribed diet) and soy
oil (2 g/day) as a placebo for G3 were offered to achieve the desired
amounts of dietary lipids. The volunteers were instructed to add the
individualized portions of oils directly to the dish (lunch and dinner), no
cooking the oil. Regarding the type of oil used to prepare food, G1 and G2
were oriented to use soybean oil and canola oil to cook, respectively, while
G3 was instructed to maintain usual oil.
G1 received fish oil capsules (Vital Fish®, Vital Âtman Ltda, SP, Brazil - 2

capsules/ day containing 420mg of eicosapentaenoic acid [EPA], 220mg
of docosahexaenoic acid [DHA] and 5mg of vitamin E each) to achieve n-3
PUFAs intake. G2 and G3 received capsule containing 1 g of soybean oil
per day (Officilab®, RJ, Brazil). The volunteers were instructed to maintain
their usual physical activities during the study, and the level of physical
activity was classified as sedentary or light [17].
Adherence to the dietary intervention was assessed by 3-day food

record and conference of leftover sachets and capsules, and plasma fatty
acids composition analysis was evaluated by gas chromatography (Agilent
Technologies, model 7890 A CG System) [19]. Fatty acid composition
analysis of the oils was conducted by gas chromatography [20]. For both
chromatographic analyses, the internal standard C13:0 (Sigma Aldrich) at
5 mg/mL was used.
For quality control of the oils used during the dietary intervention, the

physical-chemical parameters (acidity and peroxide indexes) were
monitored per lot (oils and capsules). The extra virgin olive oil was
controlled monthly, and the open packages of soybean oil and olive oil
were monitored each 15 days for 45 days. The analysis was performed
according to the methods proposed by the Institute Adolfo Lutz [21] and
the results were evaluated according to the current legislation [22].

Dietary intake assessment
Dietary intake was assessed by 3-day food record (2 typical days and 1
atypical) before and during the intervention period.

Table 1. Prescribed diet composition for the test groups (G1 and G2).

G1 (n= 13) G2 (n= 13) P-valuea

Energy (kcal) 2588.6 ± 393.3 2593.1 ± 384.3 0.98

Carbohydrates (%) 51.4 ± 0.2 51.4 ± 0.3 0.60

Carbohydrates (g) 332.8 ± 50.0 333.2 ± 49.8 0.98

Proteins (%) 15.9 ± 0.2 15.8 ± 0.2 0.45

Proteins (g) 102.7 ± 16.2 102.5 ± 15.7 0.97

Lipids (%) 32.7 ± 0.1 32.8 ± 0.2 0.16

Lipids (g) 94.1 ± 14.3 94.5 ± 13.7 0.94

SFAs (%) 6.9 ± 0.1 7.1 ± 0.1 <0.01b*

SFAs (g) 19.8 ± 3.2 20.5 ± 3.3 0.59

MUFAs (%) 11.9 ± 0.2 17.5 ± 0.4 <0.01*

MUFAs (g) 34.4 ± 5.1 50.2 ± 7.0 <0.01*

PUFAs (%) 12.2 ± 0.2 6.8 ± 0.2 <0.01*

PUFAs (g) 35.1 ± 5.4 19.5 ± 2.8 <0.01*

n-6PUFAs (%) 10.6 ± 0.2 6.0 ± 0.2 <0.01*

n-6PUFAs (g) 30.4 ± 4.9 17.4 ± 2.5 <0.01*

n-3 PUFAs (%) 1.6 ± 0.08 0.8 ± 0.0 <0.01*

n-3 PUFAs (g) 4.7 ± 0.5 2.2 ± 0.3 <0.01*

n-6/n-3ratio 6.5 ± 0.4 7.9 ± 0.3 <0.01*

Total fiber (g) 33.9 ± 3.8 32.6 ± 4.9 0.45

Values were represented as mean ± SD (for all values).
G1 n-6/n-3 PUFAs-rich diet, G2 MUFAs-rich diet, SFAs saturated fatty acids, MUFAs monounsaturated fatty acids, PUFAs polyunsaturated fatty acids.
aDifferences between groups were analyzed using the Mann–Whitney U test.
bDespite the similarity, the groups differed.
*P < 0.05.
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The records were analyzed using the Diet Pro®5.5i software (Federal
University of Viçosa) and Brazilian Table of Food Composition [16]. Tables
of United States Department of Agriculture [23], University of São Paulo
[24] and Philippi [25] were used in order of priority when food were not
included in Brazilian Table of Food Composition.
The oil supplements (sachets and capsules) were considered in the

prescribed diet calculation and in the dietary intake assessment. The
chemical composition of the oil supplements was recorded in the diet
analysis program based on the results obtained via gas chromatography,
and oils used in the preparation of meals were considered in the analysis,
as reported in the diet records.

Assessment of energy expenditure and substrate oxidation
The preparation for the EE assessment started 3 days previously. During
this period, volunteers were instructed to maintain only their daily
activities, avoiding any physical exercises. In addition, the volunteers were
instructed not to drink alcoholic beverages, and to avoid excessive intake
of foods high in fats, proteins and caffeine.
The evaluation was performed at LANUTRI, using an indirect calorimetry

system with a respiratory chamber (Vmax Encore 29 Systems®, Viasys
Healthcare, USA). The measurements were performed after a 12-h
overnight fast. The volumes of oxygen consumption (VO2) and carbon
dioxide produced (VCO2) were measured for 30min, with the initial 5 min
being disregarded. The appropriated equilibrium state was considered
when the coefficient of variation for VO2 and VCO2 measurements was up
to 10% in five consecutive minutes [26].
The ratio between VCO2 and VO2 (L/min) was used to calculate the

respiratory quotient (RQ). The values used for interpreting the RQ were as
follows: 0.72 for lipids, 0.80 for proteins, and 1.0 for carbohydrates [14]. The
equation described by Weir [14] was used to determine REE: ([3.9 × VO2 L/
min]+ [1.1 × VCO2 L/min]) × 1440. To determine the TEE, the REE value was
multiplied by the corresponding physical activity factor [15].
The equations described by Jéquier, Acheson, and Schutz [27] were used

to calculate the substrate oxidation: lipids= (0.75 × NPVO2)/2.019 (g/min);
carbohydrate= (0.25 × NPVO2)/0.829 (g/min); and proteins= PVO2/0.966

(g/min). Since NPVO2= non-protein oxygen volume in L/min; PVO2=
protein oxygen volume in L/min; in which PVO2

(L/min)= nitrogen × 6.25 × 0.966. The NPVO2 value (L/min) was obtained
by the difference between VO2 (L/min) and PVO2 (L/min). For the
calculation of PVO2, the nitrogen excretion constant of 0.14 g/kg/day
was used instead of the urinary nitrogen [28].

Anthropometric and body composition assessments
Anthropometric and body composition assessments were performed in
fasting. Total body mass and height were measured using the Filizola®

electronic platform scale Personal Line (0.1 kg accuracy and 150 kg
maximum capacity) and Alturexata® portable vertical stadiometer (1 mm
accuracy and 213 cm maximum capacity), respectively. Measures were
performed with light clothing and no footwear. BMI was calculated [29].
The waist circumference (WC) was measured at the midpoint between the
last rib and the iliac crest [29], using an inelastic anthropometric tape 2.0
meters long, Sanny® brand with a scale in cm.
Body composition was evaluated by single-frequency electric bioimpe-

dance analysis (Biodynamics® model 450), the fat free mass (FFM) was
calculated by the equations of Segal et al. [30], following protocol.

Statistical analysis
Results were expressed as mean and standard deviation (SD). The
Kolmogorov–Smirnov test was performed, and the data had a non-
normal distribution. Non-parametric tests were used to analyze the data
[31]. Statistical analyzes were conducted in SPSS 20.0 program (SPSS, IBM
Corporation, NY).
Comparisons between three groups were evaluated by Kruskal-Wallis

test. For the variable that presented P < 0.05 post hoc Mann–Whitney U
was conducted for comparisons between groups (G1 × G2, G1 × G3, and
G2 × G3), followed by adjustment for type I error [32]. Variations between
groups were similar. Differences between times in group (from baseline to
final value) were evaluated using the Wilcoxon signed-rank test, with a 5%
probability.

RESULTS
Quality of the oils
Acidity and peroxide index analysis of the oils used during the
dietary intervention showed satisfactory results in all oils lots used
(Table 2). The monthly control of extra-virgin olive oil supplied in
gallons of 5 liters (Fig. 1) and biweekly monitoring of open
packages of soybean oil and olive oil for a period of up to 45 days
(Fig. 2) showed suitable values of acidity and peroxide index.

Volunteers and adherence to proposed dietary intervention
Of the 252 volunteers who showed interest in participating of the
study, 34 were included and 32 had their data analyzed. The
exclusion reasons were no adherence ( < 70%) to the dietary
guidelines and insufficient intake of oil supplements (sachets) (Fig. 3).
Dietary records confirmed differences in SFAs, MUFAs and

PUFAs intake between groups. G1 ingested higher total PUFAs,

Table 2. Acidity and peroxide index of oils used.

Oil Aciditya Peroxide index (meq/
kg)

Extra virgin olive oil (Single
lot)

0.01 8.41

Soy oil capsules (Single lot) 0.53 1.99

Fish oil capsule (Single lot) 2.77 2.59

Soyoil (Lot 1) 0.44 1.74

Soyoil (Lot 2) 0.20 1.64

Soyoil (Lot 3) 0.28 1.48

KOH potassium hydroxide.
amg KOH/g for soybean oil, soybean oil capsules and fish oil capsules;
g/100 g in oleic acid for extra-virgin olive oil.

Fig. 1 Assessment of acidity and peroxide index of extra-virgin olive oil. Recommended values: acidity—up to 0.8 g/100 g in oleic acid;
peroxide index—up to 20 meq/kg [22]. a Acidity of extra-virgin olive oil; b peroxide index of extra-virgin olive oil.
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Fig. 2 Assessment of acidity and peroxide index of extra-virgin olive and soybean oil. a Acidity of extra-virgin olive oil; b acidity of soybean
oil; c peroxide index of extra-virgin olive oil; d peroxide index soybean oil. Recommended values: olive oil acidity, up to 0.8 g/100 g in oleic
acid; soybean oil acidity, up to 0.6 mg KOH/g; olive oil peroxide index, up to 20meq/kg; soybean oil peroxide index, up to 10meq/kg [22].

Assessed eligibility (n=252)

Eligible (n=80) Non-eligible (n=164)

Randomiza�on

G1 (n=13) G2 (n=13) G3 (n=14)

G1 (n=11) G2 (n=11) G3 (n=12)

Dropout (n=40)

Dropout 
(n=2)

Dropout 
(n=2)

Dropout 
(n=2)

G1 (n=10) G2 (n=11) G3 (n=11)

Exclusion 
(n=1)

Exclusion 
(n=1)

Fig. 3 Representative scheme of recruitment and selection of volunteers. G1 n-6/n-3 PUFAs-rich diet, G2 MUFAs-rich diet, G3 control group.
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Table 3. Comparison of dietary intake during the study period.

G1 (n= 10) G2 (n= 11) G3 (n= 11) P-valuea

Energy (kcal) 2079.65 ± 323.84 2016.29 ± 305.44 2270.90 ± 756.30 0.92

Carbohydrates (g) 226.24 ± 35.00 224.71 ± 48.27 287.37 ± 122.08 0.35

Carbohydrates (%) 43.73 ± 4.34 44.36 ± 4.74 49.91 ± 8.75 0.11

Proteins (g) 97.33 ± 26.72 90.74 ± 13.95 101.72 ± 42.83 0.95

Proteins(%) 18.56 ± 2.89 18.13 ± 2.40 18.04 ± 3.81 0.80

Lipids (g) 88.15 ± 15.73 84.79 ± 13.23 80.65 ± 27.36 0.61

Lipids (%) 38.15 ± 3.54 37.96 ± 3.83 32.43 ± 6.66 0.07

SFAs (g) 20.76 ± 4.63 20.67 ± 3.38 26.39 ± 10.02 0.27

SFAs(%) 8.96 ± 1.35 9.28 ± 1.27 10.63 ± 2.40 0.05

MUFAs (g) 31.74 ± 4.77 44.81 ± 9.46 25.50 ± 11.33 <0.01b, c*

MUFAs(%) 13.80 ± 1.27 20.00 ± 3.30 10.26 ± 3.37 <0.01b, c*

PUFAs (g) 27.88 ± 4.10 14.00 ± 2.14 15.67 ± 3.22 <0.01c, d*

PUFAs(%) 12.11 ± 0.90 6.28 ± 0.70 6.52 ± 1.26 <0.01c, d*

n-6 PUFAs (g) 22.69 ± 3.68 12.00 ± 1.89 13.07 ± 2.77 <0.01c, d*

n-6PUFAs(%) 9.86 ± 0.93 5.38 ± 0.60 5.42 ± 1.01 <0.01c, d*

n-3 PUFAs(g) 4.36 ± 0.47 1.86 ± 0.35 1.33 ± 0.32 <0.01b, c, d*

n-3 PUFAs(%) 1.91 ± 0.17 0.83 ± 0.11 0.56 ± 0.13 <0.01b, c, d*

EPA+DHA (g) 1.49 ± 0.05 0.06 ± 0.04 0.08 ± 0.08 <0.01c, d*

n-6/n-3 ratio 5.20 ± 0.30 6.52 ± 0.70 9.91 ± 1.02 <0.01b, c, d*

Values are represented as mean ± SD (for all values).
G1 n-6/n-3 PUFAs-rich diet, G2 MUFAs-rich diet, G3 control group, SFAs saturated fatty acids, MUFAs monounsaturated fatty acids, PUFAs polyunsaturated fatty
acids, EPA eicosapentaenoic acid, DHA docosahexaenoic acid.
*P < 0.05.
aDifferences between groups were analyzed using the Kruskal–Wallis test. For the variables that presented P < 0.05, the Mann–Whitney U test was used for
comparisons between groups (G1 × G2, G1 × G3 and G2 × G3), followed by adjustment for type I error.
bG2 differed from G3.
cG1 differed from G2.
dG1 differed from G3.

Fig. 4 Composition of plasma fatty acids (%) in baseline and changes after dietary intervention in G1, G2, and G3. Values are represented
as mean ± standard error (for all values). aDifferences between groups analyzed using the Kruskal- Wallis test (for all values). For the variables
that presented P < 0.05, the Mann–Whitney U test was used for comparisons between groups (G1 × G2, G1 × G3 and G2 × G3), followed by
adjustment for type I error. bG1 differed from G2. cG1 differed from G3. C18:1 n-9, oleic; C18:3 n-3, linolenic; C20:5 n-3, EPA; C22:6 n-3, DHA;
C18:2 n-6, linoleic; C20:4 n-6, arachidonic; G1, n-3 and n-6 PUFAs-rich diet (n= 9); G2, MUFAs-rich diet (n= 11); G3, control group (n= 10).
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and n-6 and n-3 PUFAs than G2. While G2 had higher MUFAs and
higher n-6/n-3 ratio intake than G1. In addition, no differences
were found between groups for calories, carbohydrates (g and %),
proteins (g and %), total lipids (g and %), and SFAs (g and %)
(Table 3).
The intervention groups (G1 and G2) showed lower carbohy-

drates intake (percentage of TEE) compared to baseline (G1:
50.27% + 5.36 to 43.73% + 4.34, p= 0.02; G2: 52.55% + 5.63 to
44.36% + 4.74, p < 0.01) [data not shown].
Capsules and sachets intake were equivalent in three groups

(93.92 ± 5.01%; 97.45 ± 4.00%, and 95.32 ± 5.07%; P= 0.13;
91.26 ± 6.47%; 93.97 ± 6.17 and 91.70 ± 7.99%; P= 0.53, for
capsules and sachets in G1, G2 and G3, respectively).
The changes observed in the plasma fatty acids profile at the

end of the study confirmed the adherence of the dietary
intervention. G1 presented an increase in n-3, EPA and DHA
PUFAs, while G2 showed an increase in oleic acid (Fig. 4).

Effect of intervention on anthropometric variables
In the baseline, age, BMI, WC and body fat mass (BFM) were similar
between groups. All volunteers presented class I obesity,
accumulation of visceral fat and high body adiposity [29]. After
intervention, anthropometric and body composition variables did
not differ between groups (Table 4).

Comparing anthropometric and body composition data at
baseline and after intervention, only G2 showed a decrease in
body weight, BMI, WC, and BFM (kg). On the other hand,
G3 showed increased BMI and tendency to increase in body
weight and WC (Table 4).

Effect of intervention on energy expenditure and substrate
oxidation
In the baseline, there was no difference between groups for the
EE-related variables. The diets did not change EE and the
substrates oxidation. No differences between times and groups
was observed, except for protein oxidation. G2 showed a slight
increase in protein oxidation after the intervention, however, the
variation was very small without clinical relevance and may be due
to the small variability of the data (Table 5).

DISCUSSION
Dietary intervention and fats manipulation studies in humans are
scarce, especially with individualized dietary prescription and
dietary intake control. The present study showed no effect of high-
PUFAs diet on anthropometric and body composition parameters.
However, high-MUFAs diet caused weight loss and improvement
in body composition, with a decrease in abdominal fat

Table 4. Baseline characteristics and comparison of anthropometric variables between groups at the baseline, after dietary intervention, and
variations.

G1 (n= 10)a Δ G2 (n= 11) Δ G3 (n= 11) Δ P-valuec

Age (y) 29.70 ± 6.53 31.27 ± 2.69 31.73 ± 3.74 0.70

Weight (kg) I 89.67 ± 6.82 −0.18 ± 1.66 92.35 ± 11.09 −1.92 ± 1.99 90.40 ± 10.89 0.76 ± 0.99 0.96e

Weight (kg) II 89.49 ± 6.58 90.43 ± 9.93 91.16 ± 11.17 0.99f

P-valueb 0.72d 0.02d* 0.05d 0.01g,h*

BMI (kg/m2) I 33.94 ± 2.87 −0.08 ± 0.60 33.27 ± 3.24 −0.69 ± 0.70 34.18 ± 3.28 0.29 ± 0.37 0.76e

BMI (kg/m2) II 33.85 ± 2.59 32.58 ± 2.80 34.46 ± 3.42 0.29f

P-valueb 0.59d 0.02d* 0.04d* <0.01g,h*

WC (cm) I 97.69 ± 8.26 −2.09 ± 3.94 94.62 ± 7.52 −1.91 ± 1.82 96.76 ± 9.39 1.22 ± 3.38 0.61e

WC (cm) II 95.60 ± 7.88 92.71 ± 7.52 97.98 ± 8.83 0.37f

P-valueb 0.14d 0.02d* 0.08d 0.02g,h*

FFM (kg) I 47.93 ± 2.92 0.42 ± 1.59 50.00 ± 4.82 −0.78 ± 1.84 48.96 ± 4.98 0.43 ± 1.25 0.60e

FFM (kg) II 48.07 ± 3.59 49.22 ± 4.45 49.39 ± 4.77 0.92f

P-valueb 0.77d 0.18d 0.29d 0.19g

FFM (%) I 53.63 ± 3.88 0.51 ± 1.87 54.36 ± 3.37 0.31 ± 1.57 54.32 ± 2.89 0.04 ± 1.07 0.97e

FFM (%) II 54.11 ± 3.33 54.68 ± 4.17 54.36 ± 2.43 0.61f

P-valueb 0.95d 0.59d 0.86d 0.87g

BFM (kg) I 41.74 ± 6.27 −0.67 ± 2.43 42.35 ± 7.51 −1.14 ± 1.53 41.45 ± 6.82 0.32 ± 0.85 0.99e

BFM (kg) II 40.93 ± 5.15 41.21 ± 7.49 41.77 ± 6.93 0.92f

P-valueb 0.59d 0.04d* 0.21d 0.06g

BFM (%) I 46.37 ± 3.88 −0.51+ 1.87 45.64 ± 3.37 −0.31 ± 1.57 45.68 ± 2.89 −0.04 ± 1.07 0.97e

BFM (%) II 45.89 ± 3.33 45.33 ± 4.17 45.64 ± 2.43 0.61f

P-valueb 0.95d 0.59d 0.86d 0.87g

Values are represented as mean ± SD (all values).
Δ delta (after dietary intervention value – baseline value), G1 n-3 and n-6 PUFAs-rich diet, G2 MUFAs-rich diet, G3 control group, BMI body mass index, WC waist
circumference, FFM fat-free mass, BFM body fat mass, I baseline values, II after dietary intervention values.
*P < 0.05.
an= 09 in G1 for the final variables FFM (kg) II, FFM (%) II, BFM (kg) II and BFM (%) II, as well as for the delta values and paired data analysis.
bDifferences between times, per group, were evaluated using the Wilcoxon signed-rank test, at 5% probability.
cDifferences between groups were analyzed using the Kruskal–Wallis test. For the variables that presented P < 0.05, the Mann–Whitney U test was used for
group comparisons (G1 × G2, G1 × G3 and G2 × G3), followed by adjustment for type I error.
dComparison of baseline and after dietary intervention, according to groups.
eComparison of baseline between groups.
fComparison after dietary intervention between groups.
gComparison of Δ between groups.
hG2 differed from G3.
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accumulation. These results suggest a strategy that may improve
management the body weight of women with obesity.
Piers et al. [33] found that the high-MUFAs diet decreases body

weight and fat when compared to low-MUFAs diet. Weech et al.
[34] observed a reduction in WC after high-MUFAs intervention,
but no difference between results provided by high-SFAs or high-
n-6 PUFAs diets. According Tutinchi et al. [11], diets enriched in
oleic acid can influence fat balance, body weight, central obesity,
and possibly energy expenditure. The potential mechanisms
involved are regulation of food intake, stimulation lipid oxidation,
decreased adipose tissue inflammation and adipogenesis.
Long-term dietary intervention has shown UFAs induce greater

EE, DIT, and fat oxidation compared to SFAs [10]. Chain size and
saturation degree of fatty acids have been pointed as mechanisms
responsible for these effects. DeLany et al. [35] observed that
PUFAs and MUFAs are higher oxidized, and SFAs oxidation
decreases based on the increase of carbon numbers. However,
these effects did not occur in the present study. G2 decreased
body weight and fat mass without EE and lipid oxidation
alteration.
Studies are inconsistent about the effects of UFAs on weight

loss and body fat [36, 37]. Nevertheless, MUFAs resulted in weight
loss, and a decrease in WC, BMI, and body fat. These effects may
be correlated with the greater satiety promoted by MUFAs [38].
G2 showed lower caloric intake than other groups, but no
significant difference between groups.
In addition, G2 and G1 reduced carbohydrates intake (% of TEE)

during the intervention when compared to usual intake (P < 0.05)
(data not shown), which did not occur in control group (G3),
although carbohydrates intake during the intervention was similar
in all groups. According to Paniagua et al. [39], increased
carbohydrates intake may increase abdominal fat accumulation,
and the opposite could be observed with MUFA-rich diet.
Some evidence suggests that n-3 PUFAs provides an additional

effect to caloric restriction on weight loss, WC, and body fat
decrease [12, 40]. Nevertheless, other study did not verify these
effects [41], confirming our results. These divergences may be
related to the offered amounts of PUFAs and gender-related
differences [40,42]. Crochemore et al. [42] found higher weight
loss and decrease in WC with low dose of n-3 PUFAs (540mg EPA
and DHA/day vs 900mg EPA and DHA/day). Thorsdottir et al. [40]
observed additional benefits in fish intake or n-3 PUFAs oil
supplementation in men, but not in women. We emphasize that
the dose offered in the present study (1.28 g per day of EPA and
DHA) was higher than doses used by Crochemore et al. [42].
The limitations of study include the small sample size and short

intervention period. Considering these limitations, the controver-
sial results, and the scarcity of long-term investigations, we
emphasize the need to conduct new researches with standardized
protocols and long-term intervention to evaluate the influence of
UFAs in weight loss, body composition and energy metabolism.
High-MUFAs diet for 60 days contributed to weight loss,

especially body and abdominal fat, but did not influence EE and
substrate oxidation. However, high-n-3 and n-6 PUFAs diet did not
change the variables studied. This result suggests a possible
benefit of a high-MUFAs diet for the treatment of obesity,
however further studies are needed to clarify the effects of
different lipids on individuals with obesity.
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