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BACKGROUND: 3D laser-based photonic scanners are increasingly used in health studies to estimate body composition. However,
too little is known about whether various 3D body scan measures estimate body composition better than single standard
anthropometric measures, and which body scans best estimate it. Furthermore, little is known about differences by sex and age.
METHODS: 105 men and 96 women aged between 18 and 90 years were analysed. Bioelectrical Impedance Analysis was used to
estimate whole relative fat mass (RFM), visceral adipose tissue (VAT) and skeletal muscle mass index (SMI). An Anthroscan
VITUSbodyscan was used to obtain 3D body scans (e.g. volumes, circumferences, lengths). To reduce the number of possible
predictors that could predict RFM, VAT and SMI backward elimination was performed. With these selected predictors linear
regression on the respective body compositions was performed and the explained variations were compared with models using
standard anthropometric measurements (Body Mass Index (BMI), waist circumference (WC) and waist-to-height-ratio (WHtR)).
RESULTS: Among the models based on standard anthropometric measures, WC performed better than BMI and WHtR in estimating
body composition in men and women. The explained variations in models including body scan variables are consistently higher
than those from standard anthropometrics models, with an increase in explained variations between 5% (RFM for men) and 10%
(SMI for men). Furthermore, the explained variation of body composition was additionally increased when age and lifestyle
variables were added. For each of the body composition variables, the number of predictors differed between men and women,
but included mostly volumes and circumferences in the central waist/chest/hip area and the thighs.
CONCLUSIONS: 3D scan models performed better than standard anthropometric measures models to predict body composition.
Therefore, it is an advantage for larger health studies to look at body composition more holistically using 3D full body surface scans.
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INTRODUCTION
High body fat (especially in the abdomen) is an important risk of
diabetes type II, cardiovascular diseases and certain cancers as
well as with all-cause mortality [1–3]. Also, it is well known that
higher levels of physical activity and consequently higher muscle
mass are associated with a lower risk for cardiovascular disease
and reduces the risk of loss of mobility and mortality, particularly
in the elderly [4–6].
The most precise direct measurements of body compositions are

usually made by imaging techniques, such as dual-energy X-ray
absorptiometry (DEXA), magnetic resonance imaging (MRI) or
computer tomography (CT), which can scan the body internally
[7, 8]. However, these techniques are time- and cost-consuming and
(may) expose the body to invasive X-ray radiation. Due to the ease
of handling, the high measurement speed and the transportability
of the measuring device, bioelectrical impedance analysis (BIA) is a
validated and proven alternative to invasive methods in some study

settings [9–11]. Also, the BIA technique has improved over the last
decades and new devices are reaching good accuracy levels as
compared to the standard imaging methods [9–11].
Most epidemiological studies use standard anthropometry to

assess body shape and estimate the Body Mass Index (BMI, kg/m2)
of the participants However, BMI is a simple and suboptimal
indicator of individual body fatness [12, 13], as it is unable to
distinguish between weight linked to fat mass and weight linked to
lean mass [7, 14, 15]. Thus, BMI does not allow conclusions about fat
distribution, which in turn is crucial for the assessment of individual
health risk [16, 17]. Other anthropometric body shape measure-
ments such as waist circumference (WC), waist-to-hip (WHR), and
waist-to-height (WHtR) ratios are used as proxies for central
abdominal fat [18–20]. However, even when trained and qualified
personnel perform these measurements and follow standard
operating procedures (on posture, breathing position, tape position-
ing and tension [10, 19, 21]), the acquisition of waist and hip
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circumference is a time-consuming process that can be subjected to
considerable intra- and inter-individual variation [10, 22, 23].
During the last decade, a new method has surfaced as an

attractive digital alternative to anthropometrically assess body size
and shape from the outside using three-dimensional (3D)
photonic surface scan technology [24–26]. The 3D body scanner
is a non-invasive, non-contact, harmless, laser-based system that
uses cameras surrounding the body to capture information and
calculate a detailed body shape map through optical triangulation.
The body surface is scanned in approximately 13 seconds and a
3D image of the body topography is produced. The device is able
to automatically determine more than 150 body measurements
like numerous circumferences, linear dimensions, or regional
volumes. A number of validation studies has shown the
applicability of the scan technique in an epidemiological setting
by comparing scans with manual measurements (e.g., waist or hip
circumferences) [27–30]. Good feasibility, reliability and validity of
the scans were shown in these studies, and the correlations with
parameters linked to metabolic syndrome were comparable to
those of studies using manual measurements [28].
Over the last years, the number of publications validating the

body scan technology against body composition only slowly
increased. However, as Ng et al. [31] state, further studies are
justified to elucidate relationships between body shape and
composition across sex, age, BMI groups, ethnicity, etc. In order to
use 3D scans to assess fat and lean tissue and thus predict cardio-
vascular diseases risk, the technology should be calibrated with
body composition first to see which aspects of external body
shape (circumferences, surfaces, volumes, total and segmental,
etc.) in which combination (ratios, etc.) predict best internal body
composition. Previous studies have shown that belly circumfer-
ence and middle hip circumference are important predictors of
body fat content and forearm volume and calf volume are good
predictors of skeletal muscle mass [30, 32]. However, these studies
were carried out on a homogeneous sample of young men only. It
is therefore necessary to verify which 3D scan measurements
correlate best with body composition in a more heterogenous
study population and to study the possible difference in
predictors according to sex and age. Furthermore, it is also
important to ensure that the combination of measurements as
produced by the 3D scan predicts body composition better than
conventional anthropometric measurements.
The aim of the present study was to examine which

combination of 3D body scanner measurements, together with
various socio-demographic and lifestyle variables, best predicted
body composition (fat and muscle mass) as measured by BIA in a
cross-sectional sample of 96 women and 105 men aged between
18 and 90 years stratified by sex. The second aim was to examine
if a combination of 3D scanner parameters produced better
predictions of fat and muscle mass than conventional single
anthropometric measures.

METHODS
In this article, we use data from a study completed in 2019, which has
previously been analysed in a different context [33]. This data set consists
of 242 participants which were enrolled from an ongoing national nutrition
study (Swiss Food Panel 2.0) through written invitations, mailing lists from
scientific communication events, and media announcements to the
general population in the Zurich area, Switzerland. To be included in the
study, participants had to be at least 18 years old and had to have a good
understanding of the German language. Prior to data collection, the study
procedures were explained in a written and oral way to the participants
and informed consent was obtained. The study was approved by the Ethics
Committee of ETH Zurich (EK 2019-N-08).

Examination battery
The examinations included several steps: First, written self-reported
questionnaires developed for previous studies were used to obtain self-

reported information on socio-demographic and lifestyle factors, as well as
questions on food frequency [34, 35]. Second, an 8-point bioelectrical
impedance analysis (BIA) (Seca mBCA 515, Seca AG, Reinach, Switzerland)
was utilized to evaluate the total body fat, visceral fat as well as skeletal
muscle mass of the participants. The Seca mBCA 515 device has been
verified in various studies [36–38] and successfully used in other
publications that compare 3D body scans with BIA [28, 39]. Participants
stood on the four foot-electrodes barefoot and put both hands on the four
hand electrodes. Third, 3D full body surface scans of the participants were
performed using a semi-mobile Anthroscan VITUSbodyscan body scanner
(Human Solution, Kaiserslautern, Germany) This scanner model is equipped
with four eye-safe lasers, eight cameras, and acquires up to 300 data points
per cm2 as a 3D point cloud, based on optical triangulation. Body scanner
derived measurements were acquired using the scanner software
(Anthroscan 2016, Version 3.5.3) which automatically calculates 150 stan-
dard measurements (ISO 7250 / ISO 8559 and DIN EN ISO 20685) including
height, weight and a large number of distances and circumferences and
volumes. Following the manufacturer’s instructions, the scanner was
calibrated daily before data collection. Participants were briefed and
measured according to the standard position (standing up straight, feet
positioned on a mark on the scanner platform (ca. 30 cm apart), arms
slightly bent at the elbow and held slightly apart from the body, head in
accordance to the Frankfurt Horizontal Plane). Volunteers were asked to
exhale and not to breathe in during the scan process, which was about
10 seconds. Only form-fitting underwear and a tight-fitting bathing cap
were worn during the procedure.

Dependent variables
For body composition, the BIA output measures visceral fat mass (VAT, kg)
and relative fat mass (RFM, % of total body weight) were included in the
study. Similar to other studies [40], we calculated the skeletal muscle mass
index (SMI) by dividing skeletal muscle mass (SMM, kg) by the square of
body height (m).

Independent variables
On the side of the independent variables (IV), we proceeded as follows: First,
we extracted the classical measures for body shape from the 3D scanner
data: BMI (kg/m2, calculated using height and weight), waist circumference
(WC, cm), and waist-to-height-ratio (WHtR, cm/cm). Second, we pre-selected
30 variables from the approximately 150 standard measurements provided
by the body scan software that might be relevant for predicting the
respective dependent variables (i.e., variables representing various body
lengths, girths and volumes). The excluded scan-measurements were mostly
textile-specific or redundant measurements. For example, only lengths,
circumferences and volumes of the left side limbs were selected.
Furthermore, several nearly identical measurements for belly/waist area
were excluded (see Supplementary Table 1 for more details).
From the questionnaire, four socio-demographic and lifestyle variables

were chosen: age, education category, free-time physical activity and diet.
All lifestyle variables were self-reported by the participants. Education was
given in following categories 1. mandatory education, 2. basic education, 3.
professional training, 4. high school, 5. higher professional studies, 6.
higher education, and 7. university. For subgroup size reasons, the data
were dichotomised in primary / secondary education [1–4] and tertiary
education [5–7]. Physical activity in leisure time was asked as follows:
"Please describe your physical activity in leisure time". with the following
with the following possible answers: 1. very light, 2. light, 3. moderate, 4.
heavy, 5. very heavy. For subgroup size reasons, the data were grouped
into three categories in light [1, 2], moderate [3], and heavy [4, 5]. From the
food frequency questions, the Diet Quality Index (as described by
Hagmann et al. and Sob et al. [41, 42]) was calculated from five food
categories: fruits, vegetables, wholegrain products, meat, and sweet/salty
snacks. A point was given if the suggested amount for each group was
achieved, using the officially suggested minimum or maximum weekly
intake as the threshold value. A rating ranging from 0 to 5 was established
to indicate the overall healthiness of the diet. [10]. For subgroup size
reasons, the score was grouped into three categories in rather unhealthy
eating pattern (0–1), medium eating pattern [2, 3], and rather healthy
eating pattern [4, 5].

Statistical analysis
All analyses were performed separately by sex. Spearman’s rank correlation
coefficients of independent variables (IV) with RFM, SMI, respectively, were
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calculated. To reduce the number of possible IV that could predict the
selected dependent variables, backward elimination was performed
starting with the full model. Backward elimination was preferred to forward
selection because of the collinearity between some variables [43]. To check
the stability of the selected IV, we repeated the model selection for 2000
bootstrapping samples and calculated the median of bootstrapped
regression coefficients. Since the distribution of the bootstrapped regres-
sion coefficients was not normal distributed, bias-corrected and accelerated
(bca) confidence intervals were calculated [44]. The IV selection was then
performed in two steps [45]. First, the bootstrap inclusion frequencies were
calculated to quantify how likely an IV was selected. Only IV whose
inclusion frequency exceeded 70% were taken. Second, of these selected
IVs, only those that did not contain positive and negative values in the bca
confidence intervals were selected, i.e., variables that clearly had a negative
or positive regression coefficient. These finally selected IV were used to
perform linear regression on the respective dependent variables. For model
validation bootstrap model validation with 2000 resampling iterations were
used. The respective adjusted R-squares were displayed and compared with
models that used only BMI, WC, or WHtR to predict the respective
dependent variable. Regression scatterplots and corresponding Bland-
Altman plots of the best fitted models for all three outcomes were shown.
All statistical analyses were performed using R version 4.1.2 [46]. The R
package “coxed” [47] was used to calculate the bca confidence intervals
and the R package “caret” [48] for model validation The code is available at
https://github.com/KaMatthes/Bodyscan_variable_selection.git.

RESULTS
Of the 242 participants, 201 (83.1%) with complete anthropo-
metric scanner and lifestyle data (see Table 1 and in Supplemen-
tary Table 1) were included in the analyses (96 women and 105
men). 37 individuals with missing values in one or several socio-
demographic and lifestyle variables as well as 4 imperfect body
scans with artefacts were excluded. Male participants were by
average 56.4 years old (SD 17.8) and thus significantly older than
women (average 47.8 years, SD 19.3, p= 0.0014 based on an
unpaired two-samples Wilcoxon test). Another significant differ-
ence between both sexes can be found for physical activity levels
(p= 0.0069, based on a chi-square test), with men belonging more
frequently to the heavy physical activity category than women
(54.3% vs. 35.4%). Moreover, men more frequently belonged to
the unhealthy diet category than women (60.0% vs. 38.5%).
However, there was no significant difference between the two
sexes in terms of education levels (p= 0.97). Men were by average
176.0 cm tall (SD 7.1 cm) and thus significantly taller (p < 0.001)
than women 164.8 cm (SD 6.6 cm). Also, men had a higher average
BMI than women (26.1 kg/m2 vs. 22.9 kg/m2, p < 0.001). In terms of
the WHO categories for BMI, 38.1% of men were overweight (BMI
25.0–29.9 kg/m2), and 16.2% were obese (BMI ≥ 30 kg/m2). Women
were less likely to be overweight: Only 18.8% were overweight,
and 2.1% were obese. To some extent these differences are also
reflected in WHtR, but less so in the WC.
In terms of body composition (Supplementary Table 1), women

had by average higher RFM than men (30.5% vs. 23.3%, p < 0.001),
whereas men had by average significantly higher levels of SMI
(9.48 kg/m2 vs. 7 kg/m2, p < 0.001) and visceral adipose tissue
(VAT, 2.6 kg vs. 0.9 kg, p < 0.001) than women. In all body
composition measures there were clear gradients by age groups
(Supplementary Fig. 1). Younger men and women had lower fat
mass values (RFM and VAT) than older men and women, whereas
young people had higher levels of SMI.
Table 2 shows the IV selected by stepwise backwards model for

each sex. Mostly, various volumes, measures in the hip and waist
area, BMI, and occasionally measures of the arms and thighs were
selected, for all three body composition indicators. The total
number of IV ranged from 5 (VAT formen) to 12 (RFM for women).
When predicting body composition from standard anthropo-

metric measures (BMI, WC, WHtR) using bivariate linear regression
models, WC performed best for VAT and RFM in men and women
(Table 3). Adding age in a first step and then also lifestyle variables

Table 1. Descriptive statistics of the study group (N= 201, 105 men
and 96 women).

Men Women

N % N %

105 Total 96

Age (years)

17 16.2 <36 33 34.4

46 43.8 36–65 41 42.7

42 40 >65 22 22.9

105 100 Total 96 100

Education

37 35.2 Primary & secondary 35 36.5

68 64.8 Tertiary 61 63.5

105 100 Total 96 100

Physical activity

16 15.2 Light 12 12.5

32 30.5 Moderate 50 52.1

57 54.3 Heavy 34 35.4

105 100 Total 96 100

Diet

63 60 Unhealthy 37 38.5

36 34.3 Medium 43 44.8

6 5.7 Healthy 16 16.7

105 100 Total 96 100

BMI (kg/m2)

0 0 <18.5 4 4.2

48 45.7 18.5–24.9 72 75

40 38.1 25.0–29.9 18 18.8

17 16.2 ≥30 2 2.1

105 100 Total 96 100

WHtR (cm/cm)

40 38.1 ≤0.5 57 59.4

43 41 0.51–0.6 32 33.3

22 21 >0.6 7 7.3

105 100 Total 96 100

WC (cm)

56 53.3 <94.0 <80.0 58 60.4

25 23.8 94.0–101.9 80.0–87.9 18 18.8

24 22.9 ≥102.0 ≥88.0 20 20.8

WHR (cm/cm)

54 51.4 <0.90 <0.80 61 63.5

33 31.4 0.90–0.99 0.80–0.84 14 14.6

18 17.1 >1.00 >0.85 21 21.9

105 100 Total 96 100

N mean (sd) N mean (sd)

Visceral adipose tissue
(kg) VAT

105 2.57 (1.64) Total 96 0.88 (0.68)

Relative fat mass (%)
RFM

105 23.31
(6.86)

Total 96 30.51 (6.9)

Skeletal muscle mass
index (kg/m2) SMI

105 9.48 (1.14) Total 96 7.00 (0.77)

BMI, WHtR, WC and WHR were measured using a 3D scanner and were
categorized using the official (WHO-)categories. N= absolute frequency,
%= relative frequency.
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in a second step increased the explained variation of body
composition measures. In the standard anthropometry models,
the maximum explained variation of VAT is higher for men than
for women with respectively r2= 0.85 and r2= 0.79. However, the
RFM is better explained for women than for men (maximum
explained variation r2= 0.79 vs r2= 0.69). For SMI and in both
sexes, forearm and thigh circumferences performed better as
predictors than the standard anthropometric measures, before
adding age and lifestyle variable. After adding age and lifestyle
variables, BMI performed better in predicting SMI than all the
other single anthropometric predictors, achieving the highest
explained variation with r2= 0.76 in men and r2= 0.63 in women.
When using the all selected IV (displayed in Table 2) the

explained variation for men increased between 4% (VAT) and 10%
(RFM) compared to the explained variations from the standard
anthropometrics models (after adding age and lifestyle variable).
For women an increase between 2% (VAT) and 14% (SMI) was
observed. Moreover, RMSE from multivariable scanner-based
models decreased in comparison to those from standard
anthropometrics models. Figures 1, 2 show the regression
scatterplots and the Bland-Altman plots, respectively, of the best
fitted models of Table 3. The scatterplots (Fig. 1) indicate linear
relationships between the measured and predicted values.
However, a proportional bias was observed in the Bland-Altman
plots for all values (Fig. 2), but still within the confidence intervals
and only a few outliers.

DISCUSSION
The aim of this study was to assess whether a combination of
various measures from 3D body scans in a heterogenous sample
of 201 males and females had better predictive power of body
composition than traditional anthropometric measures such as
BMI, WC and WHtR. We demonstrate that specific combinations of
3D scan measures performed better and that the explained
variation was consistently higher than that of traditional anthro-
pometric measures. We also showed that the addition of age as
well as socio-demographic variables systematically increased the
explained variation in body composition. Our results also highlight
that these aspects are sex dependent, and that the selected
scanner measures can vary. Overall, we show that there is an

advantage to including more aspects of body shape beyond
classic anthropometric measures. Here, 3D surface scans certainly
bring an advantage in time and precision.
With our study, we contribute to a handful of already published

studies that show that adding 3D scanner measurements increase
predictive power of body composition. For example, in a study of
1204 volunteers, an index obtained from various 3D scan
measures had a better correlation with metabolic risk factors
than BMI and WHR alone [49]. A study to determine predictive
equations for body fat composition found that, traditional
methods and 3D scan methods performed equally for the
prediction of total and subcutaneous adiposity. However, for
visceral adiposity, 3D scan measures provided a better prediction
model [50]. Another study involving 456 healthy adults showed
that principal components (PCAs) from 3D scans can predict body
composition with greater accuracy than traditional anthropo-
metric models [51]. Another study have compared 4 commercially
available 3D scanners to predict body composition and have
shown that all scanners reliable estimate body composition [52]. In
various studies using data from children and adults of the Shape
up! Study in Hawaii, Wong et al. and Bennett et al. have shown
that 3D scan methods predicts body composition with high
precision [53–56]. A previous study on a homogeneous group of
young Swiss men showed that multivariable regression models
including 3D scans for the prediction of body composition had a
better predictive value than univariable models based on classical
anthropometric measurements [30]. However, as in our study, it
could be shown that WC and WtHR are also good predictors for
estimating VAT and RFM, whereas skeletal muscle mass could not
be estimated so well with WC and WtHR, showing a clear
advantage of the 3D scanner measurement.
Our study goes beyond these previous studies by also looking

at aspects of muscle mass in a heterogeneous sample. To relativize
skeletal muscle mass, we followed other studies [40] and used SMI.
This index showed a high correlation with grip strength,
cardiopulmonary endurance, leg endurance, gait speed, and
flexibility.
Our results suggest that selected scanner measures for

predicting body composition are sex-specific. This is consistent
with the fact that for a given BMI, men have more lean mass and
women generally have a larger proportion of body mass from

Table 2. Independent variables selected in the multivariate scan models using stepwise backward regressions.

Men Women

VAT Waist girth (cm) Volume Belly (l) Upper arm girth (cm) Waist girth (cm)

Hip girth (cm) Volume Hip (l) Thigh girth horizontal (cm) WHR

WHR (cm/cm) Volume Hip (l) Bust chest girth
horizontal (cm)

Hip girth (cm) Neck to waist center
back (cm)

RFM Volume Belly (l) WHR (cm/cm) Volume Hip (l) Volume Belly (l)

Volume Thigh (l) Mid neck girth (cm) Waist girth (cm) Hip girth (cm)

Volume Hip (l) Volume Chest (l) WHtR (cm/cm) BMI (kg/m2)

Maximum belly circumference (cm) High waist girth (cm) Bust chest girth horizontal (cm) Upper arm girth (cm)

Body height (cm) Forearm girth (cm) High waist girth (cm) Mid neck girth (cm)

SMI Volume Chest (l) Volume Belly (l) Waist girth (cm) Volume Hip (l)

Volume Hip (l) BMI (kg/m2) WHtR (cm/cm) Mid neck girth (cm)

Volume Thigh (l) Forearm girth (cm) BMI (kg/m2) Cross should over
neck (cm)

Thigh girth horizontal (cm) Maximum belly
circumference (cm)

Bold variable= The three most important variables in each model.
VAT visceral adipose tissue, RFM relative fat mass, SMI skeletal muscle mass index.
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Table 3. Comparison of univariable and multivariable regression models for the prediction of body composition (as determined by BIA).

Visceral adipose tissue (kg) VAT

Men Women

N r2 RMSE N r2 RMSE

Age Age 1 0.22 1.48 1 0.52 0.48

Lifestyle Lifestyle 3 0.27 1.46 3 0.10 0.67

BMI BMI 1 0.59 1.06 1 0.43 0.53

BMI + age 2 0.74 0.84 2 0.68 0.40

BMI + age + lifestyle 5 0.75 0.83 5 0.67 0.40

WC WC 1 0.84 0.67 1 0.74 0.63

WC + age 2 0.85 0.67 2 0.79 0.33

WC + age + lifestyle 5 0.84 0.67 5 0.77 0.35

WHtR WHtR 1 0.77 0.80 1 0.70 0.39

WHtR + age 2 0.77 0.81 2 0.73 0.37

WHtR + age + lifestyle 5 0.77 0.81 5 0.70 0.39

Scan variables Scan variable 5 0.86 0.62 8 0.76 0.35

Scan variables + age 6 0.89 0.55 9 0.81 0.32

Scan variables + age + lifestyle 9 0.88 0.57 12 0.79 0.33

Relative fat mass (%) RFM

Age Age 1 0.21 6.28 1 0.47 5.12

Lifestyle Lifestyle 3 0.24 6.14 3 0.11 6.79

BMI BMI 1 0.46 5.13 1 0.55 4.72

BMI + age 2 0.61 4.35 2 0.75 3.48

BMI + age + lifestyle 5 0.62 4.31 5 0.76 3.44

WC WC 1 0.69 3.95 1 0.75 3.48

WC + age 2 0.69 3.90 2 0.79 3.20

WC + age + lifestyle 5 0.69 3.92 5 0.77 3.34

WHtR WHtR 1 0.63 4.27 1 0.75 3.48

WHtR + age 2 0.63 4.26 2 0.77 3.39

WHtR + age + lifestyle 5 0.63 4.27 5 0.75 3.50

Scan variables Scan variable 10 0.75 3.53 12 0.81 3.07

Scan variables + age 11 0.76 3.41 13 0.82 2.94

Scan variables + age + lifestyle 14 0.76 3.50 16 0.81 3.10

Skeletal muscle mass index (kg/m2) SMI

Age Age 1 0.23 1.03 1 0.20 0.71

Lifestyle Lifestyle 3 0.05 1.18 3 0.07 0.78

BMI BMI 1 0.51 0.81 1 0.23 0.70

BMI + age 2 0.76 0.56 2 0.59 0.51

BMI + age + lifestyle 5 0.77 0.55 5 0.63 0.48

WC WC 1 0.14 1.10 1 0.02 0.78

WC + age 2 0.54 0.79 2 0.38 0.63

WC + age + lifestyle 5 0.54 0.79 5 0.43 0.61

WHtR WHtR 1 0.12 1.10 1 0.02 0.79

WHtR + age 2 0.56 0.77 2 0.38 0.62

WHtR + age + lifestyle 5 0.57 0.76 5 0.43 0.60

Girth forearm Girth forearm 1 0.64 0.70 1 0.28 0.67

Girth forearm + age 2 0.74 0.59 2 0.48 0.57

Girth forearm + age + lifestyle 5 0.73 0.60 5 0.50 0.56

Girth Thigh Girth Thigh 1 0.55 0.78 1 0.38 0.62

Girth Thigh + age 2 0.55 0.78 2 0.43 0.60

Girth Thigh + age + lifestyle 5 0.52 0.81 5 0.45 0.59

Scan variables Scan variable 8 0.83 0.48 6 0.60 0.50

Scan variables + age 9 0.85 0.44 7 0.64 0.48

Scan variables + age + lifestyle 12 0.85 0.44 10 0.64 0.48

The results are shown for the validated boot strapping models. In the scan variable models, the relevant predictors were selected from 30 scanned standard
measurements using stepwise backward model. The fit of each model is given as explained variation (adjusted r2). “Lifestyle” includes 3 variables:education
level, physical activity level and diet. “N” indicates the number of variables included in the model.
N numbers of variables included in the model, r2 explained variation, RMSE root mean square error.
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fat [57]. Moreover women are more likely to deposit fat
subcutaneously and on their lower extremities while men have
more visceral and hepatic adipose tissue in the abdomen [58]. A
study aimed at developing prediction equations for the measure-
ment of total abdominal, subcutaneous and visceral adiposity by
3D scanning showed that sex was always included as a variable in
the predictions [50]. In addition, another study creating mathe-
matical equations for the prediction of total and regional (trunk,
legs) body fat concluded that sex was one of the most critical

components that was incorporated into most equations [59].
These results imply that sex is an important co-factor in predicting
adiposity, as there are differences in the distribution and
accumulation of fat between men and women. In a cross-
sectional study of 9617 adults which aimed were to investigate
the relation of body shape and BMI and to examine associations
between age, sex, and shape, BMI was significantly associated
with chest and waist dimensions in men and with hips and bust
dimensions in women [60]. Overall, these results suggest that
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Fig. 1 Scatterplot comparisons between the measured body composition values and the predicted values of the best fitted model. VAT
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because of the fundamental biological differences between men
and women in body composition, the two sexes should be
analysed separately in anthropometric studies.
By adding age as an independent variable in our models, the

explained variation of the different body composition aspects
systematically increased. This is consistent with the fact that body
composition changes over the life course, when usually a decrease
in fat-free mass and an increase in percent body fat with aging is

found in many populations [61]. Two studies looking at the
correlation between three-dimensional scanner anthropometric
measures with metabolic risk factors confirmed the important role
of age as a co-factor [49, 62]. However, three studies with a
narrower age span than ours also showed that age was not a
significant contributor in these samples of men and women
younger than 65 years of age [50, 59, 63]. In addition, a cross-
sectional study has shown that associations of body shape with
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age were significantly stronger in women than in men [60]. This is
also the case in our study, when the prediction improved more in
women than in men when adding age to the models.
The software, which together with the scanner device allows

the processing of the scans (in our case this was Anthroscan
VITUSbodyscan), usually produces about 150 standard measures
via standard algorithms. But these many standard measurements
include some redundant measurements (e.g., length of the right
and left leg) as well as some measurements that are especially
valuable for the clothing industry and are less relevant in a health-
related context (e.g., the length of the arm until the back of the
neck). Also, many of these measures are correlated when used as
independent explanatory variables [30]. In the existing similar
comparative studies [30, 31, 59], the different research teams have
dealt with this initial situation differently and have used different
methods to pre-select variables and predict body composition
using measurements derived from 3D scans. All in all, in our
present study, we found similar strength of association between
scanner measurements and body composition aspects as in
comparable studies (the best models also achieved r2 between
0.60 and 0.95 in the literature). Regarding methods, other teams
took slightly different although similar paths, when usually
stepwise regressions (using different criteria) [30, 31, 59], principal
component analysis (PCA) [51], or data-driven machine learning
approaches were used [64, 65]. The selected measures to predict
body fat varied more between studies. However, in most cases,
volume and circumferences in the central waist/chest/hip area
and the thighs were selected [30, 31, 59], which led to the
strongest associations with body fat.
Our study has some limitations. We used a BIA device to assess

body composition, which is not the gold standard for measuring
body composition in clinical settings [66–69]. One of the
limitations of the technique is that the calculation of body
composition depends on population-specific equations and that
accuracy of measurements is not absolutely precise [70].
Furthermore, devices from different manufacturers provide
different results [71]. This makes it difficult to compare results
from different manufacturers. However, the latest generation BIA
devices (like the Seca mBCA 515 device we used) show very good
results in validation studies, although some discrepancies may
occur especially with visceral adipose tissue fat [36]. Another
limitation for the 3D Scanner is, that we could not correct the
results for the residual lung volume. Furthermore, to our knowl-
edge, there are no validation studies of the body volumes
determined by the scanner yet, so that we cannot estimate their
influence. In our non-clinical field work context, it was not possible
to use invasive and time-consuming methods such as DEXA.
Moreover, we conducted the study on a relatively small number of
subjects. It is important to note that the age distribution of the
subjects is not homogeneous either between age groups or
between the sexes. Only 16.2% of the men were younger than 36
years and 40% were older than 65 years, while 34.4% of the
women were younger than 36 years and only 22.9% were older
than 65 years. With a larger number of participants and better
homogeneity between age groups, it would be possible to study
the relationship between body composition and 3D body scan
measurements by stratifying by sex and age group.

CONCLUSIONS
We show that there is an advantage to including more aspects of
body shape beyond classic anthropometric measures to estimate
body composition. 3D surface scans are certainly one possible way to
achieve this with high precision in a minimal time. However, given
the fundamental biological differences between the sexes, different
scan measurements should be used between men and women to
obtain a more accurate assessment of body composition. In addition,
the best predictors of body composition also vary with age, mirroring

changes in the distribution of fat and muscle mass over the life
course. Therefore, further studies with more participants and a
broader and homogeneous age distribution are needed in the future.
Also, in terms of future studies in this sub-field, various studies

use different statistical methods to assess which preselection of
scanner measurements in which combination predict body
composition. The statistical measure used to describe the strength
of association also varied from study to study. Thus, the various
studies, although using the same or very similar scanning
equipment, are currently difficult to compare directly without
access to original data. The groups involved should develop a
standard reporting protocol or share original data so that meta-
studies and more general statements can be made across
individual studies.
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