Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

Effects of a low free sugar diet on the management of nonalcoholic fatty liver disease: a randomized clinical trial

Abstract

Background

Although the role of a diet rich in fructose and saccharose in development of nonalcoholic fatty liver disease (NAFLD) is well known, the effects of a low free sugar diet in the management of the disease have not yet been investigated in adult patients with NAFLD. We aimed, therefore, to analyze the effects of a low-free sugar diet on NAFLD main features.

Methods

Participants with FibroScan-proven NAFLD were randomized to a 12-week dietary intervention (low free sugar diet or usual diet). The primary outcome was change in hepatic steatosis measurement between baseline and 12 weeks. The secondary outcomes included changes in anthropometric measurements, lipid profile, glycemic indices, liver enzymes, and inflammatory factors.

Results

Forty-three subjects completed the 12-week intervention. Low free sugar diet compared with the usual diet significantly decreased the concentrations of ALT (43.00 ± 27.54 to 27.95 ± 20.77 U/L), TG (172.86 ± 83.04 to 144.19 ± 65.55), TC (155.54 ± 37.55 to 139.86 ± 33.63 mg/dL), FBS (103.95 ± 15.42 to 91.00 ± 14.36 mg/dL), insulin (14.37 ± 5.79 to 8.92 ± 5.43 mU/L), HOMA-IR (3.81 ± 1.80 to 2.06 ± 1.29), hs-CRP (3.80 ± 1.09 to 2.88 ± 0.52 mg/L), TNF-α (4.60 ± 1.54 to 3.41 ± 0.69 pg/mL), NF-kb (3.89 ± 1.34 to 3.35 ± 1.33), as well as resulted in reduced fibrosis score and steatosis score, with increased QUICKI (P < 0.05). The differences in AST, GGT, HDL-C and LDL-C were not significant (P > 0.05).

Conclusion

Low free sugar diet in overweight/obese NAFLD patients may reduce hepatic steatosis and fibrosis while improving glycemic indices, decreasing the concentrations of biomarkers of inflammation, TG, and TC levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Consort Diagram of the Trial.
Fig. 2: changes in study outcomes in each participants.

Similar content being viewed by others

References

  1. Arab JP, Candia R, Zapata R, Muñoz C, Arancibia JP, Poniachik J, et al. Management of nonalcoholic fatty liver disease: an evidence-based clinical practice review. World J Gastroenterol. 2014;20:12182.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmed IA. Major dietary interventions for the management of liver disease. In: Dietary interventions in liver disease. Elsevier; 2019. 205–12.

  3. Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51:1820–32.

    Article  PubMed  Google Scholar 

  4. Adams L, Angulo P. Recent concepts in non-alcoholic fatty liver disease. Diabet Med. 2005;22:1129–33.

    Article  CAS  PubMed  Google Scholar 

  5. Abdelmalek MF, Diehl AM. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Harrison’s Princ Intern Med. 2018;2:2054–7.

    Google Scholar 

  6. Oh M, Winn J, Poordad F. diagnosis and treatment of non‐alcoholic fatty liver disease. Alimentary Pharmacol Therapeutics. 2008;28:503–22.

    Article  CAS  Google Scholar 

  7. Koot BG, van der Baan-Slootweg OH, Tamminga-Smeulders CL, Rijcken THP, Korevaar JC, van Aalderen WM, et al. Lifestyle intervention for non-alcoholic fatty liver disease: prospective cohort study of its efficacy and factors related to improvement. Arch Dis Child. 2011;96:669–74.

    Article  PubMed  Google Scholar 

  8. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.

    Article  PubMed  Google Scholar 

  9. Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, Arslanian S. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. Diabetes. 2012;61:2787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pozzato C, Verduci E, Scaglioni S, Radaelli G, Salvioni M, Rovere A, et al. Liver fat change in obese children after a 1-year nutrition-behavior intervention. J Pediatr Gastroenterol Nutr. 2010;51:331–5.

    Article  CAS  PubMed  Google Scholar 

  11. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–78.e5.

    Article  PubMed  Google Scholar 

  12. Finelli C, Tarantino G. Is there any consensus as to what diet or lifestyle approach is the right one for NAFLD patients. J Gastrointestin Liver Dis. 2012;21:293–302.

    PubMed  Google Scholar 

  13. EAftSoT Liver. Diabetes EAftSo. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Obes Facts. 2016;9:65–90.

    Article  Google Scholar 

  14. Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Digestive Dis Sci. 2016;61:1282–93.

    Article  CAS  Google Scholar 

  15. Girard J, Perdereau D, Foufelle F, Prip‐Buus C, Ferré P. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 1994;8:36–42.

    Article  CAS  PubMed  Google Scholar 

  16. Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013;57:2525–31.

    Article  CAS  PubMed  Google Scholar 

  17. Garg A, Bantle JP, Henry RR, Coulston AM, Griver KA, Raatz SK, et al. Effects of varying carbohydrate content of diet in patients with non—insulin-dependent diabetes mellitus. JAMA. 1994;271:1421–8.

    Article  CAS  PubMed  Google Scholar 

  18. McLaughlin T, Abbasi F, Lamendola C, Yeni-Komshian H, Reaven G. Carbohydrate-induced hypertriglyceridemia: an insight into the link between plasma insulin and triglyceride concentrations. J Clin Endocrinol Metab. 2000;85:3085–8.

    CAS  PubMed  Google Scholar 

  19. Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Investig. 1996;97:2081–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Swan GE, Powell NA, Knowles BL, Bush MT, Levy LB. A definition of free sugars for the UK. Public health Nutr. 2018;21:1636–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kargulewicz A, Stankowiak-Kulpa H, Grzymisławski M. Dietary recommendations for patients with nonalcoholic fatty liver disease. Prz Gastroenterologiczny. 2014;9:18.

    CAS  Google Scholar 

  22. WHO. Guideline: Sugars intake for adults and children. Geneva: World Health Organization; 2015.

  23. Lam B, Younossi ZM. Treatment options for nonalcoholic fatty liver disease. Therapeutic Adv Gastroenterol. 2010;3:121–37.

    Article  CAS  Google Scholar 

  24. Santos HO, Macedo RC. Impact of intermittent fasting on the lipid profile: assessment associated with diet and weight loss. Clin Nutr ESPEN. 2018;24:14–21.

    Article  PubMed  Google Scholar 

  25. Meng H, Zhu L, Kord-Varkaneh H, Santos HO, Tinsley GM, Fu P. Effects of intermittent fasting and energy-restricted diets on lipid profile: a systematic review and meta-analysis. Nutrition. 2020;77:110801.

    Article  CAS  PubMed  Google Scholar 

  26. Varkaneh HK, Tinsley GM, Santos HO, Zand H, Nazary A, Fatahi S, et al. The influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans: a systematic review and meta-analysis. Clin Nutr. 2020; 1811–1821.

  27. Schwimmer JB, Ugalde-Nicalo P, Welsh JA, Cordero M, Harlow KE, Alazraki A, et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA. 2019;321:256–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carrero JJ, Andersson Franko M, Obergfell A, Gabrielsen A, Jernberg T. hsCRP level and the risk of death or recurrent cardiovascular events in patients with myocardial infarction: a healthcare-based study. J Am Heart Assoc. 2019;8:e012638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63:895–902.

    Article  CAS  PubMed  Google Scholar 

  30. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68:1063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bandsma RH, Prinsen BH, de Sain-van der Velden M, Rake J-P, Boer T, Smit GPA, et al. Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to hyperlipidemia in glycogen storage disease type 1a. Pediatr Res. 2008;63:702–7.

    Article  CAS  PubMed  Google Scholar 

  32. Aeberli I, Zimmermann MB, Molinari L, Lehmann R, Spinas GA, Berneis K. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am J Clin Nutr. 2007;86:1174–8.

    Article  CAS  PubMed  Google Scholar 

  33. Santos HO, Earnest CP, Tinsley GM, Izidoro LF, Macedo RC. Small dense low-density lipoprotein-cholesterol (sdLDL-C): analysis, effects on cardiovascular endpoints and dietary strategies. Prog cardiovascular Dis. 2020;63:503–9.

    Article  Google Scholar 

  34. Fattore E, Botta F, Agostoni C, Bosetti C. Effects of free sugars on blood pressure and lipids: a systematic review and meta-analysis of nutritional isoenergetic intervention trials. Am J Clin Nutr. 2017;105:42–56.

    Article  CAS  PubMed  Google Scholar 

  35. Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd ed. Boston: Butterworths; 1990. PMID: 21250045.

  36. Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579:586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. FUKUDA H, IRITANI N, TANAKA T. Effects of high-fructose diet on lipogenic enzymes and their substrate and effector levels in diabetic rats. J nutritional Sci Vitaminol. 1983;29:691–9.

    Article  CAS  Google Scholar 

  38. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Investig. 1995;95:2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sewter C, Digby J, Blows F, Prins J, O’Rahilly S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J Endocrinol. 1999;163:33–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kerner A, Avizohar O, Sella R, Bartha P, Zinder O, Markiewicz W, et al. Association between elevated liver enzymes and C-reactive protein: possible hepatic contribution to systemic inflammation in the metabolic syndrome. Arteriosclerosis Thrombosis Vasc Biol. 2005;25:193–7.

    Article  CAS  Google Scholar 

  41. Ajmal MR, Yaccha M, Malik MA, Rabbani M, Ahmad I, Isalm N, et al. Prevalence of nonalcoholic fatty liver disease (NAFLD) in patients of cardiovascular diseases and its association with hs-CRP and TNF-α. Indian Heart J. 2014;66:574–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. York LW, Puthalapattu S, Wu GY. Nonalcoholic fatty liver disease and low-carbohydrate diets. Annu Rev Nutr. 2009;29:365–79.

    Article  CAS  PubMed  Google Scholar 

  43. Toshimitsu K, Matsuura B, Ohkubo I, Niiya T, Furukawa S, Hiasa Y, et al. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition. 2007;23:46–52.

    Article  PubMed  Google Scholar 

  44. Haufe S, Engeli S, Kast P, Böhnke J, Utz W, Haas V, et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504–14.

    Article  CAS  PubMed  Google Scholar 

  45. Macedo RC, Santos HO, Tinsley GM, Reischak-Oliveira A. Low-carbohydrate diets: effects on metabolism and exercise–a comprehensive literature review. Clin Nutr ESPEN. 2020;26:17–26.

  46. Santos HO, Price JC, Bueno AA. Beyond fish oil supplementation: the effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers—an overview. Nutrients. 2020;12:3159.

    Article  CAS  PubMed Central  Google Scholar 

  47. Scorletti E, Byrne CD. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr. 2013;33:231–48.

    Article  CAS  PubMed  Google Scholar 

  48. Musa-Veloso K, Venditti C, Lee HY, Darch M, Floyd S, West S, et al. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr Rev. 2018;76:581–602.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all participants in this study without whom the study was impossible. The study was financially supported by Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows—BKH and AH: conceptualized and designed the study and wrote the manuscript; BKH and HK: analyzed the data; BKH, ZY, SMA, BH, AS, and AH: collected the data; HOS and AH: interpreted the data, and provided professional comments; AH: critically revised the manuscript for intellectual content and data accuracy; AH had responsibility for the final content; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Azita Hekmatdoost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodami, B., Hatami, B., Yari, Z. et al. Effects of a low free sugar diet on the management of nonalcoholic fatty liver disease: a randomized clinical trial. Eur J Clin Nutr 76, 987–994 (2022). https://doi.org/10.1038/s41430-022-01081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01081-x

This article is cited by

Search

Quick links