Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

High-density lipoprotein, low-density lipoprotein and triglyceride levels and upper gastrointestinal cancers risk: a trans-ancestry Mendelian randomization study

Abstract

Objective

This study was conducted to explore the causal associations of high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglyceride (TG) with the risk of upper gastrointestinal cancers (esophageal cancer [EC] and gastric cancer [GC]).

Methods

A total of 5623 Chinese and 4133 Europeans afforded the individual-level genotyping data, and 203,608 Japanese from Biobank Japan project and 393,926 Europeans from UK Biobank supported summary statistics of cancer genetic associations. Mendelian randomization (MR) analyses, including weighted genetic risk scores (wGRSs), inverse-variance weighted (IVW), weighted median and Egger-regression, were utilized to evaluate the causal effects of three blood lipids on upper gastrointestinal cancers risk.

Results

There was no significantly causal relationships between three blood lipids and EC or GC risk among Chinese or Europeans but a potential causal association between TG and GC risk among Japanese (IVW: odds ratio [OR] = 1.11, P = 0.034; Phet = 0.679). In stratified subgroups, higher genetically predicted TG levels were causally associated with an increased risk of GC among Chinese males (wGRS: OR = 1.61, P = 0.021; IVW: OR = 1.57, P = 0.009; Phet = 0.653) and Japanese females (IVW: OR = 1.33, P = 0.024; Phet = 0.378).

Conclusion

This trans-ancestry MR study suggested null significant causality between serum HDL, LDL or TG and the risk of upper gastrointestinal cancers among Chinese and Europeans, but provided evidence for a causal role of TG involved in GC etiology in Japanese (especially females), which would support a prevention guide for high-risk groups of GC. Further research with more comprehensive information is needed to explore the underlying mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart for process of our study.

Similar content being viewed by others

Data availability

Individual genotyping data of Chinese and European ancestry were obtained from dbGaP datasets (phs000361.v1.p1 and phs000869.v1.p1, respectively). Summary statistics of genetic associations with gastric cancer risk were extracted from UK Biobank single variant association analysis results at Lee Lab (https://www.leelabsg.org/resources). 1Shanxi and Linxian NIT: dbGaP, phs000361.v1.p1. 2BEAGESS: dbGaP, phs000869.v1.p1. 3BBJ GWAS summary statistics: http://jenger.riken.jp/en/result. 4UK Biobank GWAS summary statistics at Lee Lab: https://www.leelabsg.org/resources.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Harada K, Mizrak Kaya D, Shimodaira Y, Ajani JA. Global chemotherapy development for gastric cancer. Gastric Cancer. 2017;20:92–101.

    Article  CAS  PubMed  Google Scholar 

  3. Huang FL, Yu SJ. Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 2018;41:210–5.

    Article  PubMed  Google Scholar 

  4. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomark Prev. 2014;23:700–13.

    Article  Google Scholar 

  5. Lee JS, Chang PY, Zhang Y, Kizer JR, Best LG, Howard BV. Triglyceride and HDL-C dyslipidemia and risks of coronary heart disease and ischemic stroke by glycemic dysregulation status: the strong heart study. Diabetes Care. 2017;40:529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tanne D, Koren-Morag N, Graff E, Goldbourt U. Blood lipids and first-ever ischemic stroke/transient ischemic attack in the Bezafibrate Infarction Prevention (BIP) Registry: high triglycerides constitute an independent risk factor. Circulation. 2001;104:2892–7.

    Article  CAS  PubMed  Google Scholar 

  7. Wen J, Chen Y, Huang Y, Lu Y, Liu X, Zhou H, et al. Association of the TG/HDL-C and Non-HDL-C/HDL-C ratios with chronic kidney disease in an adult Chinese population. Kidney Blood Press Res. 2017;42:1141–54.

    Article  CAS  PubMed  Google Scholar 

  8. Pirro M, Ricciuti B, Rader DJ, Catapano AL, Sahebkar A, Banach M. High density lipoprotein cholesterol and cancer: marker or causative? Prog Lipid Res. 2018;71:54–69.

    Article  CAS  PubMed  Google Scholar 

  9. Marianne B, Anne TRH, Stefan S, Ruth FS, Nordestgaard BRG. Low-density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst. 2011;103:508–19.

    Article  CAS  Google Scholar 

  10. Borena W, Stocks T, Jonsson H, Strohmaier S, Nagel G, Bjorge T, et al. Serum triglycerides and cancer risk in the metabolic syndrome and cancer (Me-Can) collaborative study. Cancer Causes Control. 2011;22:291–9.

    Article  PubMed  Google Scholar 

  11. Lin Y, Ness-Jensen E, Hveem K, Lagergren J, Lu Y. Metabolic syndrome and esophageal and gastric cancer. Cancer Causes Control. 2015;26:1825–34.

    Article  PubMed  Google Scholar 

  12. Li F, Du H, Li S, Liu J. The association between metabolic syndrome and gastric cancer in Chinese. Front Oncol. 2018;8:326.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jung MK, Jeon SW, Cho CM, Tak WY, Kweon YO, Kim SK, et al. Hyperglycaemia, hypercholesterolaemia and the risk for developing gastric dysplasia. Dig Liver Dis. 2008;40:361–5.

    Article  CAS  PubMed  Google Scholar 

  14. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26:2333–55.

    Article  PubMed  Google Scholar 

  15. Abnet CC, Freedman ND, Nan H, Zhaoming W, Kai Y, Xiao-Ou S, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010;42:764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levine DM, Ek WE, Zhang R, Liu X, Onstad L, Sather C, et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet. 2013;45:1487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet. 2020;52:669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirata M, Kamatani Y, Nagai A, Kiyohara Y, Ninomiya T, Tamakoshi A, et al. Cross-sectional analysis of BioBank Japan clinical data: A large cohort of 200,000 patients with 47 common diseases. J Epidemiol. 2017;27:S9–s21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhou W, Zhao Z, Nielsen JB, Fritsche LG, LeFaive J, Gagliano Taliun SA, et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat Genet. 2020;52:634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan Q, Maranville JC, Fritsche L, Sim X, Cheung CMG, Chen LJ, et al. HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization. Int J Epidemiol. 2017;46:1891–902.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lu X, Huang J, Mo Z, He J, Wang L, Yang X, et al. Genetic susceptibility to lipid levels and lipid change over time and risk of incident hyperlipidemia in Chinese populations. Circ Cardiovasc Genet. 2016;9:37–44.

    Article  CAS  PubMed  Google Scholar 

  23. Spracklen CN, Chen P, Kim YJ, Wang X, Cai H, Li S, et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum Mol Genet. 2017;26:1770–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vanderweele TJ, Tchetgen EJ, Tchetgen, Marilyn C, Peter K. Methodological challenges in mendelian randomization. Epidemiology. 2014;25:427.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jack B, George DS, Stephen B. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  Google Scholar 

  27. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35:1880–906.

    Article  PubMed  Google Scholar 

  29. Bowden J, Davey SG, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Swiger KJ, Martin SS, Blaha MJ, Toth PP, Nasir K, Michos ED, et al. Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: the very large database of lipids (VLDL-10B). J Am Heart Assoc. 2014;3:e000851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wulaningsih W, Garmo H, Holmberg L, Hammar N, Jungner I, Walldius G, et al. Serum lipids and the risk of gastrointestinal malignancies in the Swedish AMORIS study. J Cancer Epidemiol. 2012;2012:792034.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ulmer H, Borena W, Rapp K, Klenk J, Strasak A, Diem G, et al. Serum triglyceride concentrations and cancer risk in a large cohort study in Austria. Br J Cancer. 2009;101:1202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang C, Tian G, Mi J, Wei X, Li X, Li X, et al. Causal relevance of circulating high-density lipoprotein cholesterol with cancer: a Mendelian randomization meta-analysis. Sci Rep. 2015;5:9495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nam SY, Park BJ, Nam JH, Kook MC. Effect of Helicobacter pylori eradication and high-density lipoprotein on the risk of de novo gastric cancer development. Gastrointest Endosc. 2019;90:448–456.e1.

    Article  PubMed  Google Scholar 

  35. Kang R, Li P, Wang T, Li X, Wei Z, Zhang Z, et al. Apolipoprotein E epsilon 2 allele and low serum cholesterol as risk factors for gastric cancer in a Chinese Han population. Sci Rep. 2016;6:19930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang XP, Li XH, Zhang L, Lin JH, Huang H, Kang T, et al. High level of serum apolipoprotein A-I is a favorable prognostic factor for overall survival in esophageal squamous cell carcinoma. BMC Cancer. 2016;16:516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Rev Esp Cardiol. 2017;70:115.

    PubMed  Google Scholar 

  38. Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82.

    Article  PubMed  Google Scholar 

  39. Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, et al. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pr. 2017;23:1–87.

    Article  Google Scholar 

  40. Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frank AT, Zhao B, Jose PO, Azar KM, Fortmann SP, Palaniappan LP. Racial/ethnic differences in dyslipidemia patterns. Circulation. 2014;129:570–9.

    Article  CAS  PubMed  Google Scholar 

  42. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159:335–349.e15.

    Article  PubMed  Google Scholar 

  43. Liu S, Li Y, Zeng X, Wang H, Yin P, Wang L, et al. Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 Global Burden of Disease Study. JAMA Cardiol. 2019;4:342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang X, Magkos F, Mittendorfer B. Sex differences in lipid and lipoprotein metabolism: it’s not just about sex hormones. J Clin Endocrinol Metab. 2011;96:885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Link JC, Reue K. Genetic basis for sex differences in obesity and lipid metabolism. Annu Rev Nutr. 2017;37:225–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang H, Sukocheva OA, Hussey DJ, Watson DI. Estrogen, male dominance and esophageal adenocarcinoma: is there a link? World J Gastroenterol. 2012;18:393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chandanos E, Lagergren J. Oestrogen and the enigmatic male predominance of gastric cancer. Eur J Cancer. 2008;44:2397–403.

    Article  CAS  PubMed  Google Scholar 

  49. Petrick JL, Hyland PL, Caron P, Falk RT, Pfeiffer RM, Dawsey SM, et al. Associations between prediagnostic concentrations of circulating sex steroid hormones and esophageal/gastric cardia adenocarcinoma among men. J Natl Cancer Inst. 2019;111:34–41.

    Article  PubMed  CAS  Google Scholar 

  50. Akbas HS, Basyigit S, Suleymanlar I, Kemaloglu D, Koc S, Davran F, et al. The assessment of carotid intima media thickness and serum paraoxonase-1 activity in Helicobacter pylori positive subjects. Lipids Health Dis. 2010;9:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gerig R, Ernst B, Wilms B, Thurnheer M, Schultes B. Gastric Helicobacter pylori infection is associated with adverse metabolic traits in severely obese subjects. Obesity. 2013;21:535–7.

    Article  CAS  PubMed  Google Scholar 

  52. Fan N, Peng L, Xia Z, Zhang L, Wang Y, Peng Y. Helicobacter pyloriInfection is not associated with non-alcoholic fatty liver disease: a cross-sectional study in China. Front Microbiol. 2018;9:73.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wotherspoon AC, Ortizhidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338:1175–6.

    Article  CAS  PubMed  Google Scholar 

  54. Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer–the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal. 2017;15:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kim TJ, Sinn DH, Min YW, Son HJ, Kim JJ, Chang Y, et al. A cohort study on Helicobacter pylori infection associated with nonalcoholic fatty liver disease. J Gastroenterol. 2017;52:1201–10.

    Article  PubMed  Google Scholar 

  56. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118:547–63.

    Article  CAS  PubMed  Google Scholar 

  57. Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176:1834–42.

    Article  PubMed  Google Scholar 

  58. Valdivielso P, Ramírez-Bueno A, Ewald N. Current knowledge of hypertriglyceridemic pancreatitis. Eur J Intern Med. 2014;25:689–94.

    Article  CAS  PubMed  Google Scholar 

  59. Ewald N, Hardt PD, Kloer HU. Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipido. 2009;20:497–504.

    Article  CAS  Google Scholar 

  60. Gong Y, Dou LJ, Liang J. Link between obesity and cancer: role of triglyceride/free fatty acid cycling. Eur Rev Med Pharm Sci. 2014;18:2808–20.

    CAS  Google Scholar 

  61. Boucharaba A, Guillet B, Menaa F, Hneino M, van Wijnen AJ, Clézardin P, et al. Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms. Oncol Res. 2009;18:173–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the participants and staff involved in the development of dbGaP, Biobank Japan project and UK Biobank database for their dedication and effort. This study was supported by the National Key R&D Program of China (grants 2018YFC1313100, 2018YFC1313102), and partially by the National Key R&D Program of China (2017YFC1309201), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

Author information

Authors and Affiliations

Authors

Contributions

ZZ, MD and HC are coresponders for this study. YW and JX contributed equally. ZZ, MD, JX and YW developed the study concept and design. YW and JX performed data analysis and interpretation. EL, XJ, QY, DC, HS, LL, MW, SL and HC assisted interpretation of results. YW and JX drafted the article. All authors revised the text and approved the final manuscript.

Corresponding authors

Correspondence to Haiyan Chu, Mulong Du or Zhengdong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xin, J., Loehrer, E.A. et al. High-density lipoprotein, low-density lipoprotein and triglyceride levels and upper gastrointestinal cancers risk: a trans-ancestry Mendelian randomization study. Eur J Clin Nutr 76, 995–1002 (2022). https://doi.org/10.1038/s41430-022-01078-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01078-6

This article is cited by

Search

Quick links