Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention of Non Communicable Diseases

GWAS-associated bacteria and their metabolites appear to be causally related to the development of inflammatory bowel disease

Abstract

Background

Accumulating evidence has suggested that the imbalance of gut microbiota is commonly observed in patients with inflammatory bowel disease (IBD). However, it remains unclear whether dysbiosis is a cause or consequence of chronic intestinal inflammation. We aimed to investigate the causal relationships of gut microbiota and metabolites with IBD, including ulcerative colitis (UC) and Crohn’s disease (CD).

Methods

We applied two-sample Mendelian randomization using summary statistics from the gut microbiota genetic consortium (n = 1812), the Framingham Heart Study (n = 2076) and the International IBD Genetics Consortium (n = 86,640).

Results

Using the genetic approach, the increase in OTU10032 unclassified Enterobacteriaceae was associated with higher risks of IBD (OR, 1.03; 95% CI, 1.00–1.06; P = 0.033) and CD (1.04; 1.01–1.08; P = 0.015). Importantly, an Enterobacteriaceae-related metabolite taurine was positively associated with risks of IBD (1.04; 1.01–1.08; P = 0.016) and UC (1.05; 1.01–1.10; P = 0.024). Notably, we also found betaine, a downstream product of Enterobacteriaceae metabolism, was causally associated with a higher risk of CD (1.10; 1.02–1.18; P = 0.008). In addition, increased Erysipelotrichaceae family were causally related to lower risks of IBD (0.88; 0.78–0.98; P = 0.026) and UC (0.86; 0.75–0.99; P = 0.042), and Actinobacteria class (0.80; 0.65–0.98; P = 0.028) and Unclassified Erysipelotrichaceae (0.79; 0.64–0.98; P = 0.036) were associated with lower risks of UC and CD, respectively.

Conclusions

Our finding provided new insights into the key role of gut metabolites such as taurine and betaine in host-microbiota interactions of IBD pathogenesis, indicating that host-microbe balance strongly influences inflammatory conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the data selection process.
Fig. 2: Potential pathways underpinning the relationship between gut microbiota and inflammatory bowel disease.
Fig. 3: Mendelian randomization study for gut metabolites and risk of IBD.

Similar content being viewed by others

Data availability

All data used in the present study were obtained from genome-wide association study summary statistics which were publicly released by genetic consortia.

References

  1. Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30.

    Article  Google Scholar 

  2. Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14:573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol. 2019;17:497–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen L, Wilson JE, Koenigsknecht MJ, Chou WC, Montgomery SA, Truax AD, et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol. 2017;18:541–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 2020;20:411–26.

    Article  CAS  PubMed  Google Scholar 

  7. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2:119–29.

    Article  CAS  PubMed  Google Scholar 

  8. Marsilio S, Pilla R, Sarawichitr B, Chow B, Hill SL, Ackermann MR, et al. Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small cell lymphoma. Sci Rep. 2019;9:19208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou Y, Xu ZZ, He Y, Yang Y, Liu L, Lin Q, et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems. 2018;3:e00188–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6.

    Article  PubMed  Google Scholar 

  14. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

    Article  PubMed  Google Scholar 

  15. Smith GD, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 2007;4:e352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48:1413–7.

    Article  CAS  PubMed  Google Scholar 

  18. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19:731–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology. 2014;25:427–35.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hartwig FP, Borges MC, Horta BL, Bowden J, Davey, Smith G. Inflammatory biomarkers and risk of schizophrenia: a 2-sample mendelian randomization study. JAMA Psychiatry. 2017;74:1226–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Thingholm LB, Skiecevičienė J, Rausch P, Kummen M, Hov JR, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48:1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163:1428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walker A, Schmitt-Kopplin P. The role of fecal sulfur metabolome in inflammatory bowel diseases. Int J Med Microbiol: IJMM. 2021;311:151513.

    Article  CAS  PubMed  Google Scholar 

  25. Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021;9:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014;40:824–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kwon YH, Wang H, Denou E, Ghia J-E, Rossi L, Fontes ME, et al. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis. Cell Mol Gastroenterol Hepatol. 2019;7:709–28.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wilson A, Teft WA, Morse BL, Choi Y-H, Woolsey S, DeGorter MK, et al. Trimethylamine-N-oxide: a novel biomarker for the identification of inflammatory bowel disease. Dig Dis Sci. 2015;60:3620–30.

    Article  CAS  PubMed  Google Scholar 

  30. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77–94.

    Article  CAS  PubMed  Google Scholar 

  31. Koh A, Bäckhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell. 2020;78:584–96.

    Article  CAS  PubMed  Google Scholar 

  32. Schicho R, Shaykhutdinov R, Ngo J, Nazyrova A, Schneider C, Panaccione R, et al. Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. J Proteome Res. 2012;11:3344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18:130–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey, Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    Article  PubMed  Google Scholar 

  36. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol 2017;46:1734–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bowden J, Davey, Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2:204.

    Article  CAS  PubMed  Google Scholar 

  42. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cassmann E, White R, Atherly T, Wang C, Sun Y, Khoda S, et al. Alterations of the ileal and colonic mucosal microbiota in canine chronic enteropathies. PloS One. 2016;11:e0147321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, et al. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes. 2015;6:33–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalla Via A, Gargari G, Taverniti V, Rondini G, Velardi I, Gambaro V, et al. Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-lyase gene (cutC) harbored by enterobacteriaceae. Nutrients. 2019;12:E62.

    Article  PubMed  CAS  Google Scholar 

  46. Son M, Ko JI, Kim WB, Kang HK, Kim BK. Taurine can ameliorate inflammatory bowel disease in rats. Adv Exp Med Biol. 1998;442:291–8.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao G, He F, Wu C, Li P, Li N, Deng J, et al. Betaine in inflammation: mechanistic aspects and applications. Front Immunol. 2018;9:1070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–54.e1.

    Article  PubMed  Google Scholar 

  49. Kolho K-L, Pessia A, Jaakkola T, de Vos WM, Velagapudi V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J Crohns Colitis. 2017;11:321–34.

    PubMed  Google Scholar 

  50. Rodriguez DM, Benninghoff AD, Aardema NDJ, Phatak S, Hintze KJ. Basal diet determined long-term composition of the gut microbiome and mouse phenotype to a greater extent than fecal microbiome transfer from lean or obese human donors. Nutrients. 2019;11:1630.

    Article  PubMed Central  CAS  Google Scholar 

  51. Kovatcheva-Datchary P, Shoaie S, Lee S, Wahlström A, Nookaew I, Hallen A, et al. Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep. 2019;26:3772–83.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jacobs JP, Goudarzi M, Singh N, Tong M, McHardy IH, Ruegger P, et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell Mol Gastroenterol Hepatol. 2016;2:750–66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal Chem. 2008;80:5524–31.

    Article  CAS  PubMed  Google Scholar 

  54. Lamark T, Styrvold OB, Strøm AR. Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. FEMS Microbiol Lett. 1992;75:149–54.

    Article  CAS  PubMed  Google Scholar 

  55. Chhibber-Goel J, Gaur A, Singhal V, Parakh N, Bhargava B, Sharma A. The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert Rev Mol Med. 2016;18:e8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The PopGen 2.0 network (P2N) is supported by a grant from the German Federal Ministry for Education and Research (01EY1103). We thank Drs. Andre Franke and Wolfgang Lieb for sharing the GWAS summary data for beta diversity and bacterial abundance from published paper [21]. The study was supported by grants from the Peking University Start-up Grant (BMU2018YJ002), the National Key R&D Program of China (2020YFC2003401) and High-performance Computing Platform of Peking University. The funding organization had no role in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ZZ, NL, and TH designed the research. ZZ and TH had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. ZZ, NL, ZL, and TH wrote the paper and performed the data analysis. All authors contributed to the statistical analysis, critically reviewed the manuscript during the writing process, and approved the final version to be published. ZZ and TH are the guarantors for the study.

Corresponding author

Correspondence to Tao Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Contributing studies received ethical approval from their respective institutional review boards. Informed consent was obtained from all participants of contributing studies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Li, N., Wang, J. et al. GWAS-associated bacteria and their metabolites appear to be causally related to the development of inflammatory bowel disease. Eur J Clin Nutr 76, 1024–1030 (2022). https://doi.org/10.1038/s41430-022-01074-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01074-w

This article is cited by

Search

Quick links