Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prognostic impact of sarcopenia in children with cancer: a focus on the psoas muscle area (PMA) imaging in the clinical practice

Abstract

Skeletal muscle plays a crucial part in the metabolic and inflammatory response. “Sarcopenia”, defined as a pathological condition of reduced strength, quantity and quality of skeletal muscle mass, may often develop in the young age as the secondary consequence of a systemic inflammatory illness, like cancer. In children with cancer, sarcopenia is a common finding, playing a negative role in their prognosis. However, its prevalence in clinical practice is underestimated. Moreover, several pre- and post-natal factors may influence skeletal muscle development in childhood, making the issue more complex. Given the frequent use of radiological imaging in clinical practice, prompt analysis of body composition is feasible and able to detect the presence of reduced fat-free mass (FFM) among pediatric patients with cancer. We discuss the recent advances in the study of body composition in children with cancer, dissecting the role of the psoas muscle area (PMA) measure, obtained from computerized tomography (CT) or magnetic resonance images (MRI) as a marker of sarcopenia in this setting. Since age and sex-specific percentile curves for PMA and a PMA z-scores calculator are available online, such a tool may be useful to simply detect and treat sarcopenia and its consequences in childhood cancer.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pre- and post-natal influences on skeletal muscle development.
Fig. 2: Sarcopenia in pediatric patients with cancer.
Fig. 3: Psoas muscle areas (PMA) in a CT axial slice at L3–L4 level.

References

  1. 1.

    Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Ortolani E, et al. Sarcopenia: an Overview on Current Definitions, Diagnosis and Treatment. Curr Protein Pept Sci. 2018;19:633–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. (2019). Erratum in: Age Ageing. 2018; 48:601.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Fearon K, Evans WJ, Anker SD. Myopenia-a new universal term for muscle wasting. J Cachexia Sarcopenia Muscle. 2011;2:1–3. https://doi.org/10.1007/s13539-011-0025-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bauer J, Morley JE, Schols AMWJ, Ferrucci L, Cruz-Jentoft AJ, Dent E, et al. Sarcopenia: a Time for Action. An SCWD Position Paper. J Cachexia Sarcopenia Muscle. 2019;10:956–61. https://doi.org/10.1002/jcsm.12483.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Triarico S, Rinninella E, Cintoni M, Capozza MA, Mastrangelo S, Mele MC, et al. Impact of malnutrition on survival and infections among pediatric patients with cancer: a retrospective study. Eur Rev Med Pharm Sci. 2019;23:1165–75.

    CAS  Google Scholar 

  6. 6.

    Joffe L, Schadler KL, Shen W, Ladas EJ. Body composition in pediatric solid tumors: state of the science and future directions. J Natl Cancer Inst Monogr. 2019;54:144–8.

    Article  CAS  Google Scholar 

  7. 7.

    Ooi PH, Thompson-Hodgetts S, Pritchard-Wiart L, Gilmour SM, Mager DR. Pediatric Sarcopenia: a Paradigm in the Overall Definition of Malnutrition in Children? JPEN J Parenter Enter Nutr. 2020;44:407–18.

    Article  Google Scholar 

  8. 8.

    Romero NB, Mezmezian M, Fidziańska A. Main steps of skeletal muscle development in the human: morphological analysis and ultrastructural characteristics of developing human muscle. Handb Clin Neurol. 2013;113:1299–310.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Orsso CE, Tibaes JRB, Oliveira CLP, Rubin DA, Field CJ, Heymsfield SB, et al. Low muscle mass and strength in pediatrics patients: Why should we care? Clin Nutr. 2019;38:2002–15.

    PubMed  Article  Google Scholar 

  10. 10.

    Du M, Yan X, Tong JF, Zhao J, Zhu MJ. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod. 2010;82:4–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Cabeço LC, Budri PE, Baroni M, Castan EP, Carani FR, de Souza PA, et al. Maternal protein restriction induce skeletal muscle changes without altering the MRFs MyoD and myogenin expression in offspring. J Mol Histol. 2012;43:461–71.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12.

    Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014;36:545–7.

    CAS  Article  Google Scholar 

  13. 13.

    Chen Z, Li L, Wu W, Liu Z, Huang Y, Yang L, et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics. 2020;10:6448–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Akhmedov D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol. 2013;4:371.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Thivel D, Ring-Dimitriou S, Weghuber D, Frelut ML, O’Malley G. Muscle Strength and Fitness in Pediatric Obesity: a Systematic Review from the European Childhood Obesity Group. Obes Facts. 2016;9:52–63.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, et al. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev. 2005;26:114–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv Nutr. 2016;7:828S–38S.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Garlick PJ. Protein requirements of infants and children. Nestle Nutr Workshop Ser Pediatr Program. 2006;58:39–47. https://doi.org/10.1159/000095009.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Arisaka O, Ichikawa G, Koyama S, Sairenchi T. Childhood obesity: rapid weight gain in early childhood and subsequent cardiometabolic risk. Clin Pediatr Endocrinol. 2020;29:135–42.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Berrazaga I, Micard V, Gueugneau M, Walrand S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: a Critical Review. Nutrients. 2019;11:1825.

    CAS  PubMed Central  Article  Google Scholar 

  21. 21.

    Anjanappa M, Corden M, Green A, Roberts D, Hoskin P, McWilliam A. Sarcopenia in cancer: risking more than muscle loss. Tech Innov Patient Support Radiat Oncol. 2020;16:50–7.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Chindapasirt J. Sarcopenia in Cancer Patients. Asian Pac J Cancer Prev. 2015;16:8075–7.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. The malnutrition overlap syndromes of cachexia and sarcopenia: a malnutrition conundrum. Am J Clin Nutr. 2018;6:1157–8.

    Google Scholar 

  25. 25.

    Vanhoutte G, van de Wiel M, Wouters K, Sels M, Bartolomeeussen L, De Keersmaecker S, et al. Cachexia in cancer: what is in the definition? BMJ Open Gastroenterol. 2016;3:e000097.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Blum D, Stene GB, Solheim TS, Fayers P, Hjermstad MJ, Baracos VE, et al. Euro-Impact. Validation of the Consensus-Definition for Cancer Cachexia and evaluation of a classification model–a study based on data from an international multicentre project (EPCRC-CSA). Ann Oncol. 2014;25:1635–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Soeters PB, Jensen GL, Hsiao PY, Allison SP, Sobotka L. Nutritional aspects of chronic inflammatory disease. In: Sobotka L Basics in Clinical Nutrition. 5th edn. Prague:Galen Publishing House; 2019. p. 185–90.

  28. 28.

    Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Polyzos SA, Margioris AN. Sarcopenic obesity. Hormones (Athens). 2018;17:321–31.

    Article  Google Scholar 

  30. 30.

    Murphy AJ, White M, Davies PS. Body composition of children with cancer. Am J Clin Nutr. 2010;92:55–60. https://doi.org/10.3945/ajcn.2010.29201.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Murphy AJ, White M, Elliott SA, Lockwood L, Hallahan A, Davies PS. Body composition of children with cancer during treatment and in survivorship. Am J Clin Nutr. 2015; 102891–6. https://doi.org/10.3945/ajcn.114.099697.

  32. 32.

    Baracos VE, Arribas L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann Oncol. 2018;29:ii1–ii9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Marriott CJC, Beaumont LF, Farncombe TH, Cranston AN, Athale UH, Yakemchuk VN, et al. Body composition in long-term survivors of acute lymphoblastic leukemia diagnosed in childhood and adolescence: a focus on sarcopenic obesity. Cancer. 2018;124:1225–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Mueske NM, Mittelman SD, Wren TAL, Gilsanz V, Orgel E. Myosteatosis in adolescents and young adults treated for acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60:3146–53.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Levy E, Samoilenko M, Morel S, England J, Amre D, Bertout L, et al. Cardiometabolic Risk Factors in Childhood, Adolescent and Young Adult Survivors of Acute Lymphoblastic Leukemia - A Petale Cohort. Sci Rep. 2017;7:17684.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Zhang Y, Wang JP, Wang XL, Tian H, Gao TT, Tang LM, et al. Computed tomography-quantified body composition predicts short-term outcomes after gastrectomy in gastric cancer. Curr Oncol. 2018;25:e411–e422.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Prado CM, Lima IS, Baracos VE, Bies RR, McCargar LJ, Reiman T, et al. An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother Pharm. 2011;67:93–101.

    CAS  Article  Google Scholar 

  39. 39.

    Thompson PA, Rosner GL, Matthay KK, Moore TB, Bomgaars LR, Ellis KJ, et al. Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study. Cancer Chemother Pharm. 2009;64:243–51.

    CAS  Article  Google Scholar 

  40. 40.

    Rinninella E, Cintoni M, Raoul P, Pozzo C, Strippoli A, Bria E, et al. Muscle mass, assessed at diagnosis by L3-CT scan as a prognostic marker of clinical outcomes in patients with gastric cancer: a systematic review and meta-analysis. Clin Nutr. 2020;39:2045–54.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Rinninella E, Fagotti A, Cintoni M, Raoul P, Scaletta G, Scambia G, et al. Skeletal muscle mass as a prognostic indicator of outcomes in ovarian cancer: a systematic review and meta-analysis. Int J Gynecol Cancer. 2020;30:654–63.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Rinninella E, Cintoni M, Raoul P, Ponziani FR, Pompili M, Pozzo C, et al. Prognostic value of skeletal muscle mass during tyrosine kinase inhibitor (TKI) therapy in cancer patients: a systematic review and meta-analysis. Intern Emerg Med. 2020;16:1341–56. https://doi.org/10.1007/s11739-020-02589-5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rinninella E, Ruggiero A, Maurizi P, Triarico S, Cintoni M, Mele MC. Clinical tools to assess nutritional risk and malnutrition in hospitalized children and adolescents. Eur Rev Med Pharm Sci. 2017;21:2690–701.

    CAS  Google Scholar 

  44. 44.

    Lazzer S, Bedogni G, Agosti F, De Col A, Mornati D, Sartorio A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents. Br J Nutr. 2008;100:918–24.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Cooper C, Fielding R, Visser M, van Loon LJ, Rolland Y, Orwoll E, et al. Tools in the assessment of sarcopenia. Calcif Tissue Int. 2013;93:201–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Amini B, Boyle SP, Boutin RD, Lenchik L. Approaches to assessment of muscle mass and myosteatosis on computed tomography (CT): a systematic review. J Gerontol A Biol Sci Med Sci. 2019;74:1671–8.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Lurz E, Patel H, Frimpong RG, Ricciuto A, Kehar M, Wales PW, et al. Sarcopenia in children with end‐stage liver disease. J Pediatr Gastroenterol Nutr. 2018;66:222–6.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Mangus RS, Bush WJ, Miller C, Kubal CA. Severe sarcopenia and increased fat stores in pediatric patients with liver, kidney, or intestine failure. J Pediatr Gastroenterol Nutr. 2017;65:579–83.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Zhang H, Tao Y, Wang Z, Lu J. Evaluation of nutritional status and prognostic impact assessed by the prognostic nutritional index in children with chronic kidney disease. Med (Baltim). 2019;98:e16713.

    Article  Google Scholar 

  50. 50.

    Lurz E, Patel H, Lebovic G, Quammie C, Woolfson JP, Perez M, et al. Paediatric reference values for total psoas muscle area. J Cachexia Sarcopenia Muscle. 2020;11:405–14.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Suzuki D, Kobayashi R, Sano H, Hori D, Kobayashi K. Sarcopenia after induction therapy in childhood acute lymphoblastic leukemia: its clinical significance. Int J Hematol. 2018;107:486–9.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Kawakubo N, Kinoshita Y, Souzaki R, Koga Y, Oba U, Ohga S, et al. The Influence of Sarcopenia on High-Risk Neuroblastoma. J Surg Res. 2019;236:101–5.

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Ritz A, Kolorz J, Hubertus J, Ley-Zaporozhan J, von Schweinitz D, Koletzko S, et al. Sarcopenia is a prognostic outcome marker in children with high-risk hepatoblastoma. Pediatr Blood Cancer. 2021;68:e28862. https://doi.org/10.1002/pbc.28862.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Golse N, Bucur PO, Ciacio O, Pittau G, Sa Cunha A, Adam R, et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transpl. 2016;23:143–54. https://doi.org/10.1002/lt.24671.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MCM designed the overall study with contributions from MC. ST and GA wrote the paper. AR revised the paper. ER discussed and edited the paper. All authors finally approve the paper.

Corresponding author

Correspondence to Silvia Triarico.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Triarico, S., Rinninella, E., Mele, M.C. et al. Prognostic impact of sarcopenia in children with cancer: a focus on the psoas muscle area (PMA) imaging in the clinical practice. Eur J Clin Nutr (2021). https://doi.org/10.1038/s41430-021-01016-y

Download citation

Search

Quick links