Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Profiling inflammatory and oxidative stress biomarkers following taurine supplementation: a systematic review and dose-response meta-analysis of controlled trials

Abstract

Taurine (Tau) has modulatory effects on inflammatory and oxidative stress biomarkers; however, the results of clinical studies are not comprehensive enough to determine the effect of different durations and doses of Tau supplementation on inflammatory and oxidative stress biomarkers. The current study was conducted based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. For this purpose, PubMed/Medline, Scopus, and Embase databases were systematically searched to obtain the relevant studies published before 30th March 2021. Meta-analysis was performed on controlled clinical trials by using the random-effects method. Non-linear relationship between variables and effect size was performed using dose–response and time–response analyses. The Cochrane Collaboration’s tool was used to evaluate the quality of included studies. Tau supplementation can reduce the levels of malondialdehyde (MDA) (SMD = −1.17 µmol/l; 95% CI: −2.08, − 0.26; P = 0.012) and C-reactive protein (CRP) (SMD = −1.95 mg/l; 95% CI: −3.20, − 0.71; P = 0.002). There have been no significant effects of Tau supplementation on the levels of tumor necrosis factors-alpha (TNF-α) (SMD = −0.18 pg/ml; 95% CI: −0.56, 0.21; P = 0.368), and interleukin-6 (IL-6) (SMD = −0.49 pg/ml; 95% CI: −1.13, 0.16; P = 0.141). Besides, Tau has more alleviating effect on oxidative stress and inflammation on 56 days after supplementation (P < 0.05). Tau can decrease the levels of CRP and MDA. Based on the currently available evidence, Tau has no significant effect on the level of TNF-α and IL-6. Eight-week of Tau supplementation has more beneficial effects on inflammatory and oxidative stress biomarkers.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Results of quality assessment of included studies demonstrated using Cochrane Collaboration’s risk of bias tool.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32. https://doi.org/10.1038/s41591-019-0675-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3:73–80. https://doi.org/10.2174/187221309787158371.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Minoguchi K, Yokoe T, Tanaka A, Ohta S, Hirano T, Yoshino G, et al. Association between lipid peroxidation and inflammation in obstructive sleep apnoea. Eur Respir J. 2006;28:378–85. https://doi.org/10.1183/09031936.06.00084905.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr. 2020;12:9 https://doi.org/10.1186/s13098-020-0518-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Qaradakhi T, Gadanec LK, McSweeney KR, Abraham JR, Apostolopoulos V, Zulli A. The anti-inflammatory effect of taurine on cardiovascular disease. Nutrients. 2020;12. https://doi.org/10.3390/nu12092847.

  6. 6.

    Rosa FT, Freitas EC, Deminice R, Jordão AA, Marchini JS. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014;53:823–30. https://doi.org/10.1007/s00394-013-0586-7.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bouckenooghe T, Remacle C, Reusens B. Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care. 2006;9:728–33. https://doi.org/10.1097/01.mco.0000247469.26414.55.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Murakami S. Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res. 2015;59:1353–63. https://doi.org/10.1002/mnfr.201500067.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Sirdah MM. Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation. Diabetes Metab Syndr. 2015;9:55–64. https://doi.org/10.1016/j.dsx.2014.05.001.

    Article  PubMed  Google Scholar 

  10. 10.

    Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, et al. Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation. 2004;109:1877–85. https://doi.org/10.1161/01.Cir.0000124229.40424.80.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Schaffer S, Solodushko V, Azuma J. Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol. 2000;483:57–69. https://doi.org/10.1007/0-306-46838-7_6.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Biasetti M, Dawson R Jr. Effects of sulfur containing amino acids on iron and nitric oxide stimulated catecholamine oxidation. Amino Acids. 2002;22:351–68. https://doi.org/10.1007/s007260200020.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    De Carvalho FG, Galan BSM, Santos PC, Pritchett K, Pfrimer K, Ferriolli E, et al. Taurine: a potential ergogenic aid for preventing muscle damage and protein catabolism and decreasing oxidative stress produced by endurance exercise. Front Physiol. 2017;8:710–710. https://doi.org/10.3389/fphys.2017.00710.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lu C-L, Tang S, Meng Z-J, He Y-Y, Song L-Y, Liu Y-P, et al. Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure. J Biomed Sci. 2014;21:51–51. https://doi.org/10.1186/1423-0127-21-51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol. 2008;50:376–99. https://doi.org/10.1016/j.yrtph.2008.01.004.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Seol S-I, Kim HJ, Choi EB, Kang IS, Lee H-K, Lee J-K, et al. Taurine protects against postischemic brain injury via the antioxidant activity of taurine chloramine. Antioxidants. 2021;10:372.

    CAS  Article  Google Scholar 

  17. 17.

    Dallak M. A synergistic protective effect of selenium and taurine against experimentally induced myocardial infarction in rats. Arch Physiol Biochem. 2017;123:344–55. https://doi.org/10.1080/13813455.2017.1347687.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62:e1–34.

    Article  Google Scholar 

  19. 19.

    Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions version 6.2 [updated February 2021]. Cochrane, 2021. Available at http://training.cochrane.org/handbook. (accessed on 28 March 2021).

  20. 20.

    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6. https://doi.org/10.1136/bmj.39489.470347.AD.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liyan C, Jie Z, Yonghua W, Xiaozhou H. Assay of ischemia-modified albumin and C-reactive protein for early diagnosis of acute coronary syndromes. J Clin Lab Anal. 2008;22:45–9. https://doi.org/10.1002/jcla.20223.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Manco M, Marcellini M, Giannone G, Nobili V. Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am J Clin Pathol. 2007;127:954–60. https://doi.org/10.1309/6vj4dwgydu0xyj8q.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Giannoudis PV, Harwood PJ, Loughenbury P, Van Griensven M, Krettek C, Pape H-C. Correlation between IL-6 levels and the systemic inflammatory response score: can an IL-6 cutoff predict a SIRS state?. J Trauma Acute Care Surg. 2008;65:646–652.

    CAS  Article  Google Scholar 

  24. 24.

    Pande D, Negi R, Karki K, Khanna S, Khanna RS, Khanna HD. Oxidative damage markers as possible discriminatory biomarkers in breast carcinoma. Transl Res. 2012;160:411–8. https://doi.org/10.1016/j.trsl.2012.07.005.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Islambulchilar M, Asvadi I, Sanaat Z, Esfahani A, Sattari M. Effect of taurine on attenuating chemotherapy-induced adverse effects in acute lymphoblastic leukemia. J Cancer Res Ther. 2015;11:426–32. https://doi.org/10.4103/0973-1482.151933.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Lak S, Ostadrahimi A, Nagili B, Asghari-Jafarabadi M, Beigzali S, Salehi F, et al. Anti-Inflammatory effect of taurine in burned patients. Adv Pharm Bull. 2015;5:531–6. https://doi.org/10.15171/apb.2015.072.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ahmadian M, Roshan VD, Aslani E, Stannard SR. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failure. Ther Adv Cardiovasc Dis. 2017;11:185–94. https://doi.org/10.1177/1753944717711138.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Haidari F, Asadi M, Mohammadi-Asl J, Ahmadi-Angali K. Effect of weight-loss diet combined with taurine supplementation on body composition and some biochemical markers in obese women: a randomized clinical trial. Amino Acids. 2020;52:1115–24. https://doi.org/10.1007/s00726-020-02876-7.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Shirvani H, Rostamkhani F, Sobhani V. The interactive effect of taurine supplementation and intensive training protocols on serum inflammatory cytokines (IL-6 and TNF-α) levels in elite soccer players. Iran J Nutr Sci Food Technol. 2015;10:29–38.

    Google Scholar 

  30. 30.

    da Silva LA, Tromm CB, Bom KF, Mariano I, Pozzi B, da Rosa GL, et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2014;39:101–4. https://doi.org/10.1139/apnm-2012-0229.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chupel MU, Minuzzi LG, Furtado G, Santos ML, Hogervorst E, Filaire E, et al. Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women. Appl Physiol Nutr Metab. 2018;43:733–41. https://doi.org/10.1139/apnm-2017-0775.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ra SG, Choi Y, Akazawa N, Ohmori H, Maeda S. Taurine supplementation attenuates delayed increase in exercise-induced arterial stiffness. Appl Physiol Nutr Metab. 2016;41:618–23. https://doi.org/10.1139/apnm-2015-0560.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Van Stijn MF, Bruins AA, Vermeulen MA, Witlox J, Teerlink T, Schoorl MG, et al. Effect of oral taurine on morbidity and mortality in elderly hip fracture patients: a randomized trial. Int J Mol Sci. 2015;16:12288–306. https://doi.org/10.3390/ijms160612288.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Shari F. Study effect of sulfur containing amino acid supplementation on oxidative stress, inflammatory markers and serum lipid in relation to obese subjects. Trop J Pharm Res. 2020;12.

  35. 35.

    Hsieh YL, Yeh YH, Lee YT, Huang CY. Effect of taurine in chronic alcoholic patients. Food Funct. 2014;5:1529–35. https://doi.org/10.1039/c3fo60597c.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Cantafora A, Mantovani A, Masella R, Mechelli L, Alvaro D. Effect of taurine administration on liver lipids in guinea pig. Experientia. 1986;42:407–8. https://doi.org/10.1007/bf02118631.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jakaria M, Azam S, Haque ME, Jo S-H, Uddin MS, Kim I-S. et al. Taurine and its analogs in neurological disorders: focus on therapeutic potential and molecular mechanisms. Redox Biol. 2019;24:101223. https://doi.org/10.1016/j.redox.2019.101223.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Terrill JR, Pinniger GJ, Nair KV, Grounds MD, Arthur PG. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction. PLoS ONE. 2017;12:e0187317. https://doi.org/10.1371/journal.pone.0187317.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Benihoud K, Esselin S, Descamps D, Jullienne B, Salone B, Bobé P, et al. Respective roles of TNF-α and IL-6 in the immune response-elicited by adenovirus-mediated gene transfer in mice. Gene Ther. 2007;14:533–44. https://doi.org/10.1038/sj.gt.3302885.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Ghandforoush-Sattari M, Mashayekhi S, Krishna CV, Thompson JP, Routledge PA. Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids. 2010;2010:346237–346237. https://doi.org/10.4061/2010/346237.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Helal I, Zerelli L, Krid M, ElYounsi F, Ben Maiz H, Zouari B, et al. Comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis. Saudi J Kidney Dis Transpl. 2012;23:477–83.

    Article  Google Scholar 

  42. 42.

    Siddique YH, Ara G, Afzal M. Estimation of lipid peroxidation induced by hydrogen peroxide in cultured human lymphocytes. Dose Response. 2012;10:1–10. https://doi.org/10.2203/dose-response.10-002.Siddique.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Domijan AM, Ralić J, Radić Brkanac S, Rumora L, Žanić-Grubišić T. Quantification of malondialdehyde by HPLC-FL - application to various biological samples. Biomed Chromatogr. 2015;29:41–6. https://doi.org/10.1002/bmc.3361.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Siddique YH, Jyoti S, Naz F, Afzal M. Validation of 1-methyl-2-phenylindole method for estimating lipid peroxidation in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg (9.). Pharm Methods. 2012;3:94–7. https://doi.org/10.4103/2229-4708.103883.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lin S, Hirai S, Yamaguchi Y, Goto T, Takahashi N, Tani F, et al. Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. Mol Nutr Food Res. 2013;57:2155–65. https://doi.org/10.1002/mnfr.201300150.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther. 2018;26:225–41. https://doi.org/10.4062/biomolther.2017.251.

    CAS  Article  Google Scholar 

  47. 47.

    Scicchitano BM, Sica G. The beneficial effects of taurine to counteract sarcopenia. Curr Protein Pept Sci. 2018;19:673–80. https://doi.org/10.2174/1389203718666161122113609.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci. 2021;78:385–414. https://doi.org/10.1007/s00018-020-03591-y.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kim C, Cha YN. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids. 2014;46:89–100. https://doi.org/10.1007/s00726-013-1545-6.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Jong CJ, Ito T, Schaffer SW. The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids. 2015;47:2609–22. https://doi.org/10.1007/s00726-015-2053-7.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Anand P, Rajakumar D, Jeraud M, Felix AJ, Balasubramanian T. Effects of taurine on glutathione peroxidase, glutathione reductase and reduced glutathione levels in rats. Pak J Biol Sci. 2011;14:219–25. https://doi.org/10.3923/pjbs.2011.219.225.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 67856).

Author information

Affiliations

Authors

Contributions

Conceptualization: AHF and EF. Database searching: AHF. Screening: SP and PF. Data extraction: AHF and SMSS. Drafting of the paper: AHF, SMSS, and PF. Statistical analysis: AHF. Critical revision: AO, MAS, and EF. All the authors approved the final version to be submitted.

Corresponding author

Correspondence to Elnaz Faghfuri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faghfouri, A.H., Seyyed Shoura, S.M., Fathollahi, P. et al. Profiling inflammatory and oxidative stress biomarkers following taurine supplementation: a systematic review and dose-response meta-analysis of controlled trials. Eur J Clin Nutr (2021). https://doi.org/10.1038/s41430-021-01010-4

Download citation

Search

Quick links