Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nutrition during the early life cycle

Association between maternal urinary selenium during pregnancy and newborn telomere length: results from a birth cohort study

Abstract

Background

Newborn telomere length is considered as an effective predictor of lifespan and health outcomes in later life. Selenium is an essential trace element for human health, and its antioxidation is of great significance for the prevention of telomere erosion.

Methods

We recruited 746 mother–newborn pairs in Wuhan Children’s Hospital between 2013 and 2015. Urine samples were repeatedly collected at three time points during pregnancy, and umbilical cord blood samples were collected right after parturition. Urinary selenium concentration was detected using inductively coupled plasma mass spectrometry, and newborn telomere length was measured using quantitative real-time polymerase chain reaction. We applied general estimating equations to examine the trimester-specific association between maternal urinary selenium during pregnancy and newborn telomere length.

Results

The median of creatinine-corrected selenium concentrations during pregnancy were 16.29, 18.08, and 18.35 μg/g·creatinine in the first, second, and third trimesters, respectively. Selenium concentrations in all the three trimesters were significantly associated with newborn telomere length. Per doubling of maternal urinary selenium concentrations was associated with 6.44% (95% CI: 0.92, 12.25), 6.54% (95% CI: 0.17, 13.31), and 6.02% (95% CI: 0.29, 12.09) longer newborn telomere length in the first, second, and third trimesters, respectively, after adjusting for potential confounders.

Conclusions

This is the first study to provide evidence for the effect of maternal selenium levels on fetal telomere erosion. Findings from our study suggested that maternal urinary selenium was positively associated with newborn telomere length, indicating that intrauterine selenium exposure might have effect on initial setting of human telomere length.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Trimester-specific association of maternal selenium concentrations (creatinine-corrected) categorized by quintiles during pregnancy with newborn telomere length (highest quintiles were set as reference).

References

  1. 1.

    Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hammadah M, Al Mheid I, Wilmot K, Ramadan R, Abdelhadi N, Alkhoder A, et al. Telomere shortening, regenerative capacity, and cardiovascular outcomes. Circ Res. 2017;120:1130–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Said MA, Eppinga RN, Hagemeijer Y, Verweij N, van der Harst P. Telomere length and risk of cardiovascular disease and cancer. J Am Coll Cardiol. 2017;70:506–7.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst. 2015;107:djv074.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5.

    Astuti Y, Wardhana A, Watkins J, Wulaningsih W. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hou L, Andreotti G, Baccarelli AA, Savage S, Hoppin JA, Sandler DP, et al. Lifetime pesticide use and telomere shortening among male pesticide applicators in the Agricultural Health Study. Environ Health Perspect. 2013;121:919–24.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, et al. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect. 2016;124:943–50.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Entringer S, de Punder K, Buss C, Wadhwa PD. The fetal programming of telomere biology hypothesis: an update. Philos Trans R Soc Lond BBiol Sci. 2018;373:20170151.

    Article  CAS  Google Scholar 

  9. 9.

    Factor-Litvak P, Susser E, Kezios K, McKeague I, Kark JD, Hoffman M, et al. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics. 2016;137:e20153927.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Martens DS, Plusquin M, Gyselaers W, De Vivo I, Nawrot TS. Maternal pre-pregnancy body mass index and newborn telomere length. BMC Med. 2016;14:148.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Martens DS, Cox B, Janssen BG, Clemente DBP, Gasparrini A, Vanpoucke C, et al. Prenatal air pollution and newborns’ predisposition to accelerated biological aging. JAMA Pediatr. 2017;171:1160–7.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Entringer S, Buss C, Wadhwa PD. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci Signal. 2012;5:pt12.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, et al. Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int. 2018;112:294–309. https://doi.org/10.1016/j.envint.2017.12.035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Shi Z, Pan P, Feng Y, Kan Z, Li Z, Wei F. Environmental water chemistry and possible correlation with Kaschin-Beck Disease (KBD) in northwestern Sichuan, China. Environ Int. 2017;99:282–92. https://doi.org/10.1016/j.envint.2016.12.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, et al. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–43.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother. 2003;57:134–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Zhuo H, Smith AH, Steinmaus C. Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature. Cancer Epidemiol Biomark Prev. 2004;13:771–8.

    CAS  Google Scholar 

  18. 18.

    Cai X, Wang C, Yu W, Fan W, Wang S, Shen N, et al. Selenium exposure and cancer risk: an updated meta-analysis and meta-regression. Sci Rep. 2016;6:19213.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Wu Q, Rayman MP, Lv H, Schomburg L, Cui B, Gao C, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab. 2015;100:4037–47. https://doi.org/10.1210/jc.2015-2222.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Mistry HD, Wilson V, Ramsay MM, Symonds ME, Broughton Pipkin F. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension. 2008;52:881–8.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Ou Y, Bloom MS, Nie Z, Han F, Mai J, Chen J, et al. Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects. Environ Int. 2017;106:127–34.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Cengiz B, Soylemez F, Ozturk E, Cavdar AO. Serum zinc, selenium, copper, and lead levels in women with second-trimester induced abortion resulting from neural tube defects: a preliminary study. Biol Trace Elem Res. 2004;97:225–35.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Shu Y, Wu M, Yang S, Wang Y, Li H. Association of dietary selenium intake with telomere length in middle-aged and older adults. Clin Nutr. 2020;39:3086–91.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Song L, Zhang B, Liu B, Wu M, Zhang L, Wang L, et al. Effects of maternal exposure to ambient air pollution on newborn telomere length. Environ Int. 2019;128:254–60.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sánchez BN, Hu H, Litman HJ, Téllez-Rojo MM. Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants. Environ Health Perspect. 2011;119:409–15.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Sanz Alaejos M, Diaz, Romero C. Urinary selenium concentrations. Clin Chem. 1993;39:2040–52.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Chen Z, Myers R, Wei T, Bind E, Kassim P, Wang G, et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J Expo Sci Environ Epidemiol. 2014;24:537–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Kantola M, Purkunen R, Kroger P, Tooming A, Juravskaja J, Pasanen M, et al. Selenium in pregnancy: is selenium an active defective ion against environmental chemical stress? Environ Res. 2004;96:51–61.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Wai KM, Mar O, Kosaka S, Umemura M, Watanabe C. Prenatal heavy metal exposure and adverse birth outcomes in Myanmar: a birth-cohort study. Int J Environ Res Public Health. 2017;14:1339.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  30. 30.

    Callan AC, Hinwood AL, Ramalingam M, Boyce M, Heyworth J, McCafferty P, et al. Maternal exposure to metals-concentrations and predictors of exposure. Environ Res. 2013;126:111–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Jin Y, Coad J, Weber JL, Thomson JS, Brough L. Selenium intake in iodine-deficient pregnant and breastfeeding women in New Zealand. Nutrients. 2019;11:69.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  32. 32.

    Christian WJ, Hopenhayn C, Centeno JA, Todorov T. Distribution of urinary selenium and arsenic among pregnant women exposed to arsenic in drinking water. Environ Res. 2006;100:115–22.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Shirai S, Suzuki Y, Yoshinaga J, Mizumoto Y. Maternal exposure to low-level heavy metals during pregnancy and birth size. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2010;45:1468–74.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Szybinski Z, Walas S, Zagrodzki P, Sokolowski G, Golkowski F, Mrowiec H. Iodine, selenium, and other trace elements in urine of pregnant women. Biol Trace Elem Res. 2010;138:28–41.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Kippler M, Bottai M, Georgiou V, Koutra K, Chalkiadaki G, Kampouri M, et al. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. Eur J Epidemiol. 2016;31:1123–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Fort M, Cosin-Tomas M, Grimalt JO, Querol X, Casas M, Sunyer J. Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. Environ Sci Pollut Res Int. 2014;21:9234–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Sun X, Jiang Y, Xia W, Jin S, Liu W, Lin X, et al. Association between prenatal nickel exposure and preterm low birth weight: possible effect of selenium. Environ Sci Pollut Res Int. 2018;25:25888–95.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Herlin M, Broberg K, Igra AM, Li H, Harari F, Vahter M. Exploring telomere length in mother-newborn pairs in relation to exposure to multiple toxic metals and potential modifying effects by nutritional factors. BMC Med. 2019;17:77.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Pawlas N, Plachetka A, Kozlowska A, Broberg K, Kasperczyk S. Telomere length in children environmentally exposed to low-to-moderate levels of lead. Toxicol Appl Pharm. 2015;287:11–118.

    Article  CAS  Google Scholar 

  40. 40.

    O’Callaghan NJ, Bull C, Fenech M. Elevated plasma magnesium and calcium may be associated with shorter telomeres in older South Australian women. J Nutr Health Aging. 2014;18:131–6.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. 41.

    Milne E, O’Callaghan N, Ramankutty P, de Klerk NH, Greenop KR, Armstrong BK, et al. Plasma micronutrient levels and telomere length in children. Nutrition. 2015;31:331–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Zwolak I, Zaporowska H. Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol. 2012;28:31–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019:278–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Lu KY, Lin PY, Chuang EY, Shih CM, Cheng TM, Lin TY, et al. H2O2-depleting and O2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl Mater Interfaces. 2017;9:5158–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother. 2019;109:2561–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, et al. Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev. 2016;25:55–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PM. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273:180–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Schmidt JC, Cech TR. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–105.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Yu RA, Chen HJ, He LF, Chen B, Chen XM. Telomerase activity and telomerase reverse transcriptase expression induced by selenium in rat hepatocytes. Biomed Environ Sci. 2009;22:311–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Zota AR, Needham BL, Blackburn EH, Lin J, Park SK, Rehkopf DH, et al. Associations of cadmium and lead exposure with leukocyte telomere length: findings from National Health and Nutrition Examination Survey, 1999-2002. Am J Epidemiol. 2015;181:127–36.

    PubMed  Article  Google Scholar 

  51. 51.

    Fillman T, Shimizu-Furusawa H, Ng CFS, Parajuli RP, Watanabe C. Association of cadmium and arsenic exposure with salivary telomere length in adolescents in Terai, Nepal. Environ Res. 2016;149:8–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT. Effects of micronutrients on metal toxicity. Environ Health Perspect. 1998;106:203–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Phiri FP, Ander EL, Lark RM, Bailey EH, Chilima B, Gondwe J, et al. Urine selenium concentration is a useful biomarker for assessing population level selenium status. Environ Int. 2020;134:105218.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Kim SS, Meeker JD, Carroll R, Zhao S, Mourgas MJ, Richards MJ, et al. Urinary trace metals individually and in mixtures in association with preterm birth. Environ Int. 2018;121:582–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (grant number: 2017YFC0212003); National Natural Science Foundation of China (grant numbers: 91643207, 81273083); and the Hubei Province Health & Family Planning Scientific Research Project (grant number: WJ2017Z001).

Author information

Affiliations

Authors

Contributions

YW, SX, Y Tian, Y Li, WX, AZ, and BZ designed research and reviewed the manuscript. ZC and SY assisted in the study design and the implementation of the study. LS, BL, LZ, MW, Y Liu, and JB conducted research and critically reviewed the manuscript for important intellectual content. LW performed statistical analysis and drafted the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Youjie Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Song, L., Liu, B. et al. Association between maternal urinary selenium during pregnancy and newborn telomere length: results from a birth cohort study. Eur J Clin Nutr (2021). https://doi.org/10.1038/s41430-021-01004-2

Download citation

Search

Quick links