Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparisons of calorie restriction and structured exercise on reductions in visceral and abdominal subcutaneous adipose tissue: a systematic review

Abstract

Exercise and low-calorie diets are common approaches taken to produce an energy deficit for weight loss in obesity. Changes in visceral and abdominal subcutaneous fat associated with weight loss are important questions but have not yet been concluded. We investigated the relationship between changes in visceral (VAT) and subcutaneous adipose tissue (SAT) areas obtained by abdominal imaging with the change in total body fat. The relevant databases were searched through January 2021 according to the PRISMA guidelines. Sixty-five studies were included. We found that the change in total body fat was associated with changes in both VAT and abdominal SAT areas, but the relationship between total body fat and the abdominal SAT area appeared stronger. Baseline values of VAT and abdominal SAT area were similar in the three treatment groups (calorie restriction, calorie restriction plus exercise, and exercise alone). The reduction in abdominal SAT area for a loss of 1 kg of total body fat was about 10 cm2, which was similar among all the treatments. The change in VAT area (−26.3 cm2) was a similar level as the change in abdominal SAT area (−31.5 cm2) in the exercise, whereas in the calorie restriction with and without exercise, the change in VAT area (−33.6 and −51.6 cm2, respectively) was approximately half of the reduction of SAT area (−65.1 and −87.2 cm2, respectively). Absolute changes in VAT and abdominal SAT areas might differ between interventions for the exercise and calorie restriction with and without exercise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Relationships between changes in total body fat and abdominal subcutaneous adiposetissue (SAT) area or visceral adipose tissue (VAT) area.
Fig. 3: Changes in abdominal subcutaneous adipose tissue (SAT) area and visceral adiposetissue (VAT) area following treatments of calorie restriction, calorie restriction combined withexercise, and exercise alone.

Similar content being viewed by others

References

  1. Wong Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic. Obesity. 2008;16:2323–30.

    Article  Google Scholar 

  2. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  3. Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity. 2013;21:E439–E447.

    Article  CAS  PubMed  Google Scholar 

  4. Ross R, Janiszewski PM. Is weight loss the optimal target for obesity-related cardiovascular disease risk reduction? Can J Cardiol. 2008;24:25D–31D.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borges JH, Carter SJ, Bryan DR, Hunter GR. Exercise training and/or diet on reduction of intra-abdominal adipose tissue and risk factors for cardiovascular disease. Eur J Clin Nutr. 2019;73:1063–8.

    Article  PubMed  Google Scholar 

  6. Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissue. Ann Med. 1995;27:435–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ibrahim MM. Subcutaneous and visceral adipose tissue: structure and functional differences. Obes Rev. 2010;11:11–18.

    Article  PubMed  Google Scholar 

  8. Ross R, Shaw KD, Martel Y, de Guise J, Avruch L. Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Clin Nutr. 1993;57:470–5.

    Article  CAS  PubMed  Google Scholar 

  9. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith SR, Zachwieja JJ. Visceral adipose tissue: a critical review of intervention strategies. Int J Obes. 1999;23:329–35.

    Article  CAS  Google Scholar 

  11. Kay SJ, Fiatarone, Singh MA. The influence of physical activity on abdominal fat: a systematic review of the literature. Obes Rev. 2006;7:183–200.

    Article  CAS  PubMed  Google Scholar 

  12. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13:68–91.

    Article  CAS  PubMed  Google Scholar 

  13. Ohkawara K, Tanaka S, Miyachi M, Oshikawa-Takata K, Tabata I. A dose-response relation between aerobic exercise and visceral fat reduction: systematic reciew of clinical trials. Int J Obes. 2007;31:1786–97.

    Article  CAS  Google Scholar 

  14. RJHM Verheggen, MFH Maessen, Green DJ, ARMM Hermus, MTE Hopman, DHT Thijssen. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17:664–90.

    Article  Google Scholar 

  15. Ross R, Janssen I. Is abdominal fat preferentially reduced in response to exercise-induced weight loss? Med Sci Sports Exerc. 1999;31:S568–S572.

    Article  CAS  PubMed  Google Scholar 

  16. Chaston TB, Dixon JB. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes. 2008;32:619–28.

    Article  CAS  Google Scholar 

  17. Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. Int J Obes. 2017;41:672–82.

    Article  CAS  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010;8:336–41.

    Article  PubMed  Google Scholar 

  19. Letts L, Wilkins S, Law M, Stewart D, Bosch J, Westmorland M. Guidelines for critical review form: quantitative studies (version 2.0). Qualitative Review Form Guidelines. Hamilton, ON: McMaster University; 2007.

  20. Weits T, van der Beek EJ, Wedel M, Hubben MWA, Koppeschaar HPF. Fat patterning during weight reduction: a multimode investigation. Neth J Med. 1989;35:174–84.

    CAS  PubMed  Google Scholar 

  21. Stallone DD, Stunkard AJ, Wadden TA, Foster GD, Boorstein J, Arger P. Weight loss and body fat distribution: a feasibility study using computed tomography. Int J Obes. 1991;15:775–80.

    CAS  PubMed  Google Scholar 

  22. Despres JP, Pouliot MC, Moorjani S, Nadeau A, Tremblay A, Lupien PJ, et al. Loss of abdominal fat and metabolic response to exercise training in obese women. Am J Physiol. 1991;261:E159–E167.

    CAS  PubMed  Google Scholar 

  23. Schwartz RS, Shuman WP, Larson V, Cain KC, Fellingham GW, Beard JC, et al. The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism. 1991;40:545–51.

    Article  CAS  PubMed  Google Scholar 

  24. Leenen R, van der Kooy K, Deurenberg P, Seidell JC, Weststrate JA, Schouten FJ, et al. Visceral fat accumulation in obese subjects: relation to energy expenditure and response to weight loss. Am J Physiol. 1992;263:E913–E919.

    CAS  PubMed  Google Scholar 

  25. Leenen R, van der Kooy K, Seidell JC, Deurenberg P, Koppeschaar HPF. Visceral fat accumulation in relation to sex hormones in obese men and women undergoing weight loss therapy. J Clin Endocribol Metab. 1994;78:1515–20.

    CAS  Google Scholar 

  26. Bouchard C, Tremblay A, Despres JP, Theriault G, Nadeau A, Lupien PJ, et al. The response to exercise with constant energy intake in identical twins. Obes Res. 1994;2:400–10.

    Article  CAS  PubMed  Google Scholar 

  27. Treuth MS, Hunter GR, Kekes-Szabo T, Weinsier RL, Goran MI, Breland L. Reduction in intra-abdominal adipose tissue after strength training in older women. J Appl Physiol. 1995;78:1425–31.

    Article  CAS  PubMed  Google Scholar 

  28. Ross R, Rissanen J, Hudson R. Sensitivity associated with the identification of visceral adipose tissue levels using waist circumference in men and women: effects of weight loss. Int J Obes. 1996;20:533–8.

    CAS  Google Scholar 

  29. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Daibetes. 1999;48:839–47.

    Article  CAS  Google Scholar 

  30. Kockx M, Leenen R, Seidell J, Princen HMG, Kooistra T. Relationship between visceral fat and PAI-1 in overweight men and women before and after weight loss. Thromb Haemost. 1999;82:1490–6.

    Article  CAS  PubMed  Google Scholar 

  31. Tchernof A, Starling RD, Turner A, Shuldiner AR, Walston JD, Silver K, et al. Impaired capacity to lose visceral adipose tissue during weight reduction in obese postmenopausal women with the Trp64Arg beta3-adrenoceptor gene variant. Diabetes. 2000;49:1709–13.

    Article  CAS  PubMed  Google Scholar 

  32. Ryan AS, Nicklas BJ, Berman DM, Dennis KE. Dietary restriction and walking reduce fat deposition in the midthigh in obese older women. Am J Clin Nutr. 2000;72:708–13.

    Article  CAS  PubMed  Google Scholar 

  33. Doucet E, St-Pierre S, Almeras N, Mauriege P, Despres JP, Richard D, et al. Fasting insulin levels influence plasma leptin levels independently from the contribution of adiposity: evidence from both a cross-sectional and an intervention study. J Clin Endocrinol Metab. 2000;85:4231–7.

    CAS  PubMed  Google Scholar 

  34. van Rossum EFC, Nicklas BJ, Dennis KE, Berman DM, Goldberg AP. Leptin responses to weight loss in postmenopausal women: relationship to sex-hormone bibding globulin and visceral obesity. Obes Res. 2000;8:29–35.

    Article  PubMed  Google Scholar 

  35. Yip I, Go VLW, Hershman JH, Wang HJ, Elashoff R, DeShields S, et al. Insulin-leptin-visceral fat relation during weight loss. Pancreas. 2001;23:197–203.

    Article  CAS  PubMed  Google Scholar 

  36. Lynch NA, Nicklas BJ, Berman DM, Dennis KE, Goldberg AP. Reductions in visceral fat during weight loss and walking are associated with improvements in VO2max. J Appl Physiol. 2001;90:99–104.

    Article  CAS  PubMed  Google Scholar 

  37. Pare A, Dumont M, Lemieux I, Brochu M, Almeras N, Lemieux S, et al. Is the relationship between adipose tissue and waist girth altered by weight loss in obese men? Obes Res. 2001;9:526–34.

    Article  CAS  PubMed  Google Scholar 

  38. Janssen I, Fortier A, Hudson R, Ross R. Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care. 2002;25:431–8.

    Article  PubMed  Google Scholar 

  39. Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation. 2002;105:564–9.

    Article  PubMed  Google Scholar 

  40. Miyatake N, Nishikawa H, Morishita A, Kunitomi M, Wada J, Suzuki H, et al. Daily walking reduces visceral adipose tissue areas and improves insulin resistance in Japanese obese subjects. Diabetes Res Clin Pr. 2002;58:101–7.

    Article  CAS  Google Scholar 

  41. Liao D, Asberry PJ, Shofer JB, Callahan H, Matthys C, Boyko EJ, et al. Improvement of BMI, body composition, and body fat distribution with lifestyle modification in Japanese Americans with impaired glucose tolerance. Diabetes Care. 2002;25:1504–10.

    Article  PubMed  Google Scholar 

  42. Gower BA, Weinsier RL, Jordan JM, Hunter GR, Desmond R. Effects of weight loss on changes in insulin sensitivity and lipid concentrations in premenopausal African American and white women. Am J Clin Nutr. 2002;76:923–7.

    Article  CAS  PubMed  Google Scholar 

  43. Doucet E, St-Pierre S, Almeras N, Imbeault P, Mauriege P, Pascot A, et al. Reduction of visceral adipose tissue during weight loss. Eur J Clin Nutr. 2002;56:297–304.

    Article  CAS  PubMed  Google Scholar 

  44. Okura T, Tanaka K, Nakanishi T, Lee DJ, Nakata Y, Wee SW, et al. Effects of obesity phenotype on coronary heart disease risk factors in response to weight loss. Obes Res. 2002;10:757–66.

    Article  PubMed  Google Scholar 

  45. Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT. The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol. 2003;22:129–35.

    Article  Google Scholar 

  46. Park HS, Lee KU. Postmenopausal women lose less visceral adipose tissue during a weight reduction program. Menopause. 2003;10:222–7.

    Article  PubMed  Google Scholar 

  47. Laaksonen DE, Kainulainen S, Rissanen A, Niskanen L. Relationships between changes in abdominal fat distribution and insulin sensitivity during a very low calorie diet in abdominally obese men and women. Nutr Metab Cardiovasc Dis. 2003;13:349–56.

    Article  CAS  PubMed  Google Scholar 

  48. Irwin MI, Yasui Y, Ulrich CM, Bowen D, Rudolph RE, Schwartz RS, et al. Effect of exercise on total and intra-abdominal body fat in postmenopausal women. JAMA. 2003;289:323–30.

    Article  PubMed  Google Scholar 

  49. Brochu M, Tchernof A, Turner AN, Ades PA, Poehlman E. Is there a threshold of visceral fat loss that improves the metabolic profile in obese postmenopausal women? Metabolism. 2003;52:599–604.

    Article  CAS  PubMed  Google Scholar 

  50. Nicklas BJ, Dennis KE, Berman DM, Sorkin J, Ryan AS, Goldberg AP. Lifestyle intervention of hypocaloric dieting and walking reduces abdominal obesity and improves coronary heart disease risk factors in obese, postmenopausal, African-American and Caucasian women. J Gerontol A Biol Sci Med Sci. 2003;58:181–9.

    Article  PubMed  Google Scholar 

  51. Okura T, Nakata Y, Tanaka K. Effects of exercise intensity on physical fitness and risk factors for coronary heart disease. Obes Res. 2003;11:1131–9.

    Article  PubMed  Google Scholar 

  52. Shadid S, Jensen M. Effects of pioglitazone versus diet and exercise on metabolic health and fat distribution in upper body obesity. Diabetes Care. 2003;26:3148–52.

    Article  CAS  PubMed  Google Scholar 

  53. Park HS, Sim SJ, Park JY. Effect of weight reduction on metabolic syndrome in Korean obese patients. J Korean Med Sci. 2004;19:202–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ryan AS, Nicklas BJ. Reductions in plasma cytokine levels with weight loss improve insulin postmenopausal women. Diabetes Care. 2004;27:1699–705.

    Article  PubMed  Google Scholar 

  55. Carr DB, Utzschneider KM, Boyko EJ, Asberry PJ, Hull RL, Kodama K, et al. A reduced-fat diet and aerobic exercise in Japanese American with impaired glucose tolerance decreases intra-abdominal fat and improves sensitivity but not b-cell function. Diabetes. 2005;54:340–7.

    Article  CAS  PubMed  Google Scholar 

  56. Stewart KJ, Bacher AC, Hees PS, Tayback M, Ouyang P, Jan de Beur S. Exercise effects on bone mineral density Relationships to changes in fitness and fatness. Am J Prev Med. 2005;28:453–60.

    Article  PubMed  Google Scholar 

  57. Okura T, Nakata Y, Lee DJ, Ohkawara K, Tanaka K. Effects of aerobic exercise and obesity phenotype on abdominal fat reduction in response to weight loss. Int J Obes. 2005;29:1259–66.

    Article  CAS  Google Scholar 

  58. Alvarez GE, Davy BM, Ballard TP, Beske SD, Davy KP. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol Endocrinol Metab. 2005;289:E665–E669.

    Article  CAS  PubMed  Google Scholar 

  59. O’Leary VB, Marchetti CM, Krishnan RK, Stetzer BP, Gonzalez F, Kirwan JP. Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. J Appl Physiol. 2006;100:1584–9.

    Article  PubMed  Google Scholar 

  60. Ryan AS, Nicklas BJ, Berman DM. Aerobic exercise is necessary to improve glucose utilization with moderate weight loss in women. Obesity. 2006;14:1064–72.

    Article  CAS  PubMed  Google Scholar 

  61. Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Ann Intern Med. 2007;147:357–69.

    Article  PubMed  Google Scholar 

  62. Lee JW, Lee HR, Shim JY, Im JA, Lee DC. Abdominal visceral fat reduction is associated with favorable changes of serum retinol binding protein-4 in nondiabetic subjects. Endocr J. 2008;55:811–8.

    Article  PubMed  Google Scholar 

  63. Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol. 2008;106:5–11.

    Article  PubMed  Google Scholar 

  64. Brochu M, Malita MF, Messier V, Doucet E, Strychar I, Lavoie JM, et al. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab. 2009;94:3226–33.

    Article  CAS  PubMed  Google Scholar 

  65. Purnell JQ, Kahn SE, Samuels MH, Brandon D, Loriaux DL, Brunzell JD. Enhanced cortisol production rates, free cortisol, and 11b-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. Am J Physiol Endcrinol Metab. 2009;296:E351–E357.

    Article  CAS  Google Scholar 

  66. Kim MK, Tanaka K, Kim MJ, Matuso T, Endo T, Tomita T, et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis. 2009;19:760–6.

    Article  PubMed  Google Scholar 

  67. Goodpaster BH, Delany JP, Otto AD, Kuller L, Vockley J, South-Paul JE, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults. JAMA. 2010;304:1795–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rossi AP, Fantin F, Zamboni GA, Mazzali G, Zoico E, Bambace C, et al. Effect of moderate weight loss on hepatic, pancreatic and visceral lipids in obese subjects. Nutr Diabetes. 2012;2:e32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:480467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mouridsen MR, Bendsen NT, Astrup A, Haugaard SB, Binici Z, Sajadieh A. Modest weight loss in moderately overweight postmenopausal women improves heart rate variability. Eur J Prev Cardiol. 2012;20:671–7.

    Article  PubMed  Google Scholar 

  71. Ipavec-Levasseur S, Croci I, Choquette S, Byrne NM, Cowin G, O’Moore-Sullivan TM, et al. Effect of 1-h moderate intensity aerobic exercise on intramyocellular lipids of obese men before and after a lifestyle intervention. Appl Physiol Nutr Metab. 2015;40:1262–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ryan AS. Improvements in insulin sensitivity after aerobic exercise and weight loss in older women with a history of gestational diabetes and type 2 diabetes mellitus. Endoc Res. 2016;41:132–41.

    Article  CAS  Google Scholar 

  73. Zhang H, Tong TK, Qiu W, Zhang X, Zhou S, Liu Y, et al. Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diabetes Res. 2017;2017:5071740.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Drummen M, Dorenbos E, Vreugdenhil ACE, Raben A, Fogelholm M, Westerterp-Plantenga MS, et al. Long-term effects of increased protein intake after weight loss on intrahepatic lipid content and implications for insulin sensitivity: a PREVIEW study. Am J Physiol Endocrinol Metab. 2018;315:E885–E891.

    Article  CAS  PubMed  Google Scholar 

  75. Hintze LJ, Messier V, Lavoie ME, Brochu M, Lavoie JM, Prudhomme D, et al. A one-year resistance training program following weight loss has no significant impact on body composition and energy expenditure in postmenopausal women living with overweight and obesity. Physiol Behav. 2018;189:99–106.

    Article  CAS  PubMed  Google Scholar 

  76. van Gemert WA, Peeters PH, May AM, Doornbos AJH, Elias SG, van der Palen J, et al. Effect of diet with or without exercise on abdominal fat in postmenopausal women - a randomized trial. BMC Pub Health. 2019;19:174.

    Article  Google Scholar 

  77. Lovejoy JC, Bray GA, Bourgeois MO, Macchiavelli R, Rood JC, Greeson C, et al. Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women – A clinical research center study. J Clin Endocrinol Metab. 1996;81:2198–203.

    CAS  PubMed  Google Scholar 

  78. Schmitz KH, Hannan PJ, Stovitz SD, Bryan CJ, Warren M, Jensen MD. Strensth training and adiposity in premenopausal women: Strong, Healthy, and Empowered study. Am J Clin Nutr. 2007;86:566–72.

    Article  CAS  PubMed  Google Scholar 

  79. Irving BA, Davis CK, Brock DW, Weltman JY, Swift D, Barrett EJ, et al. Effect of exercise training intensity on abdominal visceral fat and body composition. Med Sci Sports Exerc. 2008;40:1863–72.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Coker RH, Williams RH, Yeo SE, Kortebein PM, Bodenner DL, Kern PA, et al. The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity. J Clin Endocrinol Metab. 2009;94:4258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brinkley TE, Ding J, Carr JJ, Nicklas BJ. Pericardial fat loss in postmenopausal women under conditions of equal energy deficit. Med Sci Sports Exerc. 2011;43:808–14.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ryan AS, Ge S, Blumentbal JB, Serra MC, Prior SJ, Goldberg AP. Aerobic exercise and weight loss reduce vascular markers of inflammation and improve insulin sensitivity in obese women. J Am Geriatr Soc. 2014;62:607–14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yoshimura E, Kumahara H, Tobina T, Matsuda T, Watabe K, Motono S, et al. Aerobic exercise attenuates the loss of skeletal muscle during energy restriction in adults with visceral adiposity. Obes Facts. 2014;7:26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Henriquez S, Monsalves-Alvarez M, Jimenez T, Barrera G, Hirsch S, de la Maza MP, et al. Effects of two training modalities on body fat and insulin resistance in postmenopausal women. J Strength Cond Res. 2017;31:2955–64.

    Article  PubMed  Google Scholar 

  85. Bolinder J, Kager L, Ostman J, Arner P. Differences at the receptor and postreceptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes. 1983;32:117–23.

    Article  CAS  PubMed  Google Scholar 

  86. Hellmer J, Marcus C, Sonnenfeld T, Arner P. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells. J Clin Endocrinol Metab. 1992;75:15–20.

    CAS  PubMed  Google Scholar 

  87. Martin CK, Heilbronn LK, de Jonge L, DeLany JP, Volaufova J, Anton SD, et al. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity. 2007;15:2964–73.

    Article  PubMed  Google Scholar 

  88. Hwaung P, Bosy-Westphal A, Muller MJ, Geisler C, Heo M, Thomas DM, et al. Obesity tissue: Composition, energy expenditure, and energy content in adult humans. Obesity. 2019;27:1472–81.

    CAS  PubMed  Google Scholar 

  89. Cavallo E, Armellini F, Zamboni M, Vicentini R, Milani MP, Bosello O. Resting metabolic rate, body composition and thyroid hormones. Horm Metab Res. 1990;22:632–5.

    Article  CAS  PubMed  Google Scholar 

  90. Muller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, et al. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015;102:807–19.

    Article  PubMed  Google Scholar 

  91. Tremblay A, Despres JP, Bouchard C. The effects of exercise-training on energy balance and adipose tissue morphology and metabolism. Sports Med. 1985;2:223–33.

    Article  CAS  PubMed  Google Scholar 

  92. Wedell-Neergaard AS, Lehrskov LL, Christensen RH, Legaard GE, Dorph E, Larsen MK, et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 2019;29:844–55.

    Article  CAS  PubMed  Google Scholar 

  93. Ji P, Drackley JK, Khan MJ, Loor JJ. Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. J Dly Sci. 2014;97:3441–8.

    CAS  Google Scholar 

  94. Powers SK, Howley ET. Exercise Physiology: Theory and Application to Fitness and Performance. Seventh Edition. New York: McGraw Hill; 2009. pp.72–105.

  95. Zouhal H, Lemoine-Morel S, Mathieu ME, Casazza GA, Jabbour G. Catecholamines and obesity: effects of exercise and training. Sports Med. 2013;43:591–600.

    Article  PubMed  Google Scholar 

  96. Abete N, Garg A. Heterogeneity in adipose tissue metabolism: causes, implications and management of regional adiposity. Prog Lipid Res. 1995;34:53–70.

    Article  Google Scholar 

  97. Janssen I, Ross R. Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int J Obes. 1999;23:1035–46.

    Article  CAS  Google Scholar 

  98. Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC, et al. Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity. 2007;15:2984–93.

    Article  PubMed  Google Scholar 

  99. Fogelholm M, van Marken Lichtenbelt W. Comparison of body composition methods: a literature analysis. Eur J Clin Nutr. 1997;51:495–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received no specific grants, fellowships, and gifts of materials from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: TA and JPL. Searched and analyzed the articles: TA and JSS. Wrote the manuscript: TA. Reviewed and critically revised the manuscript: JSS, ZWB, VW, RWS, YY and JPL. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Takashi Abe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T., Song, J.S., Bell, Z.W. et al. Comparisons of calorie restriction and structured exercise on reductions in visceral and abdominal subcutaneous adipose tissue: a systematic review. Eur J Clin Nutr 76, 184–195 (2022). https://doi.org/10.1038/s41430-021-00942-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00942-1

This article is cited by

Search

Quick links