Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Bioactive lipids and vascular disease

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Das UN. Essential fatty acid metabolism in patients with essential hypertension, diabetes mellitus and coronary heart disease. Prostaglandins Leukot Ess Fat Acids. 1995;52:387–91.

    Article  CAS  Google Scholar 

  2. Das UN. A defect in the activity of D6 and D5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Ess Fat Acids. 2005;72:343–50.

    Article  CAS  Google Scholar 

  3. Gromovsky AD, Schugar RC, Brown AL, Helsley RN, Burrows AC, Ferguson D, et al. Δ-5 fatty acid desaturase FADS1 impacts metabolic disease by balancing proinflammatory and proresolving lipid mediators. Arterioscler Thromb Vasc Biol. 2018;38:218–31. https://doi.org/10.1161/ATVBAHA.117.309660. Epub 2017 Oct 26.

    Article  CAS  PubMed  Google Scholar 

  4. Krishna Mohan I, Das UN. Prevention of chemically induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition. 2001;17:126–51. https://doi.org/10.1016/s0899-9007(00)00468-8.

    Article  CAS  PubMed  Google Scholar 

  5. Suresh Y, Das UN. Protective action of arachidonic acid against alloxan-induced cytotoxicity and diabetes mellitus. Prostaglandins Leukot Ess Fat Acids. 2001;64:37–52. https://doi.org/10.1054/plef.2000.0236.

    Article  CAS  Google Scholar 

  6. Ceylan-Isik A, Hünkar T, Aşan E, Kaymaz F, Ari N, Söylemezoğlu T, et al. (Antioxidants in Diabetes-Induced Complications) The ADIC Study Group. Cod liver oil supplementation improves cardiovascular and metabolic abnormalities in streptozotocin diabetic rats. J Pharm Pharm. 2007;59:1629–41. https://doi.org/10.1211/jpp.59.12.0004.

    Article  CAS  Google Scholar 

  7. Morimoto M, Lee EY, Zhang X, Inaba Y, Inoue H, Ogawa M, et al. Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia. Nutr Diabetes. 2016;6:e213 https://doi.org/10.1038/nutd.2016.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Folsom AR, Eckfeldt JH. Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: The Atherosclerosis Risk in communities (ARIC) Study. Nutr Metab Cardiovasc Dis. 2003;13:256–66.

    Article  CAS  Google Scholar 

  9. Zheng ZJ, Folsom AR, Ma J, Arnett DK, McGovern PG, Eckfeldt JH. Plasma fatty acid composition and 6-year incidence of hypertension in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol. 1999;150:492–500.

    Article  CAS  Google Scholar 

  10. Tram L, Bork CS, Venø SK, Lasota AN, Lundbye-Christensen S, Schmidt EB, et al. Intake of marine n-3 polyunsaturated fatty acids and the risk of incident peripheral artery disease. Eur J Clin Nutr, in press.

  11. Poorani R, Bhatt AN, Dwarakanath BS, Das UN. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharm. 2016;785:116–32.

    Article  CAS  Google Scholar 

  12. Hashimoto K Role of soluble epoxide hydrolase in metabolism of PUFAs in psychiatric and neurological disorders. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00036.

  13. Juan H, Sametz W. Dihomo-gamma-linolenic acid increases the metabolism of eicosapentaenoic acid in perfused vascular tissue. Prostaglandins Leukot Med. 1985;19:79–86.

    Article  CAS  Google Scholar 

  14. Hrelia S, Lopez Jimenez JA, Bordoni A, Nvarro SZ, Horrobin DF, Rossi CA, et al. Essential fatty acid metabolism in cultured rat cardiomyocytes in response to either N-6 or N-3 fatty acid supplementation. Biochem Biophys Res Commun. 1995;216:11–19.

    Article  CAS  Google Scholar 

  15. Bordoni A, Lopez-Jimenez JA, Spanò C, Biagi P, Horrobin DF, Hrelia S. Metabolism of linoleic and alpha-linolenic acids in cultured cardiomyocytes: effect of different N-6 and N-3 fatty acid supplementation. Mol Cell Biochem. 1996;157:217–22.

    Article  CAS  Google Scholar 

  16. Das UN. “Cell membrane theory of senescence” and the role of bioactive lipids in aging and aging associated diseases and their therapeutic implications. Biomolecules. 2021;11:241 https://doi.org/10.3390/biom11020241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naveen KVG, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate streptozotocin-induced cytotoxicity to RIN5F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition. 2017;35:61–80.

    Article  Google Scholar 

  18. Bathina S, Gundala NKV, Rhenghachar P, Polavarapu S, Hari AD, Sadananda M, et al. Resolvin D1 Ameliorates Nicotinamide-streptozotocin-induced Type 2 Diabetes Mellitus by its Anti-inflammatory Action and Modulating PI3K/Akt/mTOR Pathway in the Brain. Arch Med Res. 2020;51:492–503.

    Article  CAS  Google Scholar 

  19. Bathina S, Das UN. Resolvin D1 decreases severity of streptozotocin-induced type 1 diabetes mellitus by enhancing BDNF levels, reducing oxidative stress, and suppressing inflammation. Int J Mol Sci. 2021;22:1516.

    Article  CAS  Google Scholar 

  20. Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol. 2008;9:873–9.

    Article  CAS  Google Scholar 

  21. Naveen KVG, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo. BioFactors. 2017;43:251–71.

    Article  Google Scholar 

  22. Das UN. Cross talk among leukocytes, platelets, and endothelial cells and its relevance to atherosclerosis and coronary heart disease. Curr Nutr Food Sci. 2009;5:75–93.

    Article  CAS  Google Scholar 

  23. Levin M, Leppanen O, Evaldsson M, Wiklund O, Bondjers G, Bjornheden T. Mapping of ATP, glucose, glycogen, and lactate concentrations within the arterial wall. Arterioscler Thromb Vasc Biol. 2003;25:1801–7.

    Article  Google Scholar 

  24. Jennings RB, Kaltenbach JP, Sommens HM. Mitochondrial metabolism in ischemic injury. Arch Pathol. 1967;84:15–19.

    CAS  PubMed  Google Scholar 

  25. Santerre RF, Nicolosi RJ, Smith SC. Respiratory control in preatherosclerotic susceptible and resistant pigeon aortas. Exp Mol Pathol. 1974;20:397–406.

    Article  CAS  Google Scholar 

  26. Smith EB. The effects of age and of early atheromata on the intimal lipids in men. Biochem J. 1962;84:49.

    Google Scholar 

  27. Smith EB. Lipids carried by S1 0-12 lipoprotein in normal and hypercholesterolaemic serum. Lancet. 1962;2:530–4.

    Article  CAS  Google Scholar 

  28. Klein PD, Johnson RM. Phosphorous metabolism in unsaturated fatty acid-deficient rats. J Biol Chem. 1954;211:103–10.

    Article  CAS  Google Scholar 

  29. Hayashida T, Portman OW. Swelling of liver mitochondria from rats fed diets deficient in essential fatty acids. Proc Soc Exp Biol Med. 1960;103:656–9.

    Article  CAS  Google Scholar 

  30. Cornwell DG, Panganamala RV. Atherosclerosis an intracellular deficiency in essential fatty acids. Prog Lipid Res. 1981;20:365–76.

    Article  CAS  Google Scholar 

  31. Das UN. Essential fatty acids-a review. Curr Pharm Biotech. 2006;7:467–82.

    Article  CAS  Google Scholar 

  32. Bhatt DL, Budoff MJ. A Revolution in omega-3 fatty acid research. JACC. 2020;7:2098–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, U.N. Bioactive lipids and vascular disease. Eur J Clin Nutr 75, 1528–1531 (2021). https://doi.org/10.1038/s41430-021-00925-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00925-2

This article is cited by

Search

Quick links