Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

Low 25-hydroxyvitamin D is associated with arterial stiffness in Chinese with Type 2 diabetes mellitus

A Correction to this article was published on 12 May 2022

This article has been updated

Abstract

Objectives

Arterial stiffness (AS), one of the complications of diabetes, associated with many metabolic factors. This study aimed to investigate the association between 25-hydroxyvitamin D(25(OH)D) and AS in type 2 diabetes mellitus (T2DM).

Methods

We identified 1335 diabetic patients from the Department of Endocrinology, Shanghai Tenth People’s Hospital. Finally, 603 T2DM patients were included in the study. They were divided into two groups: AS group (baPWV ≥ 15,500 cm/s) and the control group (baPWV < 1550 cm/s).

Results

(1) Heart rate (HR) and systolic pressure (SBP) were higher while body weight and body mass index (BMI) were smaller in AS group than the control group (all P < 0.05). (2) Compared to patients without AS, patients with AS showed lower 25(OH)D and higher rate of 25(OH)D deficiency (42 ± 16 vs. 45 ± 17 mol/l, 68% vs. 64%, all P < 0.05). (3) BaPWV was negatively associated with 25(OH)D (r = −0.12, P = 0.004), while positively associated with age, duration of diabetes, HR, SBP, and low-density lipoprotein cholesterol and negatively associated with body weight and BMI (all P < 0.05). (4) Multiple linear regression showed that 25(OH)D was the negatively influencing factor of baPWV (β = −2.2, P = 0.01). Logistic regression showed that age and SBP were risk factor of AS (OR:1.07, 95% CI: 1.05–1.10, P < 0.001; OR:1.03, 95% CI: 1.02–1.04, P < 0.001) while 25(OH)D was protective factor of AS (OR:0.987, 95% CI: 0.976–0.998, P = 0.024).

Conclusions

T2DM patients with AS had lower 25(OH)D and higher rate of 25(OH)D deficiency. There was a negative relationship between 25(OH)D and AS assessed by baPWV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subject selection process.
Fig. 2: 25(OH)D deficiency and diabetes-related complications in T2DM with and without AS.
Fig. 3: 25(OH)D in T2DM with and without AS.

Similar content being viewed by others

Change history

References

  1. Norman PE, Davis WA, Bruce DG, Davis TM. Peripheral arterial disease and risk of cardiac death in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care. 2006;29:575–80.

    Article  PubMed  Google Scholar 

  2. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126:2890–909.

    Article  PubMed  Google Scholar 

  3. Miyata M. Noninvasive assessment of arterial stiffness using oscillometric methods: baPWV, CAVI, API, and AVI. J Atheroscler Thromb. 2018;25:790–1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dumor K, Shoemaker-Moyle M, Nistala R, Whaley-Connell A. Arterial stiffness in hypertension: an update. Curr Hypertens Rep. 2018;20:72.

    Article  PubMed  Google Scholar 

  5. Albu A, Para I, Porojan M. Uric acid and arterial stiffness. Ther Clin Risk Manag. 2020;16:39–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roman MJ, Devereux RB, Schwartz JE, Lockshin MD, Paget SA, Davis A, et al. Arterial stiffness in chronic inflammatory diseases. Hypertension. 2005;46:194–9.

    Article  CAS  PubMed  Google Scholar 

  7. Mahmud A, Feely J. Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension. 2005;46:1118–22.

    Article  CAS  PubMed  Google Scholar 

  8. Pirro M, Manfredelli MR, Helou RS, Scarponi AM, Schillaci G, Bagaglia F, et al. Association of parathyroid hormone and 25-OH-vitamin D levels with arterial stiffness in postmenopausal women with vitamin D insufficiency. J Atheroscler Thromb. 2012;19:924–31.

    Article  CAS  PubMed  Google Scholar 

  9. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96:365–408.

    Article  CAS  PubMed  Google Scholar 

  10. Dawson-Hughes B, Staten MA, Knowler WC, Nelson J, Vickery EM, LeBlanc ES, et al. Intratrial exposure to vitamin D and new-onset diabetes among adults with prediabetes: a secondary analysis from the vitamin D and type 2 diabetes (D2d) Study. Diabetes Care. 2020;43:2916–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014;43:205–32.

    Article  PubMed  Google Scholar 

  12. Depczynski B, Young T, White C. A high ankle-brachial index is associated with obesity and low serum 25-hydroxyvitamin D in patients with diabetes. J Clin Transl Endocrinol. 2018;11:7–10.

    PubMed  PubMed Central  Google Scholar 

  13. Sunbul M, Cincin A, Bozbay M, Mammadov C, Atas H, Ozsenel EB, et al. Arterial stiffness parameters associated with vitamin D deficiency and supplementation in patients with normal cardiac functions. Turk Kardiyol Dern Ars. 2016;44:281–8.

    PubMed  Google Scholar 

  14. Rodriguez AJ, Scott D, Srikanth V, Ebeling P. Effect of vitamin D supplementation on measures of arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. Clin Endocrinol. 2016;84:645–57.

    Article  CAS  Google Scholar 

  15. American Diabetes A. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43:S14–S31.

    Article  Google Scholar 

  16. Katakami N, Osonoi T, Takahara M, Saitou M, Matsuoka TA, Yamasaki Y, et al. Clinical utility of brachial-ankle pulse wave velocity in the prediction of cardiovascular events in diabetic patients. Cardiovasc Diabetol. 2014;13:128.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fowkes FG. The measurement of atherosclerotic peripheral arterial disease in epidemiological surveys. Int J Epidemiol. 1988;17:248–54.

    Article  CAS  PubMed  Google Scholar 

  18. Pugh PJ, Jones TH, Channer KS. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur Heart J. 2003;24:909–15.

    Article  CAS  PubMed  Google Scholar 

  19. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39:10–5.

    Article  CAS  PubMed  Google Scholar 

  20. Hilger J, Friedel A, Herr R, Rausch T, Roos F, Wahl DA, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014;111:23–45.

    Article  CAS  PubMed  Google Scholar 

  21. Pludowski P, Grant WB, Bhattoa HP, Bayer M, Povoroznyuk V, Rudenka E, et al. Vitamin D status in central europe. Int J Endocrinol. 2014;2014:589587.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Walsh JS, Bowles S, Evans AL. Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes. 2017;24:389–94.

    Article  CAS  PubMed  Google Scholar 

  23. Bellia A, Garcovich C, D’Adamo M, Lombardo M, Tesauro M, Donadel G, et al. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern Emerg Med. 2013;8:33–40.

    Article  PubMed  Google Scholar 

  24. Zhang M, Gao Y, Tian L, Zheng L, Wang X, Liu W, et al. Association of serum 25-hydroxyvitamin D3 with adipokines and inflammatory marker in persons with prediabetes mellitus. Clin Chim Acta. 2017;468:152–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pittas AG, Dawson-Hughes B, Sheehan P, Ware JH, Knowler WC, Aroda VR, et al. Vitamin D supplementation and prevention of Type 2 diabetes. N Engl J Med. 2019;381:520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shab-Bidar S, Neyestani TR, Djazayery A, Eshraghian MR, Houshiarrad A, Kalayi A, et al. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab Res Rev. 2012;28:424–30.

    Article  CAS  PubMed  Google Scholar 

  27. Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity. 2012;20:1444–8.

    Article  CAS  PubMed  Google Scholar 

  28. Krishna SM. Vitamin D as a protector of arterial health: potential role in peripheral arterial disease formation. Int J Mol Sci 2019;20:4907.

  29. Ganji V, Tangpricha V, Zhang X. Serum vitamin D concentration >/=75 nmol/L is related to decreased cardiometabolic and inflammatory biomarkers, metabolic syndrome, and diabetes; and increased cardiorespiratory fitness in US adults. Nutrients 2020;12:730.

  30. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380:33–44.

    Article  CAS  PubMed  Google Scholar 

  31. Barbarawi M, Kheiri B, Zayed Y, Barbarawi O, Dhillon H, Swaid B, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83000 individuals in 21 Randomized Clinical Trials: a meta-analysis. JAMA Cardiol. 2019;4:765–76.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mirhosseini N, Rainsbury J, Kimball SM. Vitamin D supplementation, serum 25(OH)D concentrations and cardiovascular disease risk factors: a systematic review and meta-analysis. Front Cardiovasc Med. 2018;5:87.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Raed A, Bhagatwala J, Zhu H, Pollock NK, Parikh SJ, Huang Y, et al. Dose responses of vitamin D3 supplementation on arterial stiffness in overweight African Americans with vitamin D deficiency: a placebo controlled randomized trial. PLoS ONE. 2017;12:e0188424.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zittermann A, Schleithoff SS, Koerfer R. Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr. 2005;94:483–92.

    Article  CAS  PubMed  Google Scholar 

  35. Equils O, Naiki Y, Shapiro AM, Michelsen K, Lu D, Adams J, et al. 1,25-Dihydroxyvitamin D inhibits lipopolysaccharide-induced immune activation in human endothelial cells. Clin Exp Immunol. 2006;143:58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Criqui MH, Aboyans V, Allison MA, Denenberg JO, Forbang N, McDermott MM, et al. Peripheral artery disease and aortic disease. Glob Heart. 2016;11:313–26.

    Article  PubMed  Google Scholar 

  39. Zhang YJ, Wu SL, Li HY, Zhao QH, Ning CH, Zhang RY. et al. [Comparison of arterial stiffness in non-hypertensive and hypertensive population of various age groups]. Zhonghua Xin Xue Guan Bing Za Zhi. 2018;46:56–63.

  40. Mirhosseini N, Vatanparast H, Kimball SM. The association between serum 25(OH)D status and blood pressure in participants of a community-based program taking vitamin D supplements. Nutrients 2017;9:1244.

  41. Huang J, Chen Z, Yuan J, Zhang C, Chen H, Wu W, et al. Association between body mass index (BMI) and brachial-ankle pulse wave velocity (baPWV) in males with hypertension: a community-based cross-section study in North China. Med Sci Monit. 2019;25:5241–57.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ogawa O, Hiraoka K, Watanabe T, Kinoshita J, Kawasumi M, Yoshii H, et al. Diabetic retinopathy is associated with pulse wave velocity, not with the augmentation index of pulse waveform. Cardiovasc Diabetol. 2008;7:11.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yun YW, Shin MH, Lee YH, Rhee JA, Choi JS. Arterial stiffness is associated with diabetic retinopathy in Korean type 2 diabetic patients. J Prev Med Public Health. 2011;44:260–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tanaka K, Kawai T, Saisho Y, Meguro S, Harada K, Satoh Y, et al. Relationship between stage of diabetic retinopathy and pulse wave velocity in japanese patients with type 2 diabetes. J Diabetes Res. 2013;2013:193514.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ha BK, Kim BG, Kim DH, Lee SI, Jung SM, Park JY, et al. Relationships between brachial-ankle pulse wave velocity and peripheral neuropathy in type 2 diabetes. Diabetes Metab J. 2012;36:443–51.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu N, Cai X, Ye K, Li Y, He M, Zhao W, et al. Association between brachial–ankle pulse wave velocity and cardiac autonomic neuropathy in type 2 diabetes. Diabetol Metab Syndr. 2014;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Si XB, Liu W. Relationship between blood lipid and arterial stiffness in hypertension. Clin Investig Med. 2019;42:E47–E55.

    Article  CAS  Google Scholar 

  48. Kinouchi M, Aihara K, Fujinaka Y, Yoshida S, Ooguro Y, Kurahashi K, et al. Diabetic conditions differentially affect the endothelial function, arterial stiffness and carotid atherosclerosis. J Atheroscler Thromb. 2014;21:486–500.

    Article  PubMed  Google Scholar 

  49. Fiorentino TV, Marini MA, Succurro E, Andreozzi F, Sesti G. Relationships of surrogate indexes of insulin resistance with insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and subclinical vascular damage. BMJ Open Diabetes Res Care. 2019;7:e000911.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marfella R, d'Amico M, Di Filippo C, Siniscalchi M, Sasso FC, Ferraraccio F, et al. The possible role of the ubiquitin proteasome system in the development of atherosclerosis in diabetes. Cardiovasc Diabetol 2007;6:35.

  51. Aghdam SY, Sheibani N. The ubiquitin–proteasome system and microvascular complications of diabetes. J Ophthalmic Vis Res. 2013;8:244–56.

    PubMed  Google Scholar 

  52. Alvarez-Diaz S, Larriba MJ, Lopez-Otin C, Munoz A. Vitamin D: proteases, protease inhibitors and cancer. Cell Cycle. 2010;9:32–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Key R&D Program of China (Nos. 2018YFC1314100, 2016YFC1305600) and Shanghai Municipality: Shanghai Outstanding Academic Leaders Plan (049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingchun Wang or Shen Qu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Chen, Y., Sheng, C. et al. Low 25-hydroxyvitamin D is associated with arterial stiffness in Chinese with Type 2 diabetes mellitus. Eur J Clin Nutr 75, 1645–1653 (2021). https://doi.org/10.1038/s41430-021-00870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00870-0

Search

Quick links