Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lipids and cardiovascular/metabolic health

Anthocyanin supplementation at different doses improves cholesterol efflux capacity in subjects with dyslipidemia—a randomized controlled trial



Numerous clinical trials have confirmed that supplementation with purified anthocyanins has favorable effects on metabolic diseases, but the dose–response of dyslipidemia to anthocyanin supplementation remains unclear. This study aimed to investigate the effect of anthocyanin supplementation in different doses on lipid profile.


We randomly assigned 176 dyslipidemic subjects aged 35–70 to three purified anthocyanin groups (40 mg/day, n = 45; 80 mg/day, n = 42; 320 mg/day, n = 43) and a placebo group (n = 46). Anthropometric parameters, serum lipid profiles, and cholesterol efflux capacity (CEC) were measured at baseline, and at the end of 6 and 12 weeks.


After 12 weeks of supplementation, significant differences in CEC (P = 0.033), high-density lipoprotein cholesterol (HDL-C) (P = 0.043), and apolipoprotein A-I (ApoA-I) (P = 0.022) were observed between four groups. Compared with placebo, 320 mg/day anthocyanin significantly increased CEC (35.8%, 95% CI: 11.5–60.2%; P = 0.004), HDL-C (0.07 mmol/L, 95% CI: 0.01–0.14; P = 0.003), and ApoA-I (0.07 g/L, 95% CI: 0.01–0.12; P = 0.008). Linear trend analysis showed that anthocyanin supplementation has a strong dose–response relationship with CEC (P = 0.002), HDL-C (P = 0.038), and ApoA-I (P = 0.023). Moreover, the enhancement of CEC showed positive correlations with the increase in HDL-C (r = 0.215, P < 0.01) and APOA-I (r = 0.327, P < 0.01).


Anthocyanin supplementation at 0–320 mg/day for 12 weeks enhances CEC in a dose–response manner in dyslipidemic subjects. Anthocyanin supplementation doses of 80–320 mg/day can improve serum HDL-C levels and HDL-induced CEC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The participant flowchart of the study.
Fig. 2
Fig. 3


  1. 1.

    Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9.

    CAS  PubMed  Google Scholar 

  2. 2.

    Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16.

    PubMed  Google Scholar 

  3. 3.

    Mehra R. Global public health problem of sudden cardiac death. J Electrocardiol. 2007;40:S118–22.

    PubMed  Google Scholar 

  4. 4.

    Moran A, Gu D, Zhao D, Coxson P, Wang YC, Chen CS, et al. Future cardiovascular disease in China: markov model and risk factor scenario projections from the coronary heart disease policy model-China. Circ Cardiovasc Qual Outcomes. 2010;3:243–52.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gordon DJ, Knoke J, Probstfield JL, Superko R, Tyroler HA. High-density lipoprotein cholesterol and coronary heart disease in hypercholesterolemic men: the Lipid Research Clinics Coronary Primary Prevention Trial. Circulation. 1986;74:1217–25.

    CAS  PubMed  Google Scholar 

  6. 6.

    Gordon DJ, Rifkind BM. High-density lipoprotein–the clinical implications of recent studies. N Engl J Med. 1989;321:1311–6.

    CAS  PubMed  Google Scholar 

  7. 7.

    Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    CAS  PubMed  Google Scholar 

  8. 8.

    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    CAS  PubMed  Google Scholar 

  9. 9.

    Duffy D, Rader DJ. Update on strategies to increase HDL quantity and function. Nat Rev Cardiol. 2009;6:455–63.

    PubMed  Google Scholar 

  10. 10.

    Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shea S, Stein JH, Jorgensen NW, McClelland RL, Tascau L, Shrager S, et al. Cholesterol mass efflux capacity, incident cardiovascular disease, and progression of carotid plaque. Arterioscler Thromb Vasc Biol. 2019;39:89–96.

    CAS  PubMed  Google Scholar 

  13. 13.

    Michos ED, McEvoy JW, Blumenthal RS. Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med. 2019;381:1557–67.

    CAS  PubMed  Google Scholar 

  14. 14.

    Del RD, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18:1818–92.

    Google Scholar 

  15. 15.

    Giampieri F, Forbes-Hernandez TY, Gasparrini M, Alvarez-Suarez JM, Afrin S, Bompadre S, et al. Strawberry as a health promoter: an evidence based review. Food Funct. 2015;6:1386–98.

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhu Y, Huang X, Zhang Y, Wang Y, Liu Y, Sun R, et al. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab. 2014;99:561–9.

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao Y, et al. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57:1524–33.

    CAS  PubMed  Google Scholar 

  18. 18.

    Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23:843–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Bassett DJ. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1396.

    PubMed  Google Scholar 

  20. 20.

    Yang YX. Chinese Food Composition Table. Beijing, China: Peking University Medical Press; 2009.

    Google Scholar 

  21. 21.

    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54.

    CAS  PubMed  Google Scholar 

  22. 22.

    Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, et al. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res. 2011;52:2332–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Yang L, Ling W, Yang Y, Chen Y, Tian Z, Du Z, et al. Role of purified anthocyanins in improving cardiometabolic risk factors in chinese men and women with prediabetes or early untreated diabetes—a randomized controlled trial. Nutrients. 2017;9:1104.

    PubMed Central  Google Scholar 

  24. 24.

    Hu YW, Ma X, Li XX, Liu XH, Xiao J, Mo ZC, et al. Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis. 2009;204:e35–43.

    CAS  PubMed  Google Scholar 

  25. 25.

    Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q, et al. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. J Biol Chem. 2005;280:36792–801.

    CAS  PubMed  Google Scholar 

  26. 26.

    Karlsen A, Retterstol L, Laake P, Paur I, Bohn SK, Sandvik L, et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137:1951–4.

    CAS  PubMed  Google Scholar 

  27. 27.

    Soltani R, Hakimi M, Asgary S, Ghanadian SM, Keshvari M, Sarrafzadegan N. Evaluation of the effects of vaccinium arctostaphylos L. fruit extract on serum lipids and hs-CRP levels and oxidative stress in adult patients with hyperlipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Altern Med. 2014;2014:217451.

    Google Scholar 

  28. 28.

    Marin-Echeverri C, Blesso CN, Fernandez ML, Galvis-Perez Y, Ciro-Gomez G, Nunez-Rangel V, et al. Effect of Agraz (Vaccinium meridionale Swartz) on high-density lipoprotein function and inflammation in women with metabolic syndrome. Antioxidants. 2018;7:185.

    PubMed Central  Google Scholar 

  29. 29.

    Naruszewicz M, Laniewska I, Millo B, Dluzniewski M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis. 2007;194:e179–84.

    CAS  PubMed  Google Scholar 

  30. 30.

    Millar CL, Norris GH, Jiang C, Kry J, Vitols A, Garcia C, et al. Long-term supplementation of black elderberries promotes hyperlipidemia, but reduces liver inflammation and improves HDL function and atherosclerotic plaque stability in apolipoprotein e-knockout mice. Mol Nutr Food Res. 2018;62:e1800404.

    PubMed  Google Scholar 

  31. 31.

    Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90:485–92.

    CAS  PubMed  Google Scholar 

  32. 32.

    Curtis PJ, van der Velpen V, Berends L, Jennings A, Feelisch M, Umpleby AM, et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am J Clin Nutr. 2019;109:1535–45.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Rye KA, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24:421–8.

    CAS  PubMed  Google Scholar 

  34. 34.

    Holmes MV, Millwood IY, Kartsonaki C, Hill MR, Bennett DA, Boxall R, et al. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol. 2018;71:620–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gorinstein S, Caspi A, Libman I, Lerner HT, Huang D, Leontowicz H, et al. Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem. 2006;54:1887–92.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hansen AS, Marckmann P, Dragsted LO, Finne NI, Nielsen SE, Gronbaek M. Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur J Clin Nutr. 2005;59:449–55.

    CAS  PubMed  Google Scholar 

  37. 37.

    Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137:1244–52.

    CAS  PubMed  Google Scholar 

  38. 38.

    Li G, Ling W, Lang J, Chen Y. The anthocyanidins contents of common vegetables and fruits in China. Acta Nutrimenta Sinica. 2010;32:592–7.

    CAS  Google Scholar 

  39. 39.

    Hassellund SS, Flaa A, Kjeldsen SE, Seljeflot I, Karlsen A, Erlund I, et al. Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebo-controlled crossover study. J Hum Hypertens. 2013;27:100–6.

    CAS  PubMed  Google Scholar 

  40. 40.

    Curtis PJ, Kroon PA, Hollands WJ, Walls R, Jenkins G, Kay CD, et al. Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J Nutr. 2009;139:2266–71.

    CAS  PubMed  Google Scholar 

  41. 41.

    McGhie TK, Walton MC. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res. 2007;51:702–13.

    CAS  PubMed  Google Scholar 

  42. 42.

    Tosheska TK, Topuzovska S. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatol J Cardiol. 2017;18:149–54.

    Google Scholar 

  43. 43.

    Yang L, Ling W, Du Z, Chen Y, Li D, Deng S, et al. Effects of Anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2017;8:684–93.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors are grateful to all the volunteers for their participation.


This work was supported by the National Natural Science Foundation of China (grant numbers 81730090 and 81973022) and the Guangzhou Science, Technology, and Innovation Commission (grant number 201804020045).

Author information




ZX, JX, and WL developed the overall research plan and had study oversight; YY and WL provided the research guidance; ZX, HZ, JP, QL, and XW participated in collecting the data and the biological samples; ZX, HX, XS, and HZ performed the measurements of CEC and analyzed the data; ZX, JX, and WL wrote the paper and had the primary responsibility for the final content. All authors read and approved the final paper.

Corresponding authors

Correspondence to Yan Yang or Wenhua Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Xie, J., Zhang, H. et al. Anthocyanin supplementation at different doses improves cholesterol efflux capacity in subjects with dyslipidemia—a randomized controlled trial. Eur J Clin Nutr 75, 345–354 (2021).

Download citation


Quick links