Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition in acute and chronic diseases

Skeletal muscle depletion and nutrition support affected postoperative complications in patients who underwent pancreatoduodenectomy

Abstract

Background

Body composition has been shown closely related to the outcome in surgical patients. The aim of the present study was to investigate whether preoperative skeletal muscle condition and postoperative nutrition would affect major complications in patients underwent pancreaticoduodenectomy (PD).

Methods

This retrospective study included 265 patients underwent PD. Body composition data was extracted from the L3 level of the preoperative CT scan. Univariable and multivariable regression analyses were performed to investigate correlations between body composition data and postoperative complications. Furthermore, a subgroup analysis was conducted to explore the relationship between postoperative nutrition strategy and the outcome.

Results

Of all the 265 patients, major complications occurred in 81 patients (30.6%). Cutoff values for skeletal muscle depletion were defined by ROC curve analysis from postoperative complications in skeletal muscle index (SMI) (male 47.32 cm2/m2 and female 40.65 cm2/m2). Univariable analysis and multivariable regression revealed age (OR 1.49, 95% CI 1.22–1.83, p = 0.026), SMI (OR 0.77, 95% CI 0.51–0.94, p = 0.015) and skeletal muscle density (SMD) (OR 0.85, 95% CI 0.64–1.03, p = 0.029) were independent predictors for major complications. Subgroup analysis showed the initial parenteral nutrition time (IPNT) (OR 1.89, 95% CI 1.43–2.49, p = 0.032) and average protein delivery (APD) (OR 0.76, 95% CI 0.53–0.89, p = 0.021) were significantly associated with major complications in patients with lower SMI.

Conclusions

Preoperative skeletal muscle index and density were independently associated with major complications in patients underwent PD. In patients with lower SMI, early parenteral nutrition and higher protein delivery were related to better outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nutritional effect to the postoperative complications.

Similar content being viewed by others

References

  1. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.

    Article  PubMed  Google Scholar 

  2. Cloyd JM, Nogueras-Gonzalez GM, Prakash LR, Petzel MQB, Parker NH, Ngo-Huang AT, et al. Anthropometric changes in patients with pancreatic cancer undergoing preoperative therapy and pancreatoduodenectomy. J Gastrointest Surg. 2018;22:703–12.

    Article  PubMed  Google Scholar 

  3. van Dijk DP, Bakens MJ, Coolsen MM, Rensen SS, van Dam RM, Bours MJ, et al. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle. 2017;8:317–26.

    Article  PubMed  Google Scholar 

  4. Gruber ES, Jomrich G, Tamandl D, Gnant M, Schindl M, Sahora K. Sarcopenia and sarcopenic obesity are independent adverse prognostic factors in resectable pancreatic ductal adenocarcinoma. PloS ONE. 2019;14:e0215915.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Linder N, Schaudinn A, Langenhan K, Krenzien F, Hau HM, Benzing C, et al. Power of computed-tomography-defined sarcopenia for prediction of morbidity after pancreaticoduodenectomy. BMC Med Imaging. 2019;19:32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jang M, Park HW, Huh J, Lee JH, Jeong YK, Nah YW, et al. Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI. Eur Radiol. 2019;29:2417–25.

    Article  PubMed  Google Scholar 

  7. Schroder FF, de Graaff F, Bouman DE, Brusse-Keizer M, Slump KH, Klaase JM. The preoperative CT-scan can help to predict postoperative complications after pancreatoduodenectomy. BioMed Res Int. 2015;2015:824525.

    PubMed  PubMed Central  Google Scholar 

  8. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31.

    Article  PubMed  Google Scholar 

  9. Haldar S, Chia SC, Henry CJ. Body composition in asians and caucasians: comparative analyses and influences on cardiometabolic outcomes. Adv Food Nutr Res. 2015;75:97–154.

    Article  PubMed  Google Scholar 

  10. Weimann A, Braga M, Carli F, Higashiguchi T, Hubner M, Klek S, et al. ESPEN guideline: clinical nutrition in surgery. Clin Nutr. 2017;36:623–50.

    Article  PubMed  Google Scholar 

  11. Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med. 2016;44:390–438.

    Article  PubMed  Google Scholar 

  12. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48–79.

    Article  PubMed  Google Scholar 

  13. Klein S, Kinney J, Jeejeebhoy K, Alpers D, Hellerstein M, Murray M, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. J Parenter Enter Nutr. 1997;21:133–56.

    Article  CAS  Google Scholar 

  14. Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. Jama. 2013;309:2130–8.

    Article  CAS  PubMed  Google Scholar 

  15. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izbicki J, et al. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery. 2005;138:8–13.

    Article  PubMed  Google Scholar 

  17. Jensen GL, Cederholm T, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. J Parenter Enter Nutr. 2019;43:32–40.

    Article  Google Scholar 

  18. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97:2333–8.

    Article  PubMed  Google Scholar 

  19. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997–1006.

    Article  PubMed  Google Scholar 

  20. Sandini M, Bernasconi DP, Fior D, Molinelli M, Ippolito D, Nespoli L, et al. A high visceral adipose tissue-to-skeletal muscle ratio as a determinant of major complications after pancreatoduodenectomy for cancer. Nutrition. 2016;32:1231–7.

    Article  PubMed  Google Scholar 

  21. Nishida Y, Kato Y, Kudo M, Aizawa H, Okubo S, Takahashi D, et al. Preoperative sarcopenia strongly influences the risk of postoperative pancreatic fistula formation after pancreaticoduodenectomy. J Gastrointest Surg. 2016;20:1586–94.

    Article  PubMed  Google Scholar 

  22. Carrara G, Pecorelli N, De Cobelli F, Cristel G, Damascelli A, Beretta L, et al. Preoperative sarcopenia determinants in pancreatic cancer patients. Clin Nutr. 2017;36:1649–53.

    Article  PubMed  Google Scholar 

  23. Tumas J, Tumiene B, Jurkeviciene J, Jasiunas E, Sileikis A. Nutritional and immune impairments and their effects on outcomes in early pancreatic cancer patients undergoing pancreatoduodenectomy. Clin Nutr. 2020;39:3385–94.

    Article  CAS  PubMed  Google Scholar 

  24. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteom Clin Appl. 2012;6:91–101.

    Article  CAS  Google Scholar 

  25. Amini N, Spolverato G, Gupta R, Margonis GA, Kim Y, Wagner D, et al. Impact total psoas volume on short- and long-term outcomes in patients undergoing curative resection for pancreatic adenocarcinoma: a new tool to assess sarcopenia. J Gastrointest Surg. 2015;19:1593–602.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peng P, Hyder O, Firoozmand A, Kneuertz P, Schulick RD, Huang D, et al. Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma. J Gastrointest Surg. 2012;16:1478–86.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang P, Peterson M, Su GL, Wang SC. Visceral adiposity is negatively associated with bone density and muscle attenuation. Am J Clin Nutr. 2015;101:337–43.

    Article  CAS  PubMed  Google Scholar 

  28. Sabel MS, Lee J, Cai S, Englesbe MJ, Holcombe S, Wang S. Sarcopenia as a prognostic factor among patients with stage III melanoma. Ann Surgical Oncol. 2011;18:3579–85.

    Article  Google Scholar 

  29. Miller BS, Ignatoski KM, Daignault S, Lindland C, Doherty M, Gauger PG, et al. Worsening central sarcopenia and increasing intra-abdominal fat correlate with decreased survival in patients with adrenocortical carcinoma. World J Surg. 2012;36:1509–16.

    Article  PubMed  Google Scholar 

  30. Antoun S, Lanoy E, Iacovelli R, Albiges-Sauvin L, Loriot Y, Merad-Taoufik M, et al. Skeletal muscle density predicts prognosis in patients with metastatic renal cell carcinoma treated with targeted therapies. Cancer. 2013;119:3377–84.

    Article  PubMed  Google Scholar 

  31. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89:104–10.

    Article  CAS  PubMed  Google Scholar 

  32. Dusseaux MM, Antoun S, Grigioni S, Beduneau G, Carpentier D, Girault C, et al. Skeletal muscle mass and adipose tissue alteration in critically ill patients. PloS ONE 2019;14:e0216991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taaffe DR, Henwood TR, Nalls MA, Walker DG, Lang TF, Harris TB. Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology. 2009;55:217–23.

    Article  PubMed  Google Scholar 

  34. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.

    Article  CAS  PubMed  Google Scholar 

  35. Brennan MF, Pisters PW, Posner M, Quesada O, Shike M. A prospective randomized trial of total parenteral nutrition after major pancreatic resection for malignancy. Ann Surg. 1994;220:436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandstrom R, Drott C, Hyltander A, Arfvidsson B, Schersten T, Wickstrom I, et al. The effect of postoperative intravenous feeding (TPN) on outcome following major surgery evaluated in a randomized study. Ann Surg. 1993;217:185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371:1673–84.

    Article  PubMed  CAS  Google Scholar 

  38. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001;74:534–42.

    Article  CAS  PubMed  Google Scholar 

  39. Weijs PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Twisk JW, Oudemans-van Straaten HM, et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit Care. 2016;20:386.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. Jama. 2013;310:1591–600.

    Article  CAS  PubMed  Google Scholar 

  42. Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381:385–93.

    Article  PubMed  Google Scholar 

  43. Casaer MP, Langouche L, Coudyzer W, Vanbeckevoort D, De Dobbelaer B, Guiza FG, et al. Impact of early parenteral nutrition on muscle and adipose tissue compartments during critical illness. Crit Care Med. 2013;41:2298–309.

    Article  CAS  PubMed  Google Scholar 

  44. Fuentes Padilla P, Martinez G, Vernooij RW, Urrutia G, Roque IFM, Bonfill Cosp X. Early enteral nutrition (within 48 h) versus delayed enteral nutrition (after 48 h) with or without supplemental parenteral nutrition in critically ill adults. Cochrane Database Syst Rev. 2019;2019:1–76.

    Google Scholar 

  45. Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1:621–9.

    Article  PubMed  Google Scholar 

  46. Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B, et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology. 2012;153:2267–76.

    Article  CAS  PubMed  Google Scholar 

  47. Weijs PJ, Looijaard WG, Beishuizen A, Girbes AR, Oudemans-van Straaten HM. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18:701.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C. Clinical outcomes related to protein delivery in a critically ill population: a multicenter, multinational observation study. J Parenter Enter Nutr. 2016;40:45–51.

    Article  CAS  Google Scholar 

  49. Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. J Parenter Enter Nutr. 2016;40:795–805.

    Article  CAS  Google Scholar 

  50. Doig GS, Simpson F, Bellomo R, Heighes PT, Sweetman EA, Chesher D, et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. Intensive Care Med. 2015;41:1197–208.

    Article  CAS  PubMed  Google Scholar 

  51. Ishibashi N, Plank LD, Sando K, Hill GL. Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med. 1998;26:1529–35.

    Article  CAS  PubMed  Google Scholar 

  52. Liebau F, Sundstrom M, van Loon LJ, Wernerman J, Rooyackers O. Short-term amino acid infusion improves protein balance in critically ill patients. Crit Care. 2015;19:106.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sundstrom Rehal M, Liebau F, Tjader I, Norberg A, Rooyackers O, Wernerman J. A supplemental intravenous amino acid infusion sustains a positive protein balance for 24 h in critically ill patients. Crit Care. 2017;21:298.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (81700788, 81800714).

Author information

Authors and Affiliations

Authors

Contributions

DZ, JZ, and KD conceived and designed the study. KD, XG, MG, and BF performed data collection and analysis. KD, LW drafted the article. All authors proved the final version of the article.

Corresponding authors

Correspondence to Jin Zhou or Dongming Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, K., Gao, X., Wei, L. et al. Skeletal muscle depletion and nutrition support affected postoperative complications in patients who underwent pancreatoduodenectomy. Eur J Clin Nutr 75, 1218–1226 (2021). https://doi.org/10.1038/s41430-020-00851-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00851-9

This article is cited by

Search

Quick links