Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutrition in acute and chronic diseases

Mediterranean diet and the hallmarks of ageing

Abstract

Ageing is a multifactorial process associated with reduced function and increased risk of morbidity and mortality. Recently, nine cellular and molecular hallmarks of ageing have been identified, which characterise the ageing process, and collectively, may be key determinants of the ageing trajectory. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Healthier dietary patterns reduce the risk of age-related diseases and increase longevity and may influence positively one or more of these hallmarks. The Mediterranean dietary pattern (MedDiet) is a plant-based eating pattern that was typical of countries such as Greece, Spain, and Italy pre-globalisation of the food system and which is associated with better health during ageing. Here we review the potential effects of a MedDiet on each of the nine hallmarks of ageing, and provide evidence that the MedDiet as a whole, or individual elements of this dietary pattern, may influence each hallmark positively—effects which may contribute to the beneficial effects of this dietary pattern on age-related disease risk and longevity. We also highlight potential avenues for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms through which the Mediterranean diet may impact the hallmarks of ageing.

Similar content being viewed by others

References

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:R741–52.

    Article  CAS  PubMed  Google Scholar 

  3. Mathers JC. Impact of nutrition on the ageing process. Br J Nutr. 2015;113:S18–22.

    Article  CAS  PubMed  Google Scholar 

  4. Stevenson EJ, Shannon OM, Minihane AM, Adamson A, Burns A, Hill T, et al. NuBrain: UK consortium for optimal nutrition for healthy brain ageing. Nutr Bull. 2020;45:223–9.

    Article  Google Scholar 

  5. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14:2274–84.

    Article  PubMed  Google Scholar 

  6. Shannon OM, Stephan BCM, Granic A, Lentjes M, Hayat S, Mulligan A, et al. Mediterranean diet adherence and cognitive function in older UK adults: the European Prospective Investigation into Cancer and Nutrition-Norfolk (EPIC-Norfolk) Study. Am J Clin Nutr. 2019;110:938–48.

    Article  PubMed  Google Scholar 

  7. Shannon OM, Stephan BCM, Minihane A-M, Mathers JC, Siervo M. Nitric oxide boosting effects of the Mediterranean diet: a potential mechanism of action. J Gerontol A Biol Sci Med Sci. 2018;73:902–4.

    Article  CAS  PubMed  Google Scholar 

  8. Hernández JM, Rentero MPZ. Bioactive compounds contained in Mediterranean Diet and their effects on neurodegenerative diseases. In: Shiomi N, editor. Current topics on superfoods. London: IntechOpen; 2018. pp. 13–32.

  9. Tosti V, Bertozzi B, Fontana L. Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci. 2018;73:318–26.

    Article  CAS  PubMed  Google Scholar 

  10. Del Rio D, Costa LG, Lean MEJ, Crozier A. Polyphenols and health: what compounds are involved? Nutr Metab Cardiovasc Dis. 2010;20:1–6.

    Article  PubMed  CAS  Google Scholar 

  11. Buttriss JL, Stokes CS. Dietary fibre and health: an overview. Nutr Bull. 2008;33:186–200.

    Article  Google Scholar 

  12. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siervo M, Scialò F, Shannon OM, Stephan BCM, Ashor AW. Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc. 2018;77:112–23.

    Article  CAS  PubMed  Google Scholar 

  14. Ashor AW, Shannon OM, Werner A-D, Scialo F, Gilliard CN, Cassel KS, et al. Effects of inorganic nitrate and vitamin C co-supplementation on blood pressure and vascular function in younger and older healthy adults: a randomised double-blind crossover trial. Clin Nutr. 2019;39:708–17.

    Article  PubMed  CAS  Google Scholar 

  15. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean Diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e34.

    Article  CAS  PubMed  Google Scholar 

  16. Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9.

    Article  PubMed  Google Scholar 

  17. Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr. 2016;7:889–904.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwingshackl L, Schwedhelm C, Galbete C, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients. 2017;9:1063.

    Article  PubMed Central  CAS  Google Scholar 

  19. Lasheras C, Fernandez S, Patterson AM. Mediterranean diet and age with respect to overall survival in institutionalized, nonsmoking elderly people. Am J Clin Nutr. 2000;71:987–92.

    Article  CAS  PubMed  Google Scholar 

  20. Trichopoulou A, Orfanos P, Norat T, Bueno-de-Mesquita B, Ocké MC, Peeters PH, et al. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ. 2005;330:991.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soltani S, Jayedi A, Shab-Bidar S, Becerra-Tomás N, Salas-Salvadó J. Adherence to the Mediterranean Diet in relation to all-cause mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2019;10:1029–39.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aguilera A, Gómez-González B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008;9:204–17.

    Article  CAS  PubMed  Google Scholar 

  23. Corella D, Ordovas J, Sorli J, Asensio E, Ortega C, Carrasco P, et al. Effect of the Mediterranean diet on DNA methylation of selected genes in the PREDIMED-Valencia intervention trial. FASEB J. 2015;29:LB242.

    Article  Google Scholar 

  24. Herrera-Marcos LV, Lou-Bonafonte JM, Arnal C, Navarro MA, Osada J. Transcriptomics and the Mediterranean diet: a systematic review. Nutrients. 2017;9:472.

    Article  PubMed Central  CAS  Google Scholar 

  25. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol. 2010;299:H18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arpón A, Riezu-Boj JI, Milagro FI, Marti A, Razquin C, Martínez-González MA, et al. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J Physiol Biochem. 2016;73:445–55.

    Article  PubMed  CAS  Google Scholar 

  27. Kaneko K, Akuta T, Sawa T, Kim HW, Fujii S, Okamoto T, et al. Mutagenicity of 8-nitroguanosine, a product of nitrative nucleoside modification by reactive nitrogen oxides, in mammalian cells. Cancer Lett. 2008;262:239–47.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor J-S, et al. Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res. 2000;28:4138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  CAS  PubMed  Google Scholar 

  30. Urquiaga I, Strobel P, Perez D, Martinez C, Cuevas A, Castillo O, et al. Mediterranean diet and red wine protect against oxidative damage in young volunteers. Atherosclerosis. 2010;211:694–9.

    Article  CAS  PubMed  Google Scholar 

  31. Vilahur G, Cubedo J, Padró T, Casaní L, Mendieta G, González A, et al. Intake of cooked tomato sauce preserves coronary endothelial function and improves apolipoprotein A-I and apolipoprotein J protein profile in high-density lipoproteins. Transl Res. 2015;166:44–56.

    Article  CAS  PubMed  Google Scholar 

  32. Erol Ö, Arda N, Erdem G. Phenols of virgin olive oil protects nuclear DNA against oxidative damage in HeLa cells. Food Chem Toxicol. 2012;50:3475–9.

    Article  CAS  PubMed  Google Scholar 

  33. Rangel-Zuñiga OA, Haro C, Tormos C, Perez-Martinez P, Delgado-Lista J, Marin C, et al. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage. Eur J Nutr. 2017;56:1597–607.

    Article  PubMed  CAS  Google Scholar 

  34. Calcabrini C, De Bellis R, Mancini U, Cucchiarini L, Stocchi V, Potenza L. Protective effect of juglans regia L. walnut extract against oxidative DNA damage. Plant Foods Hum Nutr. 2017;72:192–7.

    Article  CAS  PubMed  Google Scholar 

  35. Quiles JL, Ochoa JJ, Ramirez-Tortosa C, Battino M, Huertas JR, Martín Y, et al. Dietary fat type (virgin olive vs. sunflower oils) affects age-related changes in DNA double-strand-breaks, antioxidant capacity and blood lipids in rats. Exp Gerontol. 2004;39:1189–98.

    Article  CAS  PubMed  Google Scholar 

  36. Saieva C, Peluso M, Palli D, Cellai F, Ceroti M, Selvi V, et al. Dietary and lifestyle determinants of malondialdehyde DNA adducts in a representative sample of the Florence City population. Mutagenesis. 2016;31:475–80.

    Article  CAS  PubMed  Google Scholar 

  37. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.

    Article  Google Scholar 

  38. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boonekamp JJ, Simons MJP, Hemerik L, Verhulst S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell. 2013;12:330–2.

    Article  CAS  PubMed  Google Scholar 

  40. Astuti Y, Wardhana A, Watkins J, Wulaningsih W. PILAR Research Network. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget. 2017;8:45008–19.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meinilä J, Perälä M-M, Kautiainen H, Männistö S, Kanerva N, Shivappa N, et al. Healthy diets and telomere length and attrition during a 10-year follow-up. Eur J Clin Nutr. 2019;73:1352–60.

    Article  PubMed  Google Scholar 

  43. Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS ONE. 2013;8:e62781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, et al. Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. BMJ. 2014;349:g6674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gu Y, Honig LS, Schupf N, Lee JH, Luchsinger JA, Stern Y, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age. 2015;37:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. García-Calzón S, Martínez-González MA, Razquin C, Corella D, Salas-Salvadó J, Martínez JA, et al. Pro12Ala polymorphism of the PPARγ2 gene interacts with a Mediterranean diet to prevent telomere shortening in the PREDIMED-NAVARRA randomized trial. Circ Genom Precis Med. 2015;8:91–9.

    Google Scholar 

  47. Gomez-Delgado F, Delgado-Lista J, Lopez-Moreno J, Rangel-Zuñiga OA, Alcala-Diaz JF, Leon-Acuña A, et al. Telomerase RNA component genetic variants interact with the Mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study. J Gerontol A Biol Sci Med Sci. 2018;73:327–32.

    CAS  PubMed  Google Scholar 

  48. García-Calzón S, Zalba G, Ruiz-Canela M, Shivappa N, Hébert JR, Martínez JA, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015;102:897–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. García-Calzón S, Martínez-González MA, Razquin C, Arós F, Lapetra J, Martínez JA, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016;35:1399–405.

    Article  PubMed  CAS  Google Scholar 

  50. Cora’ D, Re A, Caselle M, Bussolino F. MicroRNA-mediated regulatory circuits: outlook and perspectives. Phys Biol. 2017;14:045001.

    Article  PubMed  CAS  Google Scholar 

  51. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:e1600584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39.

    Article  PubMed  Google Scholar 

  53. Mathers JC. Session 2: personalised nutrition. Epigenomics: a basis for understanding individual differences? Proc Nutr Soc. 2008;67:390–4.

    Article  PubMed  Google Scholar 

  54. Park JH, Yoo Y, Park YJ. Epigenetics: linking nutrition to molecular mechanisms in aging. Prev Nutr Food Sci. 2017;22:81–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lisanti S, Omar WAW, Tomaszewski B, Prins SD, Jacobs G, Koppen G, et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS ONE. 2013;8:e79044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Muka T, Koromani F, Portilla E, O’Connor A, Bramer WM, Troup J, et al. The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol. 2016;212:174–83.

    Article  PubMed  Google Scholar 

  57. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev. 2018;174:30–46.

    Article  CAS  PubMed  Google Scholar 

  58. Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Canto C, Marchese AE, et al. Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr. 2015;10:480.

    Article  PubMed  CAS  Google Scholar 

  59. Marques-Rocha JL, Milagro FI, Mansego ML, Zulet MA, Bressan J, Martínez JA. Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet-based weight loss program. Nutrition. 2016;32:48–55.

    Article  CAS  PubMed  Google Scholar 

  60. Tang B, Lei B, Qi G, Liang X, Tang F, Yuan S, et al. MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J Exp Clin Cancer Res. 2016;35:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Spolverini A, Fuchs G, Bublik DR, Oren M. let-7b and let-7c microRNAs promote histone H2B ubiquitylation and inhibit cell migration by targeting multiple components of the H2B deubiquitylation machinery. Oncogene. 2017;36:5819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma J, Rebholz CM, Braun KVE, Reynolds LM, Aslibekyan S, Xia R, et al. Whole blood DNA methylation signatures of diet are associated with cardiovascular disease risk factors and all-cause mortality. Circ Genomic Precis Med. 2020. https://doi.org/10.1161/CIRCGEN.119.002766.

  63. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84.

    Article  CAS  PubMed  Google Scholar 

  65. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111:15538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging. 2017;9:419–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gensous N, Garagnani P, Santoro A, Giuliani C, Ostan R, Fabbri C, et al. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. GeroScience. 2020;42:687–701.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, et al. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem. 2016;137:489–505.

    Article  CAS  PubMed  Google Scholar 

  70. Henning RH, Brundel BJJM. Proteostasis in cardiac health and disease. Nat Rev Cardiol. 2017;14:637–53.

    Article  CAS  PubMed  Google Scholar 

  71. Román GC, Jackson RE, Reis J, Román AN, Toledo JB, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol. 2019;175:705–23.

    Article  PubMed  Google Scholar 

  72. Fernández del Río L, Gutiérrez-Casado E, Varela-López A, Villalba JM. Olive oil and the hallmarks of aging. Molecules. 2016;21:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rigacci S, Miceli C, Nediani C, Berti A, Cascella R, Pantano D, et al. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget. 2015;6:35344–57.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Abuznait AH, Qosa H, Busnena BA, El Sayed KA, Kaddoumi A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem Neurosci. 2013;4:973–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kirkwood TBL. Evolution of ageing. Nature. 1977;270:301–4.

    Article  CAS  PubMed  Google Scholar 

  76. Kirkwood TB, Holliday R. The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci. 1979;205:531–46.

    Article  CAS  PubMed  Google Scholar 

  77. Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol. 2018;217:93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de Lucia C, Murphy T, Steves CJ, Dobson RJB, Proitsi P, Thuret S. Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: cellular and epidemiological evidence. Commun Biol. 2020;3:1–17.

    Article  Google Scholar 

  79. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RA. C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4.

    Article  CAS  PubMed  Google Scholar 

  80. Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 2005;19:2435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van der Horst A, Burgering BMT. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol. 2007;8:440–50.

    Article  PubMed  CAS  Google Scholar 

  82. van Heemst D. Insulin, IGF-1 and longevity. Aging Dis. 2010;1:147–57.

    PubMed  PubMed Central  Google Scholar 

  83. Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27:2276–88.

    Article  CAS  PubMed  Google Scholar 

  84. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.

    Article  CAS  PubMed  Google Scholar 

  87. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vasto S, Buscemi S, Barera A, Carlo MD, Accardi G, Caruso C. Mediterranean diet and healthy ageing: a Sicilian perspective. Gerontology. 2014;60:508–18.

    Article  CAS  PubMed  Google Scholar 

  89. Fontana L, Adelaiye RM, Rastelli AL, Miles KM, Ciamporcero E, Longo VD, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4:2451–61.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kazemi A, Speakman JR, Soltani S, Djafarian K. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: a systematic review and meta-analysis. Clin Nutr. 2020;39:1705–16.

    Article  CAS  PubMed  Google Scholar 

  91. Runchey SS, Pollak MN, Valsta LM, Coronado GD, Schwarz Y, Breymeyer KL, et al. Glycemic load effect on fasting and post-prandial serum glucose, insulin, IGF-1 and IGFBP-3 in a randomized, controlled feeding study. Eur J Clin Nutr. 2012;66:1146–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Curr Vasc Pharmacol. 2014;12:674–81.

    Article  PubMed  CAS  Google Scholar 

  93. de Lucia C, Murphy T, Thuret S. Emerging molecular pathways governing dietary regulation of neural stem cells during aging. Front Physiol. 2017;8:17.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Menendez JA, Joven J, Aragonès G, Barrajón-Catalán E, Beltrán-Debón R, Borrás-Linares I, et al. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil. Cell Cycle. 2013;12:555–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Russo MA, Sansone L, Polletta L, Runci A, Rashid MM, De Santis E, et al. Sirtuins and resveratrol-derived compounds: a model for understanding the beneficial effects of the Mediterranean diet. Endocr Metab Immune Disord Drug Targets. 2014;14:300–8.

    Article  CAS  PubMed  Google Scholar 

  98. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

    Article  CAS  PubMed  Google Scholar 

  99. Hekimi S, Lapointe J, Wen Y. Taking a ‘good’ look at free radicals in the aging process. Trends Cell Biol. 2011;21:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Park J-S, Davis RL, Sue CM. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep. 2018;18:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Birnbaum JH, Wanner D, Gietl AF, Saake A, Kündig TM, Hock C, et al. Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-β and tau pathology in iPSC-derived neurons from sporadic Alzheimer’s disease patients. Stem Cell Res. 2018;27:121–30.

    Article  CAS  PubMed  Google Scholar 

  102. Varela-Lopez A, Pérez-López MP, Ramirez-Tortosa CL, Battino M, Granados-Principal S, Ramirez-Tortosa MDC, et al. Gene pathways associated with mitochondrial function, oxidative stress and telomere length are differentially expressed in the liver of rats fed lifelong on virgin olive, sunflower or fish oils. J Nutr Biochem. 2018;52:36–44.

    Article  CAS  PubMed  Google Scholar 

  103. Amel N, Wafa T, Samia D, Yousra B, Issam C, Cheraif I, et al. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats. J Food Sci Technol. 2016;53:1454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schaffer S, Podstawa M, Visioli F, Bogani P, Müller WE, Eckert GP. Hydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo. J Agric Food Chem. 2007;55:5043–9.

    Article  CAS  PubMed  Google Scholar 

  105. Sun W, Wang X, Hou C, Yang L, Li H, Guo J, et al. Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology. 2017;113:556–66.

    Article  CAS  PubMed  Google Scholar 

  106. Peng Y, Hou C, Yang Z, Li C, Jia L, Liu J, et al. Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice. Mol Nutr Food Res. 2016;60:2331–42.

    Article  CAS  PubMed  Google Scholar 

  107. Afshordel S, Hagl S, Werner D, Röhner N, Kögel D, Bazan NG, et al. Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging-impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukot Essent Fat Acids. 2015;92:23–31.

    Article  CAS  Google Scholar 

  108. Johnson ML, Lalia AZ, Dasari S, Pallauf M, Fitch M, Hellerstein MK, et al. Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice. Aging Cell. 2015;14:734–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, et al. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging. 2017;9:1096–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Markoski MM, Garavaglia J, Oliveira A, Olivaes J, Marcadenti A. Molecular properties of red wine compounds and cardiometabolic benefits. Nutr Metab Insights. 2016;9:51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qiu L, Luo Y, Chen X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed Pharmacother. 2018;103:1585–91.

    Article  CAS  PubMed  Google Scholar 

  112. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22.

    Article  CAS  PubMed  Google Scholar 

  113. Markus MA, Morris BJ. Resveratrol in prevention and treatment of common clinical conditions of aging. Clin Interv Aging. 2008;3:331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Putti R, Sica R, Migliaccio V, Lionetti L. Diet impact on mitochondrial bioenergetics and dynamics. Front Physiol. 2015;6:109.

    Article  PubMed  PubMed Central  Google Scholar 

  115. von Zglinicki T, Wan T, Miwa S. Senescence in post-mitotic cells: a driver of aging? Antioxid Redox Signal. 2020. https://doi.org/10.1089/ars.2020.8048.

  116. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  117. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Investig. 2013;123:966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song S, Lam EW-F, Tchkonia T, Kirkland JL, Sun Y. Senescent cells: emerging targets for human aging and age-related diseases. Trends Biochem Sci. 2020;45:578–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16 Ink4a -positive cells shorten healthy lifespan. Nature. 2016;530:184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, et al. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis. 2011;218:44–52.

    Article  CAS  PubMed  Google Scholar 

  122. Medina-Remón A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis. 2015;25:60–7.

    Article  PubMed  CAS  Google Scholar 

  123. Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, et al. Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14–31.

    Article  PubMed  CAS  Google Scholar 

  124. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Del Bo’ C, Marino M, Martini D, Tucci M, Ciappellano S, Riso P, et al. Overview of human intervention studies evaluating the impact of the Mediterranean diet on markers of DNA damage. Nutrients. 2019;11. https://doi.org/10.3390/nu11020391.

  126. Corina A, Rangel-Zúñiga OA, Jiménez-Lucena R, Alcalá-Díaz JF, Quintana-Navarro G, Yubero-Serrano EM, et al. Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: The CORDIOPREV study. J Gerontol Ser A. 2019;74:770–7.

    Article  CAS  Google Scholar 

  127. Durani LW, Jaafar F, Tan JK, Tajul Arifin K, Mohd Yusof YA, Wan Ngah WZ, et al. Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts. Clin Ter. 2015;166:e365–73.

    CAS  PubMed  Google Scholar 

  128. López-Uriarte P, Nogués R, Saez G, Bulló M, Romeu M, Masana L, et al. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 2010;29:373–80.

    Article  PubMed  CAS  Google Scholar 

  129. Riso P, Martini D, Visioli F, Martinetti A, Porrini M. Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutr Cancer. 2009;61:232–7.

    Article  CAS  PubMed  Google Scholar 

  130. Moser B, Szekeres T, Bieglmayer C, Wagner K-H, Mišík M, Kundi M, et al. Impact of spinach consumption on DNA stability in peripheral lymphocytes and on biochemical blood parameters: results of a human intervention trial. Eur J Nutr. 2011;50:587–94.

    Article  CAS  PubMed  Google Scholar 

  131. Mihaylova MM, Sabatini DM, Yilmaz ÖH. Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell. 2014;14:292–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gruver A, Hudson L, Sempowski G. Immunosenescence of ageing. J Pathol. 2007;211:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci. 2010;65:1028–41.

    Article  PubMed  Google Scholar 

  135. Marin C, Delgado-Lista J, Ramirez R, Carracedo J, Caballero J, Perez-Martinez P, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. AGE. 2012;34:1309–16.

    Article  CAS  PubMed  Google Scholar 

  136. Cesari F, Marcucci R, Gori AM, Burgisser C, Francini S, Roberts AT, et al. Adherence to lifestyle modifications after a cardiac rehabilitation program and endothelial progenitor cells. A six-month follow-up study. Thromb Haemost. 2014;112:196–204.

    Article  CAS  PubMed  Google Scholar 

  137. Cesari F, Sofi F, Molino Lova R, Vannetti F, Pasquini G, Cecchi F, et al. Aging process, adherence to Mediterranean diet and nutritional status in a large cohort of nonagenarians: effects on endothelial progenitor cells. Nutr Metab Cardiovasc Dis. 2018;28:84–90.

    Article  CAS  PubMed  Google Scholar 

  138. Marin C, Ramirez R, Delgado-Lista J, Yubero-Serrano EM, Perez-Martinez P, Carracedo J, et al. Mediterranean diet reduces endothelial damage and improves the regenerative capacity of endothelium. Am J Clin Nutr. 2011;93:267–74.

    Article  CAS  PubMed  Google Scholar 

  139. Fernández JM, Rosado-Álvarez D, Da Silva Grigoletto ME, Rangel-Zúñiga OA, Landaeta-Díaz LL, Caballero-Villarraso J, et al. Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci. 2012;123:361–73.

    Article  CAS  Google Scholar 

  140. Shannon OM, Mendes I, Köchl C, Mazidi M, Ashor AW, Rubele S, et al. Mediterranean diet increases endothelial function in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2020;150:1151–9.

    Article  PubMed  Google Scholar 

  141. Liu H, Huang H, Li B, Wu D, Wang F, Zheng Xhua, et al. Olive oil in the prevention and treatment of osteoporosis after artificial menopause. Clin Interv Aging. 2014;9:2087–95.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fernández-Real JM, Bulló M, Moreno-Navarrete JM, Ricart W, Ros E, Estruch R, et al. A Mediterranean diet enriched with olive oil is associated with higher serum total osteocalcin levels in elderly men at high cardiovascular risk. J Clin Endocrinol Metab. 2012;97:3792–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Mittelbrunn M, Sánchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012;13:328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Leone A, Longo C, Trosko JE. The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication. Phytochem Rev. 2012;11:285–307.

    Article  CAS  Google Scholar 

  145. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  146. Cohen HJ, Pieper CF, Harris T, Rao KM, Currie MS. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci. 1997;52:M201–8.

    Article  CAS  PubMed  Google Scholar 

  147. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4–9.

    Article  PubMed  Google Scholar 

  148. Rosano C, Marsland AL, Gianaros PJ. Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging. Aging Dis. 2012;3:16–33.

    PubMed  Google Scholar 

  149. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106:506–12.

    Article  CAS  PubMed  Google Scholar 

  150. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14:877–82.

    Article  PubMed  Google Scholar 

  151. Szarc vel SzicK, Declerck K, Vidakovi M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7:33.

    Article  CAS  Google Scholar 

  152. Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:8426874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de C, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145:1–11.

    Article  PubMed  Google Scholar 

  155. Mena M-P, Sacanella E, Vazquez-Agell M, Morales M, Fitó M, Escoda R, et al. Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89:248–56.

    Article  CAS  PubMed  Google Scholar 

  156. Casas R, Sacanella E, Urpí-Sardà M, Chiva-Blanch G, Ros E, Martínez-González M-A, et al. The effects of the Mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PloS ONE. 2014;9:e100084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Salas-Salvadó J, Garcia-Arellano A, Estruch R, Marquez-Sandoval F, Corella D, Fiol M, et al. Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr. 2008;62:651–9.

    Article  PubMed  CAS  Google Scholar 

  158. Richard C, Royer M-M, Couture P, Cianflone K, Rezvani R, Desroches S, et al. Effect of the Mediterranean diet on plasma adipokine concentrations in men with metabolic syndrome. Metabolism. 2013;62:1803–10.

    Article  CAS  PubMed  Google Scholar 

  159. Sureda A, Bibiloni MDM, Julibert A, Bouzas C, Argelich E, Llompart I, et al. Adherence to the Mediterranean diet and inflammatory markers. Nutrients. 2018;10:62.

    Article  PubMed Central  CAS  Google Scholar 

  160. Perez-Martinez P, Lopez-Miranda J, Blanco-Colio L, Bellido C, Jimenez Y, Moreno JA, et al. The chronic intake of a Mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor kappaB activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis. 2007;194:e141–6.

    Article  CAS  PubMed  Google Scholar 

  161. Park Y-M, Zhang J, Steck SE, Fung TT, Hazlett LJ, Han K, et al. Obesity mediates the association between Mediterranean diet consumption and insulin resistance and inflammation in US adults. J Nutr. 2017;147:563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. BMJ. 2018;361:k2173.

    Article  Google Scholar 

Download references

Funding

This research was supported by the Alzheimer’s Research UK Prevention and Risk Reduction Fund (ARUK-PRRF2017-006) and the UK Nutrition Research Partnership (UK NRP), an initiative supported by the Medical Research Council (MRC), Biotechnology and Biological Sciences Research Council (BBSRC) and the National Institute for Health Research (NIHR) (MR/T001852/1).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived by MS, and designed by OMS, MS and JCM. OMS, AWA, FS, GS, CMR, JL, JM, AG, NR, LL, ES, BCMS, AMM, MS and JCM drafted and critically revised the paper, with OMS taking a lead role. NR created the schematic. All authors approved the final version of the paper prior to submission.

Corresponding author

Correspondence to Mario Siervo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shannon, O.M., Ashor, A.W., Scialo, F. et al. Mediterranean diet and the hallmarks of ageing. Eur J Clin Nutr 75, 1176–1192 (2021). https://doi.org/10.1038/s41430-020-00841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00841-x

This article is cited by

Search

Quick links