Emerging trends of technology-based dietary assessment: a perspective study

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    World Health Organization. Non-communicable diseases. 2018. https://www.who.int/nmh/publications/ncd-profiles-2018/en/.

  2. 2.

    Illner AK, Freisling H, Boeing H, Huybrechts I, Crispim SP, Slimani N. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol. 2012;41:1187–203.

    Article  Google Scholar 

  3. 3.

    Thompson FE, Subar AF. Dietary assessment methodology. 4th edn. Nutrition in the Prevention and Treatment of Disease. Elsevier Inc.; 2017;5–48. https://doi.org/10.1016/B978-0-12-802928-2.00001-1.

  4. 4.

    Herrera MCA, Chan CB. Narrative review of new methods for assessing food and energy intake. Nutrients. 2018;10:1–19.

    Google Scholar 

  5. 5.

    Doulah A, McCrory MA, Higgins JA, S E. A systematic review of technology-driven methodologies for estimation of energy intake. IEEE Access. 2019;7:49653–68.

    Article  Google Scholar 

  6. 6.

    Cade JE. Measuring diet in the 21st century: use of new technologies. Proc Nutr Soc. 2017;76:276–82.

    Article  Google Scholar 

  7. 7.

    Briggs MA, Rumbold PLS, Cockburn E, Russell M, Stevenson EJ. Agreement between two methods of dietary data collection in male adolescent academy-level soccer players. Nutrients. 2015;7:5948–60.

    Article  Google Scholar 

  8. 8.

    Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, et al. Addressing current criticism regarding the value of self-report dietary data. J Nutr. 2015;145:2639–45.

    CAS  Article  Google Scholar 

  9. 9.

    Boushey CJ, Spoden M, Zhu FM, Delp EJ, Kerr DA. New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods. Proc Nutr Soc. 2017;76:283–94.

    CAS  Article  Google Scholar 

  10. 10.

    Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014;36:e2014009

    Article  Google Scholar 

  11. 11.

    Thompson FE, Dixit-Joshi S, Potischman N, Dodd KW, Kirkpatrick SI, Kushi LH, et al. Comparison of interviewer-administered and automated self-administered 24-hour dietary recalls in 3 diverse integrated health systems. Am J Epidemiol. 2015;181:970–8.

    Article  Google Scholar 

  12. 12.

    Beasley J, Riley WT, Jean-Mary J. Accuracy of a PDA-based dietary assessment program. Nutrition. 2005;21:672–7.

    Article  Google Scholar 

  13. 13.

    Beasley JM, Riley WT, Davis A, Singh J. Evaluation of a PDA-based dietary assessment and intervention program: a randomized controlled trial. J Am Coll Nutr. 2008;27:280–6.

    Article  Google Scholar 

  14. 14.

    Fowles ER, Gentry B. The feasibility of personal digital assistants (PDAs) to collect dietary intake data in low-income pregnant women. J Nutr Educ Behav. 2008;40:374–7.

    Article  Google Scholar 

  15. 15.

    Fukuo W, Yoshiuchi K, Ohashi K, Togashi H, Sekine R, Kikuchi H, et al. Development of a hand-held personal digital assistant-based food diary with food photographs for Japanese subjects. J Am Diet Assoc. 2009;109:1232–6. https://doi.org/10.1016/j.jada.2009.04.013.

    Article  PubMed  Google Scholar 

  16. 16.

    Atienza AA, King AC, Oliveira BM, Ahn DK, Gardner CD. Using hand-held computer technologies to improve dietary intake. Am J Prev Med. 2008;34:514–8.

    Article  Google Scholar 

  17. 17.

    Labonté MÈ, Cyr A, Baril-Gravel L, Royer MM, Lamarche B. Validity and reproducibility of a web-based, self-administered food frequency questionnaire. Eur J Clin Nutr. 2012;66:166–73.

    Article  Google Scholar 

  18. 18.

    Kupis J, Johnson S, Hallihan G, Olstad DL. Assessing the usability of the automated self-administered dietary assessment tool (Asa24) among low-income adults. Nutrients. 2019;11:132.

    Article  Google Scholar 

  19. 19.

    Jia W, Li Y, Qu R, Baranowski T, Burke LE, Zhang H, et al. Automatic food detection in egocentric images using artificial intelligence technology. Public Health Nutr. 2019;22:1168–79.

    PubMed  Google Scholar 

  20. 20.

    Dong Y, Scisco J, Wilson M, Muth E, Hoover A. Detecting periods of eating during free-living by tracking wrist motion. IEEE J Biomed Heal Inform. 2014;18:1253–60.

    Article  Google Scholar 

  21. 21.

    Makeyev O, Lopez-Meyer P, Schuckers S, Besio W, Sazonov E. Automatic food intake detection based on swallowing sounds. Biomed Signal Process Control. 2012;7:649–56.

    Article  Google Scholar 

  22. 22.

    Fontana JM, Higgins JA, Schuckers SC, Bellisle F, Pan Z, Melanson EL, et al. Energy intake estimation from counts of chews and swallows. Appetite. 2015;85:14–21.

    Article  Google Scholar 

  23. 23.

    Farooq M, Doulah A, Parton J, McCrory MA, Higgins JA, Sazonov E. Validation of sensor-based food intake detection by multicamera video observation in an unconstrained environment. Nutrients. 2019;11:609.

  24. 24.

    Gemming L, Utter J, Ni Mhurchu C. Image-assisted dietary assessment: a systematic review of the evidence. J Acad Nutr Diet. 2015;115:64–77.

    Article  Google Scholar 

  25. 25.

    Rollo ME, Ash S, Lyons-Wall P, Russell AW. Evaluation of a mobile phone image-based dietary assessment method in adults with type 2 diabetes. Nutrients. 2015;7:4897–910.

    Article  Google Scholar 

  26. 26.

    Dong Y, Hoover A, Scisco J, Muth E. A new method for measuring meal intake in humans via automated wrist motion tracking. Appl Psychophysiol Biofeedback. 2012;37:205–15.

    Article  Google Scholar 

  27. 27.

    Scisco JL, Muth ER, Hoover AW. Examining the utility of a bite-count-based measure of eating activity in free-living human beings. J Acad Nutr Diet. 2014;114:464–9. https://doi.org/10.1016/j.jand.2013.09.017.

    Article  PubMed  Google Scholar 

  28. 28.

    Salley JN, Hoover AW, Wilson ML, Muth ER. Comparison between human and bite-based methods of estimating caloric intake. J Acad Nutr Diet. 2016;116:1568–77. https://doi.org/10.1016/j.jand.2016.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Eldridge AL, Piernas C, Illner AK, Gibney MJ, Gurinović MA, de Vries JHM, et al. Evaluation of new technology-based tools for dietary intake assessment—an ilsi europe dietary intake and exposure task force evaluation. Nutrients. 2019;11:55.

  30. 30.

    Sharp DB, Allman-Farinelli M. Feasibility and validity of mobile phones to assess dietary intake. Nutrition. 2014;30:1257–66. https://doi.org/10.1016/j.nut.2014.02.020.

    Article  PubMed  Google Scholar 

  31. 31.

    Stumbo PJ. New technology in dietary assessment: a review of digital methods in improving food record accuracy. Proc Nutr Soc. 2013;72:70–6.

    Article  Google Scholar 

  32. 32.

    Martin CK, Han H, Coulon SM, Allen HR, Champagne CM, Anton SD. A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method. Br J Nutr. 2009;101:446–56.

    CAS  Article  Google Scholar 

  33. 33.

    Martin CK, Correa JB, Han H, Allen HR, Rood JC, Champagne CM, et al. Validity of the remote food photography method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity. 2012;20:891–9. https://doi.org/10.1038/oby.2011.344/nature06264.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kawano Y, Yanai K. FoodCam: a real-time food recognition system on a smartphone. Multimed Tools Appl. 2015;74:5263–87.

    Article  Google Scholar 

  35. 35.

    Pettitt C, Liu J, Kwasnicki RM, Yang GZ, Preston T, Frost G. A pilot study to determine whether using a lightweight, wearable micro-camera improves dietary assessment accuracy and offers information on macronutrients and eating rate. Br J Nutr. 2016;115:160–7.

    CAS  Article  Google Scholar 

  36. 36.

    Fang S, Shao Z, Kerr DA, Boushey CJ, Zhu F. An end-to-end image-based automatic food energy estimation technique based on learned energy distribution images: Protocol and methodology. Nutrients. 2019;11:877.

    Article  Google Scholar 

  37. 37.

    Sun M, Burke LE, Mao ZH, Chen Y, Chen HC, Bai Y, et al. Ebutton: A wearable computer for health monitoring and personal assistance. Proc Des Autom Conf. 2014;2014:1–6.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Jishiqi. Jishiqi Intelligent Tableware. http://www.jishiqi.net.

  39. 39.

    Arens-Volland AG, Spassova L, Bohn T. Promising approaches of computer-supported dietary assessment and management-current research status and available applications. Int J Med Inf. 2015;84:997–1008. https://doi.org/10.1016/j.ijmedinf.2015.08.006.

    Article  Google Scholar 

  40. 40.

    NetEase. Huawei releases creative video: even Marmot is using Mate 20’s AI calorie recognition. NetEase Technology. 2018. http://tech.163.com/18/1204/16/E26R4SP600097U7H.html.

  41. 41.

    PConline. Bixby gains new skills: evaluating the calorie content of food at a glance. PConline. 2018. https://pcedu.pconline.com.cn/1067/10670468.html.

  42. 42.

    Amoutzopoulos B, Steer T, Roberts C, Cade JE, Boushey CJ, Collins CE, et al. Traditional methods v. new technologies - dilemmas for dietary assessment in large-scale nutrition surveys and studies: a report following an international panel discussion at the 9th International Conference on Diet and Activity Methods (ICDAM9), Brisban. J Nutr Sci. 2018;7:1–10.

    Article  Google Scholar 

  43. 43.

    Maimaiti M, Zhao X, Jia M, Ru Y, Zhu S. How we eat determines what we become: opportunities and challenges brought by food delivery industry in a changing world in China. Eur J Clin Nutr. 2018;72:1282–6.

    Article  Google Scholar 

  44. 44.

    Timon CM, Van Den Barg R, Blain RJ, Kehoe L, Evans K, Walton J, et al. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutr Res Rev. 2016;29:268–80.

    Article  Google Scholar 

  45. 45.

    Boushey CJ, Kerr DA, Wright J, Lutes KD, Ebert DS, Delp EJ. Use of technology in children’s dietary assessment. Eur J Clin Nutr. 2009;63:S50–7.

    Article  Google Scholar 

  46. 46.

    Hutchesson MJ, Rollo ME, Callister R, Collins CE. Self-monitoring of dietary intake by young women: online food records completed on computer or smartphone are as accurate as paper-based food records but more acceptable. J Acad Nutr Diet. 2015;115:87–94. https://doi.org/10.1016/j.jand.2014.07.036.

    Article  PubMed  Google Scholar 

  47. 47.

    Daugherty BL, Schap TRE, Ettienne-Gittens R, Zhu FM, Bosch M, Delp EJ, et al. Novel technologies for assessing dietary intake: evaluating the usability of a mobile telephone food record among adults and adolescents. J Med Internet Res. 2012;14:156–67.

    Article  Google Scholar 

  48. 48.

    Dao MC, Subar AF, Warthon-medina M, Cade J, Golley RK, Forouhi NG, et al. Dietary assessment toolkits: an overview. Public Health Nutr. 2019;22:404–18. Europe PMC Funders Group.

    Article  Google Scholar 

  49. 49.

    Tellspec Inc. Tellspec Enterprise Scanner. https://www.who.int/nmh/publications/ncd-profiles-2018/en/.

Download references


This work was supported by the grant from the Cyrus Tang Foundation (419600-11102), with additional grants from the China Medical Board (CMB) Collaborating Program (15-216 and 12-108).

Author information



Corresponding author

Correspondence to Shankuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Xu, X., Li, X. et al. Emerging trends of technology-based dietary assessment: a perspective study. Eur J Clin Nutr (2020). https://doi.org/10.1038/s41430-020-00779-0

Download citation