Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of ectopic adipose tissue: benefit or deleterious overflow?

Abstract

Ectopic adipose tissues (EAT) are present adjacent to many organs and have predominantly been described in overweight and obesity. They have been suggested to be related to fatty acid overflow and to have harmful effects. The objective of this semi-comprehensive review is to explore whether EAT may play a supportive role rather than interfering with its function, when the adjacent organ is challenged metabolically and functionally. EAT are present adhered to different tissues or organs, including lymph nodes, heart, kidney, ovaries and joints. In this review, we only focused on epicardial, perinodal, and peritumoral fat since these locations have been studied in more detail. Evidence was found that EAT volume significantly increased, associated with chronic metabolic challenges of the corresponding tissue. In vitro evidence revealed transfer of fatty acids from peritumoral and perinodal fat to the adjacent tissue. Cytokine expression in these EAT is upregulated when the adjacent tissue is challenged. In these tissues, glycolysis is enhanced, whereas fatty acid oxidation is increased. Together with more direct evidence, this shows that glucose is oxidized to a lesser degree, but used to support anabolic metabolism of the adjacent tissue. In these situations, browning occurs, resulting from upregulation of anabolic metabolism, stimulated by uncoupling proteins 1 and 2 and possibly 3. In conclusion, the evidence found is fragmented but the available data support the view that accumulation and browning of adipocytes adjacent to the investigated organs or tissues may be a normal physiological response promoting healing and (patho)physiological growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson PWF, Polonsky TS, Miedema MD, Khera A, Kosinski AS, Kuvin JT. Systematic review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1144–61.

  2. Porath A, Arbelle JE, Fund N, Cohen A, Mosseri M. Statin therapy: diabetes mellitus risk and cardiovascular benefit in primary prevention. Isr Med Assoc J. 2018;20:480–5.

    PubMed  Google Scholar 

  3. Yebyo HG, Aschmann HE, Kaufmann M, Puhan MA. Comparative effectiveness and safety of statins as a class and of specific statins for primary prevention of cardiovascular disease: a systematic review, meta-analysis, and network meta-analysis of randomized trials with 94,283 participants. Am Heart J. 2019;210:18–28.

    Article  CAS  PubMed  Google Scholar 

  4. Christensen RH, von Scholten BJ, Hansen CS, Jensen MT, Vilsboll T, Rossing P, et al. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2019;18:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DTL. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther. 2014;4:416–29.

    PubMed  PubMed Central  Google Scholar 

  6. Soeters PB, Grimble RF. Dangers, and benefits of the cytokine mediated response to injury and infection. Clin Nutr. 2009;28:583–96.

    Article  CAS  PubMed  Google Scholar 

  7. Soeters MR, Soeters PB. The evolutionary benefit of insulin resistance. Clin Nutr. 2012;31:1002–7.

    Article  CAS  PubMed  Google Scholar 

  8. Bouillaud F. UCP2, not a physiologically relevant uncoupler but a glucose sparing switch impacting ROS production and glucose sensing. Biochim Biophys Acta. 2009;1787:377–83.

    Article  CAS  PubMed  Google Scholar 

  9. Bouillaud F, Alves-Guerra M-C, Ricquier D. UCPs, at the interface between bioenergetics and metabolism. Biochim Biophys Acta—Mol Cell Res. 2016;1863:2443–56.

    Article  CAS  Google Scholar 

  10. Nubel T, Emre Y, Rabier D, Chadefaux B, Ricquier D, Bouillaud F. Modified glutamine catabolism in macrophages of Ucp2 knock-out mice. Biochim Biophys Acta. 2008;1777:48–54.

    Article  PubMed  CAS  Google Scholar 

  11. Casteilla L, Planat-Benard V, Dehez S, De Barros S, Barreau C, Andre M. Endothelial and cardiac regeneration from adipose tissues. Methods Mol Biol. 2011;702:269–87.

    Article  CAS  PubMed  Google Scholar 

  12. Casteilla L, Planat-Benard V, Bourin P, Laharrague P, Cousin B. Use of adipose tissue in regenerative medicine. Transfus Clin Biol. 2011;18:124–8.

    Article  CAS  PubMed  Google Scholar 

  13. Flaherty SE 3rd, Grijalva A, Xu X, Ables E, Nomani A, Ferrante AW Jr. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science. 2019;363:989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warburg O. Versuche an Ueberlebendem Carcinom-Gewebe. Klin Wochenschr Jahrgang. 1923;2:776–7.

    Article  Google Scholar 

  15. Crabtree HG. The carbohydrate metabolism of certain pathological overgrowths. Biochem J. 1928;22:1289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matthias A, Ohlson KB, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem. 2000;275:25073–81.

    Article  CAS  PubMed  Google Scholar 

  17. Porter C. Quantification of UCP1 function in human brown adipose tissue. Adipocyte. 2017;6:167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8:253–61.

    Article  CAS  PubMed  Google Scholar 

  19. Hankir MK, Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 2018;19:e46404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Giralt M, Villarroya F. Mitochondrial uncoupling and the regulation of glucose homeostasis. Curr Diabetes Rev. 2017;13:386–94.

    Article  CAS  PubMed  Google Scholar 

  21. Pecqueur C, Alves-Guerra C, Ricquier D, Bouillaud F. UPC2 a metabolic sensor coupling glucose oxidation to mitochondrial metabolism? IUBMB Life. 2009;61:762–7.

    Article  CAS  PubMed  Google Scholar 

  22. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta—Mol Cell Biol Lipids. 2013;1831:1533–41.

    Article  CAS  Google Scholar 

  24. Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kohl BA, Deutschman CS. The inflammatory response to surgery and trauma. Curr Opin Crit Care. 2006;12:325–32.

    Article  PubMed  Google Scholar 

  26. Hannon TS, Janosky J, Arslanian SA. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res. 2006;60:759–63.

    Article  CAS  PubMed  Google Scholar 

  27. Ball GD, Huang TT, Gower BA, Cruz ML, Shaibi GQ, Weigensberg MJ, et al. Longitudinal changes in insulin sensitivity, insulin secretion, and beta-cell function during puberty. J Pediatr. 2006;148:16–22.

    Article  CAS  PubMed  Google Scholar 

  28. Grimble RF. Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care. 2002;5:551–9.

    Article  CAS  PubMed  Google Scholar 

  29. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Investig. 2006;116:1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sreedhar A, Cassell T, Smith P, Lu D, Nam HW, Lane AN. et al. UCP2 Overexpression redirects glucose into anabolic metabolic pathways. Proteomics. 2019;19:e1800353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Corradi D, Maestri R, Callegari S, Pastori P, Goldoni M, Luong TV, et al. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 2004;13:313–6.

    Article  PubMed  Google Scholar 

  33. Pierdomenico SD, Pierdomenico AM, Cuccurullo F, Iacobellis G. Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol. 2013;111:73–8.

    Article  PubMed  Google Scholar 

  34. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res. 2014;102:205–13.

    Article  CAS  PubMed  Google Scholar 

  35. Thanassoulis G, Massaro JM, O’Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3:345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008;40:442–5.

    Article  CAS  PubMed  Google Scholar 

  37. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J, et al. Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis. 2010;209:573–8.

    Article  CAS  PubMed  Google Scholar 

  38. White CM, Sander S, Coleman CI, Gallagher R, Takata H, Humphrey C, et al. Impact of epicardial anterior fat pad retention on postcardiothoracic surgery atrial fibrillation incidence: the AFIST-III Study. J Am Coll Cardiol. 2007;49:298–303.

    Article  PubMed  Google Scholar 

  39. Park JS, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, et al. Echocardiographically measured epicardial fat predicts restenosis after coronary stenting. Scand Cardiovasc J. 2013;47:297–302.

    Article  PubMed  Google Scholar 

  40. Zhou Y, Zhang HW, Tian F, Chen JS, Han TW, Tan YH, et al. Influence of increased epicardial adipose tissue volume on 1-year in-stent restenosis in patients who received coronary stent implantation. J Geriatr Cardiol. 2016;13:768–75.

    PubMed  PubMed Central  Google Scholar 

  41. Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr. 2019;43:181–93.

    Article  CAS  PubMed  Google Scholar 

  42. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12:230–43.

    Article  CAS  PubMed  Google Scholar 

  43. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003;108:2460–6.

    Article  PubMed  Google Scholar 

  44. Cherian S, Lopaschuk GD, Carvalho E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endocrinol Metab. 2012;303:E937–49.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC, et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes. 2007;32:268–74.

    Article  CAS  Google Scholar 

  46. Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 2005;29:251–5.

    CAS  PubMed  Google Scholar 

  47. Sacks HS, Fain JN. Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol. 2011;38:879–87.

    Article  CAS  PubMed  Google Scholar 

  48. Mach L, Bedanova H, Soucek M, Karpisek M, Konecny T, Nemec P, et al. Impact of cardiopulmonary bypass surgery on cytokines in epicardial adipose tissue: comparison with subcutaneous fat. Perfusion. 2017;32:279–84.

    Article  PubMed  Google Scholar 

  49. Lim CT, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling. J Mol Endocrinol. 2010;44:87–97.

    Article  CAS  PubMed  Google Scholar 

  50. Lipovka Y, Konhilas JP. AMP-activated protein kinase signalling in cancer and cardiac hypertrophy. Cardiovasc Pharmacol Open Access. 2015;4:154.

    Google Scholar 

  51. Biere L, Behaghel V, Mateus V, Assuncao A Jr., Grani C, Ouerghi K, et al. Relation of quantity of subepicardial adipose tissue to infarct size in patients with ST-elevation myocardial infarction. Am J Cardiol. 2017;119:1972–8.

    Article  PubMed  Google Scholar 

  52. Gohbara M, Iwahashi N, Akiyama E, Maejima N, Tsukahara K, Hibi K, et al. Association between epicardial adipose tissue volume and myocardial salvage in patients with a first ST-segment elevation myocardial infarction: an epicardial adipose tissue paradox. J Cardiol. 2016;68:399–405.

    Article  PubMed  Google Scholar 

  53. Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14:1013–22.

    CAS  PubMed  Google Scholar 

  54. Wende AR, Brahma MK, McGinnis GR, Young ME. Metabolic origins of heart failure. JACC Basic Transl Sci. 2017;2:297–310.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Khawaja T, Greer C, Chokshi A, Chavarria N, Thadani S, Jones M, et al. Epicardial fat volume in patients with left ventricular systolic dysfunction. Am J Cardiol. 2011;108:397–401.

    Article  PubMed  Google Scholar 

  56. Bambace C, Telesca M, Zoico E, Sepe A, Olioso D, Rossi A, et al. Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc Pathol. 2011;20:e153–6.

    Article  CAS  PubMed  Google Scholar 

  57. Chechi K, Blanchard PG, Mathieu P, Deshaies Y, Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int J Cardiol. 2013;167:2264–70.

    Article  PubMed  Google Scholar 

  58. Mikamo H, Jiang M, Noro M, Suzuki Y, Hiruta N, Unoki-Kubota H, et al. Susceptibilities of epicardial and subcutaneous fat tissue for browning-gene expression and diet-induced volume reduction are different. Mol Med Rep. 2018;17:6542–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Perez-Belmonte LM, Moreno-Santos I, Gomez-Doblas JJ, Garcia-Pinilla JM, Morcillo-Hidalgo L, Garrido-Sanchez L, et al. Expression of epicardial adipose tissue thermogenic genes in patients with reduced and preserved ejection fraction heart failure. Int J Med Sci. 2017;14:891–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94:3611–5.

    Article  CAS  PubMed  Google Scholar 

  61. Gamboa R, Huesca-Gomez C, Lopez-Perez V, Posadas-Sanchez R, Cardoso-Saldana G, Medina-Urrutia A, et al. The UCP2 -866G/A, Ala55Val and UCP3 -55C/T polymorphisms are associated with premature coronary artery disease and cardiovascular risk factors in Mexican population. Genet Mol Biol. 2018;41:371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu X, Wieczorek S, Franke A, Yin H, Pierer M, Sina C, et al. Association of UCP2 -866 G/A polymorphism with chronic inflammatory diseases. Genes Immun. 2009;10:601–5.

    Article  CAS  PubMed  Google Scholar 

  63. Hoy AJ, Balaban S, Saunders DN. Adipocyte-tumor cell metabolic crosstalk in breast cancer. Trends Mol Med. 2017;23:381–92.

    Article  CAS  PubMed  Google Scholar 

  64. Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 2019;363:644–9.

    Article  CAS  PubMed  Google Scholar 

  65. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.

    Article  CAS  PubMed  Google Scholar 

  66. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Investig. 2013;123:3678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Biswas S, Lunec J, Bartlett K. Non-glucose metabolism in cancer cells-is it all in the fat? Cancer Metastasis Rev. 2012;31:689–98.

    Article  CAS  PubMed  Google Scholar 

  68. Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol—Gastrointest Liver Physiol. 2007;292:G923–9.

    Article  CAS  PubMed  Google Scholar 

  69. Manabe Y, Toda S, Miyazaki K, Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol. 2003;201:221–8.

    Article  PubMed  Google Scholar 

  70. Ribeiro R, Monteiro C, Cunha V, Oliveira MJ, Freitas M, Fraga A, et al. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res. 2012;31:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Obeid J-P, Stoyanova R, Kwon D, Patel M, Padgett K, Slingerland J. Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat. Clin Transl Oncol. 2017;19:211–8.

    Article  PubMed  Google Scholar 

  72. Meza-Perez S, Randall TD. Immunological functions of the omentum. Trends Immunol. 2017;38:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65.

    Article  CAS  PubMed  Google Scholar 

  74. Xiong Y, McDonald LT, Russell DL, Kelly RR, Wilson KR, Mehrotra M, et al. Hematopoietic stem cell-derived adipocytes and fibroblasts in the tumor microenvironment. World J Stem Cells. 2015;7:253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pitt MA. Overexpression of uncoupling protein-2 in cancer: metabolic and heat changes, inhibition and effects on drug resistance. Inflammopharmacology. 2015;23:365–9.

    Article  CAS  PubMed  Google Scholar 

  76. Giatromanolaki A, Balaska K, Kalamida D, Kakouratos C, Sivridis E, Koukourakis MI. Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism. Cancer Biol Med. 2017;14:396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sreedhar A, Petruska P, Miriyala S, Panchatcharam M, Zhao Y. UCP2 overexpression enhanced glycolysis via activation of PFKFB2 during skin cell transformation. Oncotarget. 2017;8:95504–15.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Samudio I, Fiegl M, McQueen T, Clise-Dwyer K, Andreeff M. The warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Res. 2008;68:5198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: Molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta—Mol Cell Biol Lipids. 2010;1801:381–91.

    Article  CAS  Google Scholar 

  82. Corbet C, Feron O. Emerging roles of lipid metabolism in cancer progression. Curr Opin Clin Nutr. Metab Care. 2017;20:254–60.

    Article  CAS  PubMed  Google Scholar 

  83. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene. 2000;19:5173–81.

    Article  CAS  PubMed  Google Scholar 

  84. Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 2017;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wen Y-A, Xing X, Harris JW, Zaytseva YY, Mitov MI, Napier DL, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 2017;8:e2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 2010;30:369–74.

    PubMed  Google Scholar 

  87. Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, et al. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate. 2005;63:316–23.

    Article  CAS  PubMed  Google Scholar 

  88. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Investig. 2010;120:142–56.

    Article  CAS  PubMed  Google Scholar 

  89. Linher-Melville K, Zantinge S, Sanli T, Gerstein H, Tsakiridis T, Singh G. Establishing a relationship between prolactin and altered fatty acid beta-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells. BMC Cancer. 2011;11:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Narita S, Tsuchiya N, Wang L, Matsuura S, Ohyama C, Satoh S, et al. Association of lipoprotein lipase gene polymorphism with risk of prostate cancer in a Japanese population. Int J Cancer. 2004;112:872–6.

    Article  CAS  PubMed  Google Scholar 

  91. Lin Y, Leung G, Louie D, Bogoslowski A, Ross J, Kubes P, et al. Perinodal adipose tissue participates in immune protection through a lymphatic vessel-independent route. J Immunol. 2018;201:296-305.

  92. Knight SC. Specialized perinodal fat fuels and fashions immunity. Immunity. 2008;28:135–8.

    Article  CAS  PubMed  Google Scholar 

  93. Pond CM. Adipose tissue and the immune system. Prostaglandins Leukot Ess Fat Acids. 2005;73:17–30.

    Article  CAS  Google Scholar 

  94. Mattacks CA, Pond CM. Interactions of noradrenalin and tumour necrosis factor α, interleukin 4 and interleukin 6 in the control of lipolysis from adipocytes around lymph nodes. Cytokine. 1999;11:334–46.

    Article  CAS  PubMed  Google Scholar 

  95. Mattacks CA, Sadler D, Pond CM. The cellular structure and lipid/protein composition of adipose tissue surrounding chronically stimulated lymph nodes in rats. J Anat. 2003;202:551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pond CM, Mattacks CA. The activation of the adipose tissue associated with lymph nodes during the early stages of an immune response. Cytokine. 2002;17:131–9.

    Article  CAS  PubMed  Google Scholar 

  97. Pond CM. Paracrine relationships between adipose and lymphoid tissues: implications for the mechanism of HIV-associated adipose redistribution syndrome. Trends Immunol. 2003;24:13–8.

    Article  CAS  PubMed  Google Scholar 

  98. Pond CM, Mattacks CA. The source of fatty acids incorporated into proliferating lymphoid cells in immune-stimulated lymph nodes. Br J Nutr. 2003;89:375–83.

    Article  CAS  PubMed  Google Scholar 

  99. White L, Holyoak R, Sant J, Hartnell N, Mullan J. The effect of infrapatellar fat pad resection on outcomes post-total knee arthroplasty: a systematic review. Arch Orthop Trauma Surg. 2016;136:701–8.

    Article  CAS  PubMed  Google Scholar 

  100. Sacks HS, Fain JN, Bahouth SW, Budge H, Symonds ME, Ojha S, et al. Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab. 2013;98:E1448–55.

    Article  CAS  PubMed  Google Scholar 

  101. Bouillaud F, Casteilla L, Klaus S, Miroux B. Editorial. Biochimie. 2017;134:1–2.

    Article  CAS  PubMed  Google Scholar 

  102. Esteves P, Pecqueur C, Ransy C, Esnous C, Lenoir V, Bouillaud F, et al. Mitochondrial retrograde signaling mediated by UCP2 inhibits cancer cell proliferation and tumorigenesis. Cancer Res. 2014;74:3971–82.

    Article  CAS  PubMed  Google Scholar 

  103. Pecqueur C, Bui T, Gelly C, Hauchard J, Barbot C, Bouillaud F, et al. Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization. FASEB J. 2008;22:9–18.

    Article  CAS  PubMed  Google Scholar 

  104. Edwards KS, Ashraf S, Lomax TM, Wiseman JM, Hall ME, Gava FN, et al. Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion. Basic Res Cardiol. 2018;113:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hilse KE, Rupprecht A, Egerbacher M, Bardakji S, Zimmermann L, Wulczyn A, et al. The expression of uncoupling protein 3 coincides with the fatty acid oxidation type of metabolism in adult murine heart. Front Physiol. 2018;9:747.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gosker HR, Schrauwen P, Broekhuizen R, Hesselink MK, Moonen-Kornips E, Ward KA, et al. Exercise training restores uncoupling protein-3 content in limb muscles of patients with chronic obstructive pulmonary disease. Am J Physiol Endocrinol Metab. 2006;290:E976–81.

    Article  CAS  PubMed  Google Scholar 

  107. Soeters MR, Soeters PB, Schooneman MG, Houten SM, Romijn JA. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol—Endocrinol Metab. 2012;303:E1397–407.

    Article  CAS  PubMed  Google Scholar 

  108. Emre Y, Nubel T. Uncoupling protein UCP2: When mitochondrial activity meets immunity. FEBS Lett. 2010;584:1437–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: TJIDM, PBS, and GHK. Drafting the article: PBS, TJIDM. Revising it critically for important intellectual content: GHK. Final approval of the version to be submitted: TJIDM, PBS, and GHK.

Corresponding author

Correspondence to Toon J. I. De Munck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Munck, T.J.I., Soeters, P.B. & Koek, G.H. The role of ectopic adipose tissue: benefit or deleterious overflow?. Eur J Clin Nutr 75, 38–48 (2021). https://doi.org/10.1038/s41430-020-00713-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-00713-4

This article is cited by

Search

Quick links