Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidemiology

Polyunsaturated fatty acids in middle childhood and externalizing and internalizing behavior problems in adolescence

Abstract

Background/Objectives

We sought to determine the associations of n-3 and n-6 polyunsaturated fatty acids (PUFA) in middle childhood with externalizing and internalizing behavior problems in adolescence.

Subjects/Methods

Using gas-liquid chromatography, we quantified n-3 and n-6 PUFA in serum samples of 444 Colombian schoolchildren aged 5–12 years at the time of enrollment into a cohort study. After a median 6 years, adolescent externalizing and internalizing behavior problems were determined with the Youth Self Report (YSR) questionnaire. We estimated adjusted mean behavior problem score differences with 95% confidence intervals (CIs) between quartiles of each PUFA using multivariable linear regression. We also considered as exposures the Δ6-desaturase (D6D) and Δ5-desaturase (D5D) enzyme activity indices.

Results

Docosahexaenoic acid (DHA) was positively associated with externalizing problems; every standard deviation (SD) of DHA concentration was associated with an adjusted one unit higher externalizing problem score (95% CI: 0.1, 1.9). The D5D enzyme activity index was inversely related to externalizing problem scores. Alpha-linolenic acid concentration was positively associated with internalizing problem scores, whereas adrenic acid was inversely related to this outcome.

Conclusions

Serum PUFA in middle childhood were related to behavior problems in adolescence. Some of these associations might reflect the role of D5D enzyme activity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Hankin BL, Abramson LY, Moffitt TE, Silva PA, McGee R, Angel KE. Development of depression from preadolescent to young adulthood: emerging gender differences in a 10-year longitudinal study. J Abnorm Psychol. 1998;107:128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Veldman K, Bultmann U, Almansa J, Reijneveld SA. Childhood adversities and educational attainment in young adulthood: the role of mental health problems in adolescence. J Adolesc Health. 2015;57:462–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Roza SJ, Hofstra MB, van der Ende J, Verhulst FC. Stable prediction of mood and anxiety disorders based on behavioral and emotional problems in childhood: a 14-year follow-up during childhood, adolescence, and young adulthood. Am J Psychiatry. 2003;160:2112–21.

    Article  Google Scholar 

  4. 4.

    Aebi M, Giger J, Plattner B, Metzke CW, Steinhausen HC. Problem coping skills, psychosocial adversities and mental health problems in children and adolescents as predictors of criminal outcomes in young adulthood. Eur Child Adolesc Psychiatry. 2014;23:283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992;120:S129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Ess Fat Acids. 2006;75:329–49.

    Article  CAS  Google Scholar 

  7. 7.

    Davis PF, Ozias MK, Carlson SE, Reed GA, Winter MK, McCarson KE, et al. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status. Nutr Neurosci. 2010;13:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW. Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Ess Fat Acids. 2010;83:185–91.

    Article  CAS  Google Scholar 

  9. 9.

    Deyama S, Ishikawa Y, Yoshikawa K, Shimoda K, Ide S, Satoh M, et al. Resolvin D1 and D2 reverse lipopolysaccharide-induced depression-like behaviors through the mTORC1 signaling pathway. Int J Neuropsychopharmacol. 2017;20:575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain: a matter of fat. J Neurochem. 2007;101:577–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    de Jong C, Kikkert HK, Seggers J, Boehm G, Decsi T, Hadders-Algra M. Neonatal fatty acid status and neurodevelopmental outcome at 9 years. Early Hum Dev. 2015;91:587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kohlboeck G, Glaser C, Tiesler C, Demmelmair H, Standl M, Romanos M, et al. Effect of fatty acid status in cord blood serum on children’s behavioral difficulties at 10 y of age: results from the LISAplus Study. Am J Clin Nutr. 2011;94:1592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Krabbendam L, Bakker E, Hornstra G, van Os J. Relationship between DHA status at birth and child problem behaviour at 7 years of age. Prostaglandins Leukot Ess Fat Acids. 2007;76:29–34.

    Article  CAS  Google Scholar 

  15. 15.

    Loomans EM, Van den Bergh BR, Schelling M, Vrijkotte TG, van Eijsden M. Maternal long-chain polyunsaturated fatty acid status during early pregnancy and children’s risk of problem behavior at age 5-6 years. J Pediatr. 2014;164:762–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Steenweg-de Graaff JC, Tiemeier H, Basten MG, Rijlaarsdam J, Demmelmair H, Koletzko B, et al. Maternal LC-PUFA status during pregnancy and child problem behavior: the Generation R Study. Pedia Res. 2015;77:489–97.

    Article  CAS  Google Scholar 

  17. 17.

    Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH. Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry. 2006;163:1098–1100.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tammam JD, Steinsaltz D, Bester DW, Semb-Andenaes T, Stein JF. A randomised double-blind placebo-controlled trial investigating the behavioural effects of vitamin, mineral and n-3 fatty acid supplementation in typically developing adolescent schoolchildren. Br J Nutr. 2016;115:361–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Raine A, Portnoy J, Liu J, Mahoomed T, Hibbeln JR. Reduction in behavior problems with omega-3 supplementation in children aged 8-16 years: a randomized, double-blind, placebo-controlled, stratified, parallel-group trial. J Child Psychol Psychiatry. 2015;56:509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mocking RJ, Harmsen I, Assies J, Koeter MW, Ruhe HG, Schene AH. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry. 2016;6:e756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72:1577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Arsenault JE, Mora-Plazas M, Forero Y, Lopez-Arana S, Marin C, Baylin A, et al. Provision of a school snack is associated with vitamin B-12 status, linear growth, and morbidity in children from Bogota, Colombia. J Nutr. 2009;139:1744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Harrison GG, Stormer A, Herman DR, Winham DM. Development of a Spanish-language version of the U.S. household food security survey module. J Nutr. 2003;133:1192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Alvarez MC, Estrada A, Montoya EC, Melgar-Quiñonez H. Validation of a household food security scale in Antioquia, Colombia. Salud Publica Mex. 2006;48:474–81.

    Article  Google Scholar 

  25. 25.

    Robinson SL, Marín C, Oliveros H, Mora-Plazas M, Richards BJ, Lozoff B, et al. Iron Deficiency, anemia, and low vitamin B-12 serostatus in middle childhood are associated with behavior problems in adolescent boys: results from the Bogotá School Children Cohort. J Nutr. 2018;148:760–70.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Achenbach TM, Bird H, Canino G, Phares V, Gould M, Rubio-Stipec M. Epidemiological comparisons of Puerto Rican and U.S. mainland children: parent, teacher, and self-reports. J Am Acad Child Adolesc Psychiatry. 1990;29:84–93.

    Article  CAS  Google Scholar 

  27. 27.

    Achenbach TM, Rescorla LA. Reliability, internal consistency, cross-informant agreement, and stability. In: Achenbach TM, Rescorla LA, editors. Manual for the ASEBA school-age forms & profiles. (University of Vermont, Research Center for Children, Youth, & Families, Burlington, VT, 2001). p. 99–135.

  28. 28.

    Manual for the assessment data manager program (ADM) for the CBCL/4-18, YSR, TRF, YASR, YABCL, CBCL/2-3, CBCL/1½-5, & C-TRF, 2nd edn (University Medical Education Associates, Inc., Burlington, VT, 2000).

  29. 29.

    Corapci F, Calatroni A, Kaciroti N, Jimenez E, Lozoff B. Longitudinal evaluation of externalizing and internalizing behavior problems following iron deficiency in infancy. J Pedia Psychol. 2010;35:296–305.

    Article  Google Scholar 

  30. 30.

    Lozoff B, Castillo M, Clark KM, Smith JB, Sturza J. Iron supplementation in infancy contributes to more adaptive behavior at 10 years of age. J Nutr. 2014;144:838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res. 1964;5:600–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.

  33. 33.

    Kramer MD, Krueger RF, Hicks BM. The role of internalizing and externalizing liability factors in accounting for gender differences in the prevalence of common psychopathological syndromes. Psychol Med. 2008;38:51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Petersen IT, Bates JE, Dodge KA, Lansford JE, Pettit GS. Describing and predicting developmental profiles of externalizing problems from childhood to adulthood. Dev Psychopathol. 2015;27:791–818.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Suchert V, Hanewinkel R, Isensee B. Sedentary behavior and indicators of mental health in school-aged children and adolescents: a systematic review. Prev Med. 2015;76:48–57.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Carneiro P, Meghir C, Parey M. Maternal education, home environments, and the development of children and adolescents. J Eur Econ Assoc. 2013;11:123–60.

    Article  Google Scholar 

  37. 37.

    Bergmann S, Schlesier-Michel A, Wendt V, Grube M, Keitel-Korndorfer A, Gausche R, et al. Maternal weight predicts children’s psychosocial development via parenting stress and emotional availability. Front Psychol. 2016;7:1156.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Perng W, Villamor E, Mora-Plazas M, Marin C, Baylin A. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children. Eur J Clin Nutr. 2015;69:167–72.

    Article  CAS  Google Scholar 

  39. 39.

    Gale CR, Robinson SM, Godfrey KM, Law CM, Schlotz W, O’Callaghan FJ. Oily fish intake during pregnancy-association with lower hyperactivity but not with higher full-scale IQ in offspring. J Child Psychol Psychiatry. 2008;49:1061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Waylen A, Ford T, Goodman R, Samara M, Wolke D. Can early intake of dietary omega-3 predict childhood externalizing behaviour? Acta Paediatr. 2009;98:1805–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gould JF, Treyvaud K, Yelland LN, Anderson PJ, Smithers LG, McPhee AJ, et al. Seven-year follow-up of children born to women in a randomized trial of prenatal DHA supplementation. JAMA. 2017;317:1173–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Makrides M, Gould JF, Gawlik NR, Yelland LN, Smithers LG, Anderson PJ, et al. Four-year follow-up of children born to women in a randomized trial of prenatal DHA supplementation. JAMA. 2014;311:1802–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Saste MD, Carver JD, Stockard JE, Benford VJ, Chen LT, Phelps CP. Maternal diet fatty acid composition affects neurodevelopment in rat pups. J Nutr. 1998;128:740–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wainwright PE, Jalali E, Mutsaers M, Bell R, Cvitkovic S. An imbalance of dietary essential fatty acids retards behavioral development in mice. Physiol Behav. 1999;66:833–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lopez-Barrera EA, Barragan-Gonzalez RG. Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans. J Toxicol Environ Health A. 2016;79:232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Pinto TJ, Vilela AA, Farias DR, Lepsch J, Cunha GM, Vaz JS, et al. Serum n-3 polyunsaturated fatty acids are inversely associated with longitudinal changes in depressive symptoms during pregnancy. Epidemiol Psychiatr Sci. 2017;26:157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Jin Y, Kim TH, Park Y. Association between erythrocyte levels of n-3 polyunsaturated fatty acids and depression in postmenopausal women using or not using hormone therapy. Menopause. 2016;23:1012–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Laino CH, Garcia P, Podesta MF, Hocht C, Slobodianik N, Reines A. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents. J Pharm Sci. 2014;103:3316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kelly L, Grehan B, Chiesa AD, O’Mara SM, Downer E, Sahyoun G, et al. The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiol Aging. 2011;32:2318 e2311–5.

    Article  CAS  Google Scholar 

  50. 50.

    Park HJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor. Arch Pharm Res. 2015;38:1204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Yeates AJ, Love TM, Engstrom K, Mulhern MS, McSorley EM, Grzesik K, et al. Genetic variation in FADS genes is associated with maternal long-chain PUFA status but not with cognitive development of infants in a high fish-eating observational study. Prostaglandins Leukot Ess Fat Acids. 2015;102–103:13–20.

    Article  CAS  Google Scholar 

  52. 52.

    Steer CD, Lattka E, Koletzko B, Golding J, Hibbeln JR. Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age. Am J Clin Nutr. 2013;98:1575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zamberletti E, Piscitelli F, De Castro V, Murru E, Gabaglio M, Colucci P, et al. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system. J Lipid Res. 2017;58:301–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Dumuis A, Pin JP, Oomagari K, Sebben M, Bockaert J. Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and matabotropic quisqualate receptors. Nature. 1990;347:182–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    McGahon B, Clements MP, Lynch MA. The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience. 1997;81:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Wijendran V, Lawrence P, Diau G, Boehm G, Nathanielsz PW, Brenna JT. Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates. J Lipid Res. 2002;43:762–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Baylin A, Kim MK, Donovan-Palmer A, Siles X, Dougherty L, Tocco P, et al. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am J Epidemiol. 2005;162:373–81.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Ivanova MY, Achenbach TM, Rescorla LA, Dumenci L, Almqvist F, Bilenberg N, et al. The generalizability of the Youth Self-Report syndrome structure in 23 societies. J Consult Clin Psychol. 2007;75:729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Villamor E, Marin C, Mora-Plazas M, Casale M, Vargas LN, Baylin A. Cooking with soyabean oil increases whole-blood alpha-linolenic acid in school-aged children: results from a randomized trial. Public Health Nutr. 2015;18:3420–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Sweetser P, Johnson D, Ozdowska A, Wyeth P. Active versus passive screen time for young children. Aust J Early Child. 2012;37:94–8.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the ASISA Foundation for providing funding.

Funding

The study was supported by the ASISA Research Fund at the University of Michigan School of Public Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Villamor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robinson, S.L., Oliveros, H., Mora-Plazas, M. et al. Polyunsaturated fatty acids in middle childhood and externalizing and internalizing behavior problems in adolescence. Eur J Clin Nutr 74, 481–490 (2020). https://doi.org/10.1038/s41430-019-0484-z

Download citation

Search

Quick links