Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maternal and pediatric nutrition

Can legal restrictions of prenatal exposure to industrial trans-fatty acids reduce risk of childhood hematopoietic neoplasms? A population-based study

Abstract

Background:

Causes of most childhood hematopoietic neoplasms are unknown. Early age of occurrence suggests prenatal etiology. Positive associations have been reported between industrially produced trans-fatty acids (iTFAs) and risks of some cancers in adults. iTFAs are pro-inflammatory and adversely affect the beneficial effects of essential fatty acids, the latter is diminishing tumor growth. In 2004 Denmark legislated against the use of iTFA in foodstuffs. Using the entire population, we investigated if the changes in the legislation as a proxy to the reduced exposure to iTFA had affected the incidence of childhood hematopoietic neoplasms.

Methods:

We used a Cox proportional hazard model to compare the hazard of childhood hematopoietic neoplasms among children born before and after the iTFA ban, as a proxy for fetal iTFA exposure. To take the potential secular trend in hematopoietic neoplasms into account, we modeled the variation in cancer risk across birth cohorts by a piecewise linear spline with a knot in 2004, which allowed a comparison of the hazard of childhood hematopoietic neoplasms between the time before and after the iTFA ban.

Results:

Among children born in 1988–2008 in Denmark, 720 were diagnosed with hematopoietic neoplasms before the age of 7 years, corresponding to an overall incidence rate of 7.6 per 100 000 person years. The incidence rates increased by 2% per cohort in 1988–2004 (hazard ratio: 1.02 [1.01; 1.04]) and in 2004–2008 (hazard ratio: 1.02 [0.95; 1.11]).

Conclusions:

No apparent benefit of the iTFA legislation in reducing childhood hematopoietic neoplasms was observed on population basis. Individual-level data are needed to investigate any possible associations between biomarkers of iTFA intake and risk of childhood hematopoietic neoplasms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64:83–103.

    Article  Google Scholar 

  2. Stiller CA, Marcos-Gragera R, Ardanaz E, Pannelli F, Almar ME, Canada MA, et al. Geographical patterns of childhood cancer incidence in Europe, 1988-1997. Report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:1952–60.

    Article  CAS  Google Scholar 

  3. Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18:719–31.

    Article  Google Scholar 

  4. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al.WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  5. Kaatsch P, Steliarova-Foucher E, Crocetti E, Magnani C, Spix C, Zambon P. Time trends of cancer incidence in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42:1961–71.

    Article  Google Scholar 

  6. Steliarova-Foucher E, Fidler MM, Colombet M, Lacour B, Kaatsch P, Piñeros M. et al. Changing geographical and temporal patterns of incidence of cancer in children and adolescents in Europe: a population-based study from the Automated Childhood Cancer Information System (ACCIS), 1991–2010. Lancet Oncol.2018;19:1159–69.

    Article  Google Scholar 

  7. Buka I, Koranteng S, Osornio Vargas AR. Trends in childhood cancer incidence: review of environmental linkages. Pediatr Clin North Am. 2007;54:177–203.

    Article  Google Scholar 

  8. Narod SA, Stiller C, Lenoir GM. An estimate of the heritable fraction of childhood cancer. Br J Cancer. 1991;63:993–9.

    Article  CAS  Google Scholar 

  9. Kinlen LJ. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer. 1995;71:1–5.

    Article  CAS  Google Scholar 

  10. Mosby TT, Cosgrove M, Sarkardei S, Platt KL, Kaina B. Nutrition in adult and childhood cancer: role of carcinogens and anti-carcinogens. Anticancer Res. 2012;32:4171–92.

    CAS  PubMed  Google Scholar 

  11. Cantarella CD, Ragusa D, Giammanco M, Tosi S. Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature. Genes Nutr. 2017;12:14.

    Article  Google Scholar 

  12. Paltiel O, Tikellis G, Linet M, Golding J, Lemeshow S, Phillips G, et al. Birthweight and childhood cancer: preliminary findings from the International Childhood Cancer Cohort Consortium (I4C). Paediatr Perinat Epidemiol. 2015;29:335–45.

    Article  Google Scholar 

  13. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children’s health: cancer in human epidemiological studies and neoplasms in experimental animal models. Environ Health Perspect. 2000;108(Suppl 3):573–94.

    Article  Google Scholar 

  14. Kleinjans J, Botsivali M, Kogevinas M, Merlo DF. Fetal exposure to dietary carcinogens and risk of childhood cancer: what the NewGeneris project tells us. BMJ. 2015;351:h4501.

    Article  Google Scholar 

  15. Lee HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients. 2015;7:9492–507.

    Article  CAS  Google Scholar 

  16. Hjalgrim LL, Madsen HO, Melbye M, Jorgensen P, Christiansen M, Andersen MT, et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer. 2002;87:994–9.

    Article  CAS  Google Scholar 

  17. Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 2011;30:311–24.

    Article  CAS  Google Scholar 

  18. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–23.

    Article  CAS  Google Scholar 

  19. Craig-Schmidt MC. World-wide consumption of trans fatty acids. Atheroscler Suppl. 2006;7:1–4.

    Article  CAS  Google Scholar 

  20. Teegala SM, Willett WC, Mozaffarian D. Consumption and health effects of trans fatty acids: a review. J AOAC Int. 2009;92:1250–7.

    CAS  PubMed  Google Scholar 

  21. Hendry VL, Almiron-Roig E, Monsivais P, Jebb SA, Neelon SE, Griffin SJ, et al. Impact of regulatory interventions to reduce intake of artificial trans-fatty acids: a systematic review. Am J Public Health. 2015;105:e32–42.

    Article  Google Scholar 

  22. Aikawa J, Moretto KD, Denes F, Yamazaki RK, Freitas FA, Hirabara SM, et al. Glucose metabolism by lymphocytes, macrophages, and tumor cells from Walker 256 tumor-bearing rats supplemented with fish oil for one generation. Cell Biochem Funct. 2008;26:874–80.

    Article  CAS  Google Scholar 

  23. Dessypris N, Karalexi MA, Ntouvelis E, Diamantaras AA, Papadakis V, Baka M, et al. Association of maternal and index child’s diet with subsequent leukemia risk: a systematic review and meta analysis. Cancer Epidemiol. 2017;47:64–75.

    Article  Google Scholar 

  24. Wada Y, Yoshida-Yamamoto S, Wada Y, Nakayama M, Mitsuda N, Kitajima H. Trans fatty acid accumulation in the human placenta. J Mass Spectrom. 2017;52:139–43.

    Article  CAS  Google Scholar 

  25. Jamiol-Milc D, Stachowska E, Janus T, Barcz A, Chlubek D. Elaidic acid and vaccenic acid in the plasma of pregnant women and umbilical blood plasma. Pomeranian J Life Sci. 2015;61:51–7.

    Article  Google Scholar 

  26. Dalainas I, Ioannou HP. The role of trans fatty acids in atherosclerosis, cardiovascular disease and infant development. Int Angiol. 2008;27:146–56.

    CAS  PubMed  Google Scholar 

  27. Larque E, Zamora S, Gil A. Dietary trans fatty acids in early life: a review. Early Hum Dev. 2001;65(Suppl):S31–41.

    Article  CAS  Google Scholar 

  28. Bouwstra H, Dijck-Brouwer J, Decsi T, Boehm G, Boersma ER, Muskiet FA, et al. Neurologic condition of healthy term infants at 18 months: positive association with venous umbilical DHA status and negative association with umbilical trans-fatty acids. Pediatr Res. 2006;60:334–9.

    Article  CAS  Google Scholar 

  29. Mennitti LV, Oliveira JL, Morais CA, Estadella D, Oyama LM, Oller do Nascimento CM, et al. Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem. 2015;26:99–111.

    Article  CAS  Google Scholar 

  30. Lee HS, Barraza-Villarreal A, Biessy C, Duarte-Salles T, Sly PD, Ramakrishnan U, et al. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiol Genomics. 2014;46:851–7.

    Article  CAS  Google Scholar 

  31. Mozaffarian D. Trans fatty acids—effects on systemic inflammation and endothelial function. Atheroscler Suppl. 2006;7:29–32.

    Article  CAS  Google Scholar 

  32. Bendsen NT, Stender S, Szecsi PB, Pedersen SB, Basu S, Hellgren LI, et al. Effect of industrially produced trans fat on markers of systemic inflammation: evidence from a randomized trial in women. J Lipid Res. 2011;52:1821–8.

    Article  CAS  Google Scholar 

  33. Chajes V, Joulin V, Clavel-Chapelon F. The fatty acid desaturation index of blood lipids, as a biomarker of hepatic stearoyl-CoA desaturase expression, is a predictive factor of breast cancer risk. Curr Opin Lipidol. 2011;22:6–10.

    Article  CAS  Google Scholar 

  34. Chajes V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, et al. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol. 2017;28:2836–42.

    Article  CAS  Google Scholar 

  35. King IB, Kristal AR, Schaffer S, Thornquist M, Goodman GE. Serum trans-fatty acids are associated with risk of prostate cancer in beta-Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev. 2005;14:988–92.

    Article  CAS  Google Scholar 

  36. Chavarro JE, Stampfer MJ, Campos H, Kurth T, Willett WC, Ma J. A prospective study of trans-fatty acid levels in blood and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2008;17:95–101.

    Article  CAS  Google Scholar 

  37. Vinikoor LC, Schroeder JC, Millikan RC, Satia JA, Martin CF, Ibrahim J, et al. Consumption of trans-fatty acid and its association with colorectal adenomas. Am J Epidemiol. 2008;168:289–97.

    Article  Google Scholar 

  38. Katsoulis M, Kaaks R, Kühn T, Panico S, Pala V, Masala G. et al. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC Study. Ann Oncol. 2017;28:2836–42.

    Article  Google Scholar 

  39. Charbonneau B, O’Connor HM, Wang AH, Liebow M, Thompson CA, Fredericksen ZS, et al. Trans fatty acid intake is associated with increased risk and n3 fatty acid intake with reduced risk of non-hodgkin lymphoma. J Nutr. 2013;143:672–81.

    Article  CAS  Google Scholar 

  40. Bertrand KA, Giovannucci E, Rosner BA, Zhang SM, Laden F, Birmann BM. Dietary fat intake and risk of non-Hodgkin lymphoma in 2 large prospective cohorts. Am J Clin Nutr. 2017;106:650–6.

    Article  CAS  Google Scholar 

  41. Leth T, Jensen HG, Mikkelsen AA, Bysted A. The effect of the regulation on trans fatty acid content in Danish food. Atheroscler Suppl. 2006;7:53–6.

    Article  CAS  Google Scholar 

  42. Restrepo BJ, Rieger M. Denmark’s policy on artificial trans fat and cardiovascular disease. Am J Prev Med. 2016;50:69–76.

    Article  Google Scholar 

  43. The Ministry of Food, Agriculture and Fisheries of Denmark and The Danish Technical University, National Food Institute. Danish data on trans fatty acids in foods. 2014. https://www.foedevarestyrelsen.dk/Publikationer/Alle%20publikationer/2014004.pdf.

  44. Krettek AT, Thorpenberg S, Bondjers G. Trans fatty acids and health: a review of health hazards and existing legislation. Brussels European Parliament; 2008. Contract No.: IP/A/ENVI/ST/2008-19.

  45. Rubinstein A, Elorriaga N, Garay OU, Poggio R, Caporale J, Matta MG, et al. Eliminating artificial trans fatty acids in Argentina: estimated effects on the burden of coronary heart disease and costs. Bull World Health Organ. 2015;93:614–22.

    Article  Google Scholar 

  46. European Parliament EPRS. Trans fats—overwiew of recent developments. 2016. Report No.: PE 577.966.

  47. Dawson A, Sim J. The nature and ethics of natural experiments. J Med Ethics. 2015;41:848–53.

    Article  Google Scholar 

  48. Specht IO, Huybrechts I, Frederiksen P, Steliarova-Foucher E, Chajes V, Heitmann BL. The influence of prenatal exposure to trans-fatty acids for development of childhood haematopoietic neoplasms (EnTrance): a natural societal experiment and a case-control study. Nutr J. 2018;17:13.

    Article  Google Scholar 

  49. Kunzli N, Tager IB. The semi-individual study in air pollution epidemiology: a valid design as compared to ecologic studies. Environ Health Perspect. 1997;105:1078–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet. 2000;355:165–9.

    Article  CAS  Google Scholar 

  51. Urhoj SK, Raaschou-Nielsen O, Hansen AV, Mortensen LH, Andersen PK, Nybo Andersen AM. Advanced paternal age and childhood cancer in offspring: a nationwide register-based cohort study. Int J Cancer. 2017;140:2461–72.

    Article  CAS  Google Scholar 

  52. Isaacs H Jr. Fetal and neonatal leukemia. J Pediatr Hematol Oncol. 2003;25:348–61.

    Article  Google Scholar 

  53. Marcotte EL, Ritz B, Cockburn M, Yu F, Heck JE. Exposure to infections and risk of leukemia in young children. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 2014;23:1195–203.

    Google Scholar 

  54. Freedman LS. Tables of the number of patients required in clinical trials using the logrank test. Stat Med. 1982;1:121–9.

    Article  CAS  Google Scholar 

  55. FSJTMLO JH. Validering af Cancerregisteret og udvalgte kliniske cancerdatabaser. Denmark, Copenhagen: Kræftens Bekæmpelse, Statens Serum Institut; 2012. 29.11.2012

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Danish Childhood Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Olmer Specht.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Specht, I.O., Huybrechts, I., Frederiksen, P. et al. Can legal restrictions of prenatal exposure to industrial trans-fatty acids reduce risk of childhood hematopoietic neoplasms? A population-based study. Eur J Clin Nutr 73, 311–318 (2019). https://doi.org/10.1038/s41430-018-0326-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0326-4

Search

Quick links