Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural and functional body components in athletic health and performance phenotypes

Abstract

Advances in body composition assessment enable a detailed body composition analyses and the respective organization at different levels. Sports-related professionals are interested in understanding how and which body components are relevant for improving performance, prevent injury risk, and monitor athletic health. The aim of this review is to propose an integrative model that links performance, injury risk, and athletic health with body components, and to report their cross-sectional and longitudinal associations. Cross-sectional studies reveal that endurance athletes with higher fat mass (FM) show a longer race time, whereas a higher fat-free mass benefits power and strength-related tasks. Longitudinal studies indicated that increases in intracellular water, assessed through dilution techniques, were associated with power and strength improvements, independently of weight and lean-soft-tissue changes. There is evidence that athletes involved in weight-sensitive sports restrict energy intake, thus reducing energy availability (EA) and compromising bone health (Female Athlete Triad). To counteract the low EA and related negative energy balance, metabolic adaption (MA) occurs to promote energy conservation. Currently, reference values for body composition assessment using anthropometry and DXA are available for a few sports, according to sex. More research is needed to develop a functional body composition profile according to sports-specific requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Wang ZM, Pierson RN Jr., Heymsfield SB. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 1992;56:19–28. https://doi.org/10.1093/ajcn/56.1.19

    Article  CAS  PubMed  Google Scholar 

  2. Buskirk E, Taylor HL. Maximal oxygen intake and its relation to body composition, with special reference to chronic physical activity and obesity. J Appl Physiol. 1957;11:72–78.

    Article  CAS  Google Scholar 

  3. Ackland TR, Lohman TG, Sundgot-Borgen J, Maughan RJ, Meyer NL, Stewart AD, et al. Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012;42:227–49. https://doi.org/10.2165/11597140-000000000-00000

    Article  PubMed  Google Scholar 

  4. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42:949–58. https://doi.org/10.1177/0363546513520295. e-pub ahead of print 2014/02/26

    Article  PubMed  Google Scholar 

  5. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39:1867–82. https://doi.org/10.1249/mss.0b013e318149f111

    Article  PubMed  Google Scholar 

  6. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31. https://doi.org/10.1249/MSS.0b013e31890eb86. e-pub ahead of print 2009/02/20

    Article  CAS  PubMed  Google Scholar 

  7. Sundgot-Borgen J, Meyer NL, Lohman TG, Ackland TR, Maughan RJ, Stewart AD, et al. How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br J Sports Med. 2013;47:1012–22. https://doi.org/10.1136/bjsports-2013-092966. e-pub ahead of print 2013/10/12

    Article  PubMed  Google Scholar 

  8. Malliaras P, Cook JL, Kent PM. Anthropometric risk factors for patellar tendon injury among volleyball players. Br J Sports Med. 2007;41:259–63. https://doi.org/10.1136/bjsm.2006.030049. discussion263

    Article  CAS  PubMed  Google Scholar 

  9. Visnes H, Bahr R. Training volume and body composition as risk factors for developing jumper’s knee among young elite volleyball players. Scand J Med Sci Sports. 2013;23:607–13. https://doi.org/10.1111/j.1600-0838.2011.01430.x. e-pub ahead of print 2012/01/21

    Article  CAS  PubMed  Google Scholar 

  10. Montgomery MM, Tritsch AJ, Cone JR, Schmitz RJ, Henson RA, Shultz SJ. The influence of lower extremity lean mass on landing biomechanics during prolonged exercise. J Athl Train. 2017;52:738–46. https://doi.org/10.4085/1062-6050-52.5.03. e-pub ahead of print 2017/07/20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Burkhart TA, Schinkel-Ivy A, Andrews DM. Tissue mass ratios and the reporting of distal lower extremity injuries in varsity athletes at a Canadian University. J Sports Sci. 2013;31:684–7. https://doi.org/10.1080/02640414.2012.747691. e-pub ahead of print 2012/12/12

    Article  PubMed  Google Scholar 

  12. Nescolarde L, Yanguas J, Lukaski H, Rodas G, Rosell-Ferrer J. Localized BIA identifies structural and pathophysiological changes in soft tissue after post-traumatic injuries in soccer players. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3743–6. https://doi.org/10.1109/EMBC.2014.6944437

    Article  CAS  Google Scholar 

  13. Nescolarde L, Yanguas J, Lukaski H, Alomar X, Rosell-Ferrer J, Rodas G. Localized bioimpedance to assess muscle injury. Physiol Meas. 2013;34:237–45. https://doi.org/10.1088/0967-3334/34/2/237

    Article  CAS  PubMed  Google Scholar 

  14. Boileau RA, Lohman TG. The measurement of human physique and its effect on physical performance. Orthop Clin North Am. 1977;8:563–81.

    CAS  PubMed  Google Scholar 

  15. Sinning WE. Body composition in athletes. In: Roche AFHS, Lohman TG, editors. Human body composition. Champaign, IL: Human Kinetics; 1996. p. 257–73.

    Google Scholar 

  16. Tanda G, Knechtle B. Effects of training and anthropometric factors on marathon and 100 km ultramarathon race performance. Open Access J Sports Med. 2015;6:129–36. https://doi.org/10.2147/OAJSM.S80637

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rust CA, Knechtle B, Knechtle P, Rosemann T. A comparison of anthropometric and training characteristics between recreational female marathoners and recreational female Ironman triathletes. Chin J Physiol. 2013;56:1–10. https://doi.org/10.4077/CJP.2013.BAA089

    Article  PubMed  Google Scholar 

  18. Knechtle B, Knechtle P, Schulze I, Kohler G. Upper arm circumference is associated with race performance in ultra-endurance runners. Br J Sports Med. 2008;42:295–9. https://doi.org/10.1136/bjsm.2007.038570. Discussion 299. e-pub ahead of print 2007/06/30

    Article  CAS  PubMed  Google Scholar 

  19. Yoshiga CC, Higuchi M. Oxygen uptake and ventilation during rowing and running in females and males. Scand J Med Sci Sports. 2003;13:359–63.

    Article  Google Scholar 

  20. Gianoli D, Knechtle B, Knechtle P, Barandun U, Rust CA, Rosemann T. Comparison between recreational male Ironman triathletes and marathon runners. Percept Mot Skills. 2012;115:283–99. https://doi.org/10.2466/06.25.29.PMS.115.4.283-299

    Article  PubMed  Google Scholar 

  21. Knechtle B, Knechtle P, Rosemann T. Skin-fold thickness and training volume in ultra-triathletes. Int J Sports Med. 2009;30:343–7. https://doi.org/10.1055/s-0028-1104571. e-pub ahead of print 2009/03/21

    Article  CAS  PubMed  Google Scholar 

  22. Knechtle B, Knechtle P, Rosemann T. Upper body skinfold thickness is related to race performance in male Ironman triathletes. Int J Sports Med. 2011;32:20–27. https://doi.org/10.1055/s-0030-1268435

    Article  CAS  PubMed  Google Scholar 

  23. Knechtle B, Wirth A, Alexander Rust C, Rosemann T. The relationship between anthropometry and split performance in recreational male ironman triathletes. Asian J Sports Med. 2011;2:23–30.

    Article  Google Scholar 

  24. Knechtle B, Wirth A, Baumann B, Knechtle P, Rosemann T. Personal best time, percent body fat, and training are differently associated with race time for male and female ironman triathletes. Res Q Exerc Sport. 2010;81:62–68. https://doi.org/10.1080/02701367.2010.10599628

    Article  PubMed  Google Scholar 

  25. Knechtle B, Wirth A, Baumann B, Knechtle P, Rosemann T, Oliver S. Differential correlations between anthropometry, training volume, and performance in male and female Ironman triathletes. J Strength Cond Res. 2010;24:2785–93. https://doi.org/10.1519/JSC.0b013e3181c643b6. e-pub ahead of print 2010/06/24

    Article  PubMed  Google Scholar 

  26. Rust CA, Knechtle B, Knechtle P, Rosemann T. Similarities and differences in anthropometry and training between recreational male 100-km ultra-marathoners and marathoners. J Sports Sci. 2012;30:1249–57. https://doi.org/10.1080/02640414.2012.697182. e-pub ahead of print 2012/06/26

    Article  PubMed  Google Scholar 

  27. Landers GJ, Blanksby BA, Ackland TR, Smith D. Morphology and performance of world championship triathletes. Ann Hum Biol. 2000;27:387–400.

    Article  CAS  Google Scholar 

  28. Knechtle B, Duff B, Amtmann G, Kohler G. Cycling and running performance, not anthropometric factors, are associated with race performance in a Triple Iron Triathlon. Res Sports Med. 2007;15:257–69. https://doi.org/10.1080/15438620701693264

    Article  CAS  PubMed  Google Scholar 

  29. Knechtle B, Knechtle P, Andonie JL, Kohler G. Influence of anthropometry on race performance in extreme endurance triathletes: World Challenge Deca Iron Triathlon 2006. Br J Sports Med. 2007;41:644–8. https://doi.org/10.1136/bjsm.2006.035014. discussion648

    Article  PubMed  PubMed Central  Google Scholar 

  30. Knechtle B, Wirth A, Rosemann T. Predictors of race time in male Ironman triathletes: physical characteristics, training, or prerace experience? Percept Mot Skills. 2010;111:437–46. https://doi.org/10.2466/05.25.PMS.111.5.437-446

    Article  PubMed  Google Scholar 

  31. Laurenson NM, Fulcher KY, Korkia P. Physiological characteristics of elite and club level female triathletes during running. Int J Sports Med. 1993;14:455–9. https://doi.org/10.1055/s-2007-1021210

    Article  CAS  PubMed  Google Scholar 

  32. Leake CN, Carter JE. Comparison of body composition and somatotype of trained female triathletes. J Sports Sci. 1991;9:125–35. https://doi.org/10.1080/02640419108729874

    Article  CAS  PubMed  Google Scholar 

  33. Schabort EJ, Killian SC, St Clair Gibson A, Hawley JA, Noakes TD. Prediction of triathlon race time from laboratory testing in national triathletes. Med Sci Sports Exerc. 2000;32:844–9.

    Article  CAS  Google Scholar 

  34. Cosgrove MJ, Wilson J, Watt D, Grant SF. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J Sports Sci. 1999;17:845–52. https://doi.org/10.1080/026404199365407

    Article  CAS  PubMed  Google Scholar 

  35. Mikulic P. Anthropometric and metabolic determinants of 6,000-m rowing ergometer performance in internationally competitive rowers. J Strength Cond Res. 2009;23:1851–7. https://doi.org/10.1519/JSC.0b013e3181b3dc7e

    Article  PubMed  Google Scholar 

  36. Slater GJ, Rice AJ, Mujika I, Hahn AG, Sharpe K, Jenkins DG. Physique traits of lightweight rowers and their relationship to competitive success. Br J Sports Med. 2005;39:736–41. https://doi.org/10.1136/bjsm.2004.015990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Secher NH, Vaage O. Rowing performance, a mathematical model based on analysis of body dimensions as exemplified by body weight. Eur J Appl Physiol Occup Physiol. 1983;52:88–93.

    Article  CAS  Google Scholar 

  38. Jurimae J, Maestu J, Jurimae T, Pihl E. Prediction of rowing performance on single sculls from metabolic and anthropometric variables. J Human Mov Stud. 2000;38:123–36.

    Google Scholar 

  39. Ng AV, Demment RB, Bassett DR, Bussan MJ, Clark RR, Kuta JM, et al. Characteristics and performance of male citizen cross-country ski racers. Int J Sports Med. 1988;9:205–9.

    Article  CAS  Google Scholar 

  40. Rundell KW, Bacharach DW. Physiological characteristics and performance of top U.S. biathletes. Med Sci Sports Exerc. 1995;27:1302–10.

    CAS  PubMed  Google Scholar 

  41. Stoggl T, Enqvist J, Muller E, Holmberg HC. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing. J Sports Sci. 2010;28:161–9. https://doi.org/10.1080/02640410903414160

    Article  PubMed  Google Scholar 

  42. Keogh JW, Hume PA, Pearson SN, Mellow PJ. Can absolute and proportional anthropometric characteristics distinguish stronger and weaker powerlifters? J Strength Cond Res. 2009;23:2256–65. https://doi.org/10.1519/JSC.0b013e3181b8d67a

    Article  PubMed  Google Scholar 

  43. Fry AC, Ciroslan D, Fry MD, LeRoux CD, Schilling BK, Chiu LZ. Anthropometric and performance variables discriminating elite American junior men weightlifters. J Strength Cond Res. 2006;20:861–6. https://doi.org/10.1519/R-18355.1

    Article  PubMed  Google Scholar 

  44. Stone MH, Sands WA, Pierce KC, Carlock J, Cardinale M, Newton RU. Relationship of maximum strength to weightlifting performance. Med Sci Sports Exerc. 2005;37:1037–43.

    PubMed  Google Scholar 

  45. Storey A, Smith HK. Unique aspects of competitive weightlifting: performance, training and physiology. Sports Med. 2012;42:769–90. https://doi.org/10.2165/11633000-000000000-00000

    Article  PubMed  Google Scholar 

  46. Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86:327–36.

    Article  Google Scholar 

  47. Ye X, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Kim D, et al. Relationship between lifting performance and skeletal muscle mass in elite powerlifters. J Sports Med Phys Fit. 2013;53:409–14.

    CAS  Google Scholar 

  48. Lovera M, Keogh J. Anthropometric profile of powerlifters: differences as a function of bodyweight class and competitive success. J Sports Med Phys Fit. 2015;55:478–87.

    CAS  Google Scholar 

  49. Oppliger RA, Steen SA, Scott JR. Weight loss practices of college wrestlers. Int J Sport Nutr Exerc Metab. 2003;13:29–46.

    Article  Google Scholar 

  50. Garthe I, Raastad T, Refsnes PE, Koivisto A, Sundgot-Borgen J. Effect of two different weight-loss rates on body composition and strength and power-related performance in elite athletes. Int J Sport Nutr Exerc Metab. 2011;21:97–104.

    Article  CAS  Google Scholar 

  51. Morales J, Ubasart C, Solana-Tramunt M, Villarrasa-Sapina I, Gonzalez LM, Fukuda D et al. Effects of rapid weight loss on balance and reaction time in elite judo athletes. Int J Sports Physiol Perform. 2018: 1–21. https://doi.org/10.1123/ijspp.2018-0089

    Article  Google Scholar 

  52. de Sousa Fortes L, de Vasconcelos GC, de Vasconcelos Costa BD, Paes PP, Franchini E. Effect of 10% weight loss on simulated taekwondo match performance: a randomized trial. J Exerc Rehabil. 2017;13:659–65. https://doi.org/10.12965/jer.1735134.567

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zubac D, Karnincic H, Sekulic D. Rapid weight loss is not associated with competitive success in elite youth Olympic-style boxers in Europe. Int J Sports Physiol Perform. 2017;13:860–66. https://doi.org/10.1123/ijspp.2016-0733

    Article  Google Scholar 

  54. Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J Sports Sci. 2011;29(Suppl 1):S101–114. https://doi.org/10.1080/02640414.2011.565783

    Article  PubMed  Google Scholar 

  55. Silva AM, Fields DA, Heymsfield SB, Sardinha LB. Body composition and power changes in elite judo athletes. Int J Sports Med. 2010;31:737–41. https://doi.org/10.1055/s-0030-1255115

    Article  CAS  PubMed  Google Scholar 

  56. Silva AM, Fields DA, Heymsfield SB, Sardinha LB. Relationship between changes in total-body water and fluid distribution with maximal forearm strength in elite judo athletes. J Strength Cond Res. 2011;25:2488–95. https://doi.org/10.1519/JSC.0b013e3181fb3dfb

    Article  PubMed  Google Scholar 

  57. Aerenhouts D, Clarys P, Taeymans J, Van Cauwenberg J. Estimating body composition in adolescent sprint athletes: comparison of different methods in a 3 years longitudinal design. PLoS ONE. 2015;10:e0136788 https://doi.org/10.1371/journal.pone.0136788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Figueirêdo JS, Dantas PMS, Knackfuss MI, Egito EST. How can somatotype become a tool to predict an anthropometric profile for high performance 100- and 400-meter runners? Gazz Med Ital. 2013;172:941–51.

    Google Scholar 

  59. Abe T, Fukashiro S, Harada Y, Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci. 2001;20:141–7.

    Article  CAS  Google Scholar 

  60. Watts AS, Coleman I, Nevill A. The changing shape characteristics associated with success in world-class sprinters. J Sports Sci. 2012;30:1085–95. https://doi.org/10.1080/02640414.2011.588957

    Article  PubMed  Google Scholar 

  61. Kubo K, Ikebukuro T, Yata H, Tomita M, Okada M. Morphological and mechanical properties of muscle and tendon in highly trained sprinters. J Appl Biomech. 2011;27:336–44.

    Article  Google Scholar 

  62. Korhonen MT, Mero AA, Alen M, Sipila S, Hakkinen K, Liikavainio T, et al. Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc. 2009;41:844–56. https://doi.org/10.1249/MSS.0b013e3181998366

    Article  PubMed  Google Scholar 

  63. Perez-Gomez J, Rodriguez GV, Ara I, Olmedillas H, Chavarren J, Gonzalez-Henriquez JJ, et al. Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol. 2008;102:685–94. https://doi.org/10.1007/s00421-007-0648-8

    Article  PubMed  Google Scholar 

  64. Weyand PG, Davis JA. Running performance has a structural basis. J Exp Biol. 2005;208(Pt 14):2625–31. https://doi.org/10.1242/jeb.01609

    Article  PubMed  Google Scholar 

  65. Slawinski J, Termoz N, Rabita G, Guilhem G, Dorel S, Morin JB, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27:45–54. https://doi.org/10.1111/sms.12627

    Article  CAS  PubMed  Google Scholar 

  66. Arsac LM, Locatelli E. Modeling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol (1985). 2002;92:1781–8. https://doi.org/10.1152/japplphysiol.00754.2001

    Article  Google Scholar 

  67. Fukuda DH, Hoffman JR, Stout JR. Strength and speed/power athletes. In: Lukaski HCeditor. Body composition: health and performance in exercise and sport. Boca Raton, FL: CRC press Taylor & Francis Group; 2017. p. 211–31.

    Chapter  Google Scholar 

  68. Sullivan JJ, Knowlton RG, Hetzler RK, Woelke PL. Anthropometric characteristics and performance related predictors of success in adolescent pole vaulters. J Sports Med Phys Fit. 1994;34:179–84.

    CAS  Google Scholar 

  69. Terzis G, Spengos K, Kavouras S, Manta P, Georgiadis G. Muscle fibre type composition and body composition in hammer throwers. J Sports Sci Med. 2010;9:104–9.

    PubMed  PubMed Central  Google Scholar 

  70. Kyriazis T, Terzis G, Karampatsos G, Kavouras S, Georgiadis G. Body composition and performance in shot put athletes at preseason and at competition. Int J Sports Physiol Perform. 2010;5:417–21.

    Article  Google Scholar 

  71. Zaras ND, Stasinaki AN, Methenitis SK, Krase AA, Karampatsos GP, Georgiadis GV, et al. Rate of force development, muscle architecture, and performance in young competitive track and field throwers. J Strength Cond Res. 2016;30:81–92. https://doi.org/10.1519/JSC.0000000000001048

    Article  PubMed  Google Scholar 

  72. Dengel DR, Bosch TA, Burruss TP, Fielding KA, Engel BE, Weir NL, et al. Body composition and bone mineral density of national football league players. J Strength Cond Res. 2014;28:1–6. https://doi.org/10.1519/JSC.0000000000000299

    Article  PubMed  Google Scholar 

  73. Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35:501–36.

    Article  Google Scholar 

  74. Masuda K, Kikuhara N, Takahashi H, Yamanaka K. The relationship between muscle cross-sectional area and strength in various isokinetic movements among soccer players. J Sports Sci. 2003;21:851–8. https://doi.org/10.1080/0264041031000102042

    Article  PubMed  Google Scholar 

  75. Wells AJ, Fukuda DH, Hoffman JR, Gonzalez AM, Jajtner AR, Townsend JR, et al. Vastus lateralis exhibits non-homogenous adaptation to resistance training. Muscle Nerve. 2014;50:785–93. https://doi.org/10.1002/mus.24222

    Article  PubMed  Google Scholar 

  76. Silva AM, Matias CN, Santos DA, Rocha PM, Minderico CS, Sardinha LB. Increases in intracellular water explain strength and power improvements over a season. Int J Sports Med. 2014;35:1101–5. https://doi.org/10.1055/s-0034-1371839. e-pub ahead of print 2014/07/11

    Article  CAS  PubMed  Google Scholar 

  77. Becker AE, Grinspoon SK, Klibanski A, Herzog DB. Eating disorders. N Eng J Med. 1999;340:1092–8. https://doi.org/10.1056/NEJM199904083401407

    Article  CAS  Google Scholar 

  78. Wade GN, Schneider JE, Li HY. Control of fertility by metabolic cues. Am J Physiol. 1996;270(1 Pt 1):E1–19. https://doi.org/10.1152/ajpendo.1996.270.1.E1

    Article  CAS  PubMed  Google Scholar 

  79. Tenforde AS, Barrack MT, Nattiv A, Fredericson M. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46:171–82. https://doi.org/10.1007/s40279-015-0411-y

    Article  PubMed  Google Scholar 

  80. Deuster PA, Kyle SB, Moser PB, Vigersky RA, Singh A, Schoomaker EB. Nutritional intakes and status of highly trained amenorrheic and eumenorrheic women runners. Fertil Steril. 1986;46:636–43.

    Article  CAS  Google Scholar 

  81. Loucks AB. Does exercise training affect reproductive hormones in women? Clin Sports Med. 1986;5:535–57.

    CAS  PubMed  Google Scholar 

  82. Loucks AB. The response of luteinizing hormone pulsatility to 5 days of low energy availability disappears by 14 years of gynecological age. J Clin Endocrinol Metab. 2006;91:3158–64. https://doi.org/10.1210/jc.2006-0570

    Article  CAS  PubMed  Google Scholar 

  83. Myerson M, Gutin B, Warren MP, May MT, Contento I, Lee M, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc. 1991;23:15–22.

    Article  CAS  Google Scholar 

  84. Nelson ME, Fisher EC, Catsos PD, Meredith CN, Turksoy RN, Evans WJ. Diet and bone status in amenorrheic runners. Am J Clin Nutr. 1986;43:910–6. https://doi.org/10.1093/ajcn/43.6.910

    Article  CAS  PubMed  Google Scholar 

  85. Truswell AS. Energy balance, food and exercise. World Rev Nutr Diet. 2001;90:13–25.

    Article  CAS  Google Scholar 

  86. Wilmore JH, Wambsgans KC, Brenner M, Broeder CE, Paijmans I, Volpe JA, et al. Is there energy conservation in amenorrheic compared with eumenorrheic distance runners? J Appl Physiol (1985). 1992;72:15–22. https://doi.org/10.1152/jappl.1992.72.1.15

    Article  CAS  Google Scholar 

  87. Knuth ND, Johannsen DL, Tamboli RA, Marks-Shulman PA, Huizenga R, Chen KY, et al. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity. 2014;22:2563–9. https://doi.org/10.1002/oby.20900

    Article  PubMed  Google Scholar 

  88. Silva AM, Matias CN, Santos DA, Thomas D, Bosy-Westphal A, Mu LM, et al. Compensatory changes in energy balance regulation over one athletic season. Med Sci Sports Exerc. 2017;49:1229–35. https://doi.org/10.1249/MSS.0000000000001216

    Article  PubMed  Google Scholar 

  89. Moons P, Kendall KL. Endurance athletes. In: Lukaski HCeditor. Body composition: health and performance in exercise and sport. Boca Raton, FL: CRC press Taylor & Francis Group; 2017. p. 171–210.

    Chapter  Google Scholar 

  90. Santos DA, Dawson JA, Matias CN, Rocha PM, Minderico CS, Allison DB, et al. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE. 2014;9:e97846 https://doi.org/10.1371/journal.pone.0097846. e-pub ahead of print 2014/05/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analiza M. Silva.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur J Clin Nutr 73, 215–224 (2019). https://doi.org/10.1038/s41430-018-0321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0321-9

This article is cited by

Search

Quick links