Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New and traditional foods in a modernized Mediterranean diet model

Abstract

Mediterranean diet is definitely one of the healthiest dietary models. Next questions are: is the traditional Mediterranean diet adapted to the modern environmental and existential conditions? Could and/or should it be “modernized” to adapt to the various geographical, environmental, ethnic, and religious characteristics? If “modernization” is required, which traditional Mediterranean foods should be imperatively conserved as they are? Alternatively, which “new” foods—not traditional or not Mediterranean—could be introduced to help people to still respect the basic healthy Mediterranean diet principles? The present article intends to help solving these new questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2017 Update: a report from the American Heart Association. Circulation. 2017;135:e146–603. Erratum in: Circulation. 2017;135:e646.

  2. World Health Organization. In: World Health Statistics 2016: Monitoring health for the SDGs. 2016. http://www.who.int/gho/publications/world_health_statistics/2016/en/. Accessed 6 Apr 2017.

  3. Trichopoulou A, Martínez-González MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 2014;12:112.

    Article  Google Scholar 

  4. de Lorgeril M. Mediterranean diet and cardiovascular disease: historical perspective and latest evidence. Curr Atheroscler Rep. 2013;15:370.

    Article  Google Scholar 

  5. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    Article  CAS  Google Scholar 

  6. de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343:1454–9. Erratum in: Lancet. 1995;345:738.

    Article  Google Scholar 

  7. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99:779–85.

    Article  Google Scholar 

  8. de Lorgeril M, Salen P, Martin JL, Monjaud I, Boucher P, Mamelle N. Mediterranean dietary pattern in a randomized trial: prolonged survival and possible reduced cancer rate. Arch Intern Med. 1998;158:1181–7.

    Article  Google Scholar 

  9. Barak Y, Fridman D. Impact of Mediterranean Diet on cancer: focused literature review. Cancer Genomics Proteomics. 2017;14:403–8.

    Article  CAS  Google Scholar 

  10. Berrino F. Mediterranean Diet and its association with reduced invasive breast cancer risk. JAMA Oncol. 2016;2:535–6.

    Article  Google Scholar 

  11. Schwingshackl L, Hoffmann G. Does a Mediterranean-type diet reduce cancer risk? Curr Nutr Rep. 2016;5:9–17.

    Article  CAS  Google Scholar 

  12. Rosato V, Guercio V, Bosetti C, Negri E, Serraino D, Giacosa A, et al. Mediterranean diet and colorectal cancer risk: a pooled analysis of three Italian case-control studies. Br J Cancer. 2016;115:862–5.

    Article  CAS  Google Scholar 

  13. Giraldi L, Panic N, Cadoni G, Boccia S, Leoncini E. Association between Mediterranean diet and head and neck cancer: results of a large case-control study in Italy. Eur J Cancer Prev. 2016;26:418–23.

    Article  Google Scholar 

  14. Bifulco M. How does the Mediterranean diet decrease the risk of a variety of cancers? Eur J Clin Nutr. 2015;69:1372.

    Article  CAS  Google Scholar 

  15. Zeisel SH. Is there a new component of the Mediterranean diet that reduces inflammation? Am J Clin Nutr. 2008;87:277–8.

    Article  CAS  Google Scholar 

  16. Matsumoto Y, Sugioka Y, Tada M, Okano T, Mamoto K, Inui K, et al. Monounsaturated fatty acids might be key factors in the Mediterranean diet that suppress rheumatoid arthritis disease activity: the TOMORROW study. Clin Nutr. 2017;37:675–80.

    Article  Google Scholar 

  17. Godos J, Zappalà G, Bernardini S, Giambini I, Bes-Rastrollo M, Martinez-Gonzalez M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: a meta-analysis of observational studies. Int J Food Sci Nutr. 2017;68:138–48.

    Article  CAS  Google Scholar 

  18. Esposito K, Maiorino MI, Bellastella G, Panagiotakos DB, Giugliano D. Mediterranean diet for type 2 diabetes: cardiometabolic benefits. Endocrine. 2017;56:27–32.

    Article  CAS  Google Scholar 

  19. Rienks J, Dobson AJ, Mishra GD. Mediterranean dietary pattern and prevalence and incidence of depressive symptoms in mid-aged women: results from a large community-based prospective study. Eur J Clin Nutr. 2013;67:75–82.

    Article  CAS  Google Scholar 

  20. Jacka FN, O’Neil A, Opie R, Itsiopoulos C, Cotton S, Mohebbi M, et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017;15:23.

    Article  Google Scholar 

  21. Veronese N, Stubbs B, Noale M, Solmi M, Luchini C, Maggi S. Adherence to the Mediterranean diet is associated with better quality of life: data from the Osteoarthritis Initiative. Am J Clin Nutr. 2016;104:1403–9.

    Article  CAS  Google Scholar 

  22. Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr. 2016;7:889–904.

    Article  Google Scholar 

  23. Zelber-Sagi S, Salomone F, Mlynarsky L. The Mediterranean dietary pattern as the diet of choice for NAFLD; evidence and plausible mechanisms. Liver Int. 2017;37:936–49.

    Article  CAS  Google Scholar 

  24. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012;4:1989–2007.

    Article  CAS  Google Scholar 

  25. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Bälter K, Fraser GE, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89:1425–32.

    Article  CAS  Google Scholar 

  26. Gebauer SK, Destaillats F, Dionisi F, Krauss RM, Baer DJ. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial. Am J Clin Nutr. 2015;102:1339–46.

    Article  CAS  Google Scholar 

  27. Gebauer SK, Chardigny JM, Jakobsen MU, Lamarche B, Lock AL, Proctor SD, et al. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Adv Nutr. 2011;2:332–54.

    Article  CAS  Google Scholar 

  28. Jakobsen MU, Overvad K, Dyerberg J, Heitmann BL. Intake of ruminant trans fatty acids and risk of coronary heart disease. Int J Epidemiol. 2008;37:173–82.

    Article  Google Scholar 

  29. Tong X, Chen GC, Zhang Z, Wei YL, Qin LQ. Cheese consumption and risk of all-cause mortality: a metaanalysis of prospective studies. Nutrients. 2017;9.

    Article  Google Scholar 

  30. Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2017;32:269–87.

    Article  CAS  Google Scholar 

  31. Hauswirth CB, Scheeder MR, Beer JH. High omega-3 fatty acid content in alpine cheese: the basis for an alpine paradox. Circulation. 2004;109:103–7.

    Article  CAS  Google Scholar 

  32. Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a Science Advisory From the American Heart Association. Circulation. 2017;135:e867–84.

    Article  CAS  Google Scholar 

  33. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Fatty Acids and Outcomes Research Consortium (FORCe). ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. JAMA Intern Med. 2016;176:1155–66.

    Article  Google Scholar 

  34. Amiano P, Chamosa S, Etxezarreta N, Arriola L, Moreno-Iribas C, Huerta JM, et al. No association between fish consumption and risk of stroke in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain): a 13.8-year follow-up study. Public Health Nutr. 2016;19:674–81.

    Article  Google Scholar 

  35. Kühn T, Teucher B, Kaaks R, Boeing H, Weikert C, Buijsse B. Fish consumption and the risk of myocardial infarction and stroke in the German arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Germany). Br J Nutr. 2013;110:1118–25.

    Article  Google Scholar 

  36. de Goede J, Geleijnse JM, Boer JM, Kromhout D, Verschuren WM. Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with low fish intake. J Nutr. 2010;140:1023–8.

    Article  Google Scholar 

  37. Iso H, Kobayashi M, Ishihara J, Sasaki S, Okada K, Kita Y, et al. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006;113:195–202.

    Article  CAS  Google Scholar 

  38. Cusack LK, Smit E, Kile ML, Harding AK. Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing Age in the united states using NHANES data from 1999-2010. Environ Health. 2017;16:10.

    Article  Google Scholar 

  39. Wallin A, Orsini N, Forouhi NG, Wolk A. Fish consumption in relation to myocardial infarction, stroke and mortality among women and men with type 2 diabetes: a prospective cohort study. Clin Nutr. 2017;37:590–6.

    Article  Google Scholar 

  40. Huang RX, Duan YY, Hu JA. Fish intake and risk of liver cancer: a meta-analysis. PLoS ONE. 2015;10:e0096102.

    Article  Google Scholar 

  41. Yu XF, Zou J, Dong J. Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol. 2014;20:15398–412.

    Article  Google Scholar 

  42. Lian W, Wang R, Xing B, Yao Y. Fish intake and the risk of brain tumor: a meta-analysis with systematic review. Nutr J. 2017;16:1.

    Article  Google Scholar 

  43. Yassine HN, Feng Q, Azizkhanian I, Rawat V, Castor K, Fonteh AN, et al. Association of serum docosahexaenoic acid with cerebral amyloidosis. JAMA Neurol. 2016;73:1208–16.

    Article  Google Scholar 

  44. Dawczynski C, Dittrich M, Neumann T, Goetze K, Welzel A, Oelzner P, et al. Docosahexaenoic acid in the treatment of rheumatoid arthritis: a double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sunflower oil. Clin Nutr. 2017;37:494–504.

    Article  Google Scholar 

  45. de Lorgeril M. Mediterranean diet in the prevention of coronary heart disease. Nutrition. 1998;14:55–7.

    Article  Google Scholar 

  46. Simopoulos AP. The Mediterranean diets: What is so special about the diet of Greece? The scientific evidence. J Nutr. 2001;131Suppl 11:3065S–73S.

    Article  CAS  Google Scholar 

  47. Zeghichi S, Kallithraka S, Simopoulos AP, Kypriotakis Z. Nutritional composition of selected wild plants in the diet of Crete. World Rev Nutr Diet. 2003;91:22–40.

    Article  CAS  Google Scholar 

  48. Simopoulos AP, Norman HA, Gillaspy JE, Duke JA. Common purslane: a source of omega-3 fatty acids and antioxidants. J Am Coll Nutr. 1992;11:374–82.

    Article  CAS  Google Scholar 

  49. Fleming JA, Kris-Etherton PM. The evidence for α-linolenic acid and cardiovascular disease benefits: comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv Nutr. 2014;5:863S–76S.

    Article  CAS  Google Scholar 

  50. Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, Colditz GA, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69:890–7.

    Article  CAS  Google Scholar 

  51. Yamagishi K, Ikeda A, Chei CL, Noda H, Umesawa M, Cui R, et al; CIRCS Investigators. Serum α-linolenic and other ω-3 fatty acids, and risk of disabling dementia: community-based nested case-control study. Clin Nutr. 2016;36:793–7.

  52. de Lorgeril M, Salen P, Martin J-L, et al. Interactions of wine drinking with omega-3 fatty acids in patients with coronary heart disease: a fish-like effect of moderate wine drinking. Am Heart J. 2008;155:175–81.

    Article  Google Scholar 

  53. di Giuseppe R, de Lorgeril M, Salen P, et al. Alcohol consumption and n-3 polyunsaturated fatty acids in healthy men and women from 3 European populations. Am J Clin Nutr. 2009;89:354–62.

    Article  Google Scholar 

  54. Toufektsian M-C, Salen P, Laporte F, de Lorgeril M, et al. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J Nutr. 2011;141:37–41.

    Article  CAS  Google Scholar 

  55. Burak C, Wolffram S, Zur B, Langguth P, Fimmers R, Alteheld B, et al. Effects of the flavonol quercetin and α-linolenic acid on n-3 PUFA status in metabolically healthy men and women: a randomised, double-blinded, placebo-controlled, crossover trial. Br J Nutr. 2017;117:698–711.

    Article  CAS  Google Scholar 

  56. Vauzour D, Tejera N, O’Neill C, et al. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans. J Nutr Biochem. 2015;26:211–8.

    Article  CAS  Google Scholar 

  57. Ounnas F, Privé F, Salen P, Gaci N, Tottey W, Calani L, et al. Whole rye consumption improves blood and liver n-3 fatty acid profile and gut microbiota composition in rats. PLoS ONE. 2016;11:e0148118.

    Article  Google Scholar 

  58. Ounnas F, de Lorgeril M, Salen P, Laporte F, Calani L, Mena P, et al. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Sci Rep. 2017;7:40162.

    Article  CAS  Google Scholar 

  59. Nakatsu CH, Armstrong A, Clavijo AP, Martin BR, Barnes S, Weaver CM. Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption. PLoS ONE. 2014;9:e108924.

    Article  Google Scholar 

  60. Hazim S, Curtis PJ, Schär MY, Ostertag LM, Kay CD, Minihane AM, et al. Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial. Am J Clin Nutr. 2016;103:694–702.

    Article  CAS  Google Scholar 

  61. Setchell KD, Clerici C. Equol: history, chemistry, and formation. J Nutr. 2010;140:1355S–62S.

    Article  CAS  Google Scholar 

  62. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14.

    Article  Google Scholar 

  63. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–21.

    Article  Google Scholar 

  64. Haro C, Garcia-Carpintero S, Alcala-Diaz JF, Gomez-Delgado F, Delgado-Lista J, Perez-Martinez P, et al. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2016;27:27–31.

    Article  CAS  Google Scholar 

  65. Rosati A, Cafiero C, Paoletti A, Alfei B, Caporali S, Casciani L, et al. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chem. 2014;159:236–43.

    Article  CAS  Google Scholar 

  66. West BJ, Uwaya A, Isami F, Deng S, Nakajima S, Jensen CJ. Antiglycation activity of iridoids and their food sources. Int J Food Sci. 2014;27:6950.

    Google Scholar 

  67. Navarro M, Morales FJ. Evaluation of an olive leaf extract as a natural source of antiglycative compounds. Food Res Int. 2017;92:56–63.

    Article  CAS  Google Scholar 

  68. Mosele JI, Martín-Peláez S, Macià A, Farràs M, Valls RM, Catalán Ú, et al. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches. Mol Nutr Food Res. 2014;58:1809–19.

    Article  CAS  Google Scholar 

  69. Zampa A, Silvi S, Servili M, Montedoro G, Orpianesi C, Cresci A. In vitro modulatory effects of colonic microflora by olive oil iridoids. Microb Ecol Health Dis. 2006;18:147–53.

    Article  CAS  Google Scholar 

  70. Bozzetto L, Alderisio A, Giorgini M, Barone F, Giacco A, Riccardi G, et al. Extra-virgin olive oil reduces glycemic response to a high-glycemic index meal in patients with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2016;39:518–24.

    Article  Google Scholar 

  71. de Lorgeril M, Salen P, Martin JL, Boucher F, Paillard F, de Leiris J. Wine drinking and risks of cardiovascular complications after recent acute myocardial infarction. Circulation. 2002;106:1465–9.

    Article  Google Scholar 

  72. Schröder H, Masabeu A, Marti MJ, Cols M, Lisbona JM, Romagosa C, et al.; REGICOR investigators. Myocardial infarction and alcohol consumption: a population-based case-control study. Nutr Metab Cardiovasc Dis. 2007;17:609–15.

    Article  Google Scholar 

  73. Costanzo S, Di Castelnuovo A, Donati MB, Iacoviello L, de Gaetano G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: a meta-analysis. Eur J Epidemiol. 2011;26:833–50.

    Article  Google Scholar 

  74. Fagherazzi G, Vilier A, Boutron-Ruault MC, Mesrine S, Clavel-Chapelon F. Alcohol consumption and breast cancer risk subtypes in the E3N-EPIC cohort. Eur J Cancer Prev. 2015;24:209–14.

    Article  CAS  Google Scholar 

Download references

Funding

This article is published as part of a supplement sponsored by the Mediterranean Diet Foundation and the Diputació de Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel de Lorgeril.

Ethics declarations

Conflict of interest

MdL received fees as a regular member of the Scientific Advisory Board of the Barilla Company (Italy). The remaining authors declare that thay have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lorgeril, M., Salen, P. & Rabaeus, M. New and traditional foods in a modernized Mediterranean diet model. Eur J Clin Nutr 72 (Suppl 1), 47–54 (2019). https://doi.org/10.1038/s41430-018-0308-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0308-6

Search

Quick links