Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extra virgin olive oil: More than a healthy fat

Abstract

The beneficial effects of a Mediterranean diet on human health and, in particular, on lowering risk of cardiovascular disease, has been mainly attributed to its high content to extra virgin olive oil (EVOO). While its main fatty acid, oleic acid, is considered important to these effects, EVOO has other biological properties that depend on, or are potentiated by other minor components of this oil. Initially, the mechanisms considered as possible causes of this cardioprotective effect of EVOO were based on the incidence on the so-called traditional risk factors (especially lipids and blood pressure). However, the high relative reduction in the prevalence of cardiovascular morbidity and mortality were not proportional to the limited findings about regulation of those traditional risk factors. In addition to several studies confirming the above effects, current research on beneficial effect of EVOO, and in particular in conjunction with Mediterranean style diets, is being focused on defining its effects on newer cardiovascular risk factors, such as inflammation, oxidative stress, coagulation, platelet aggregation, fibrinolysis, endothelial function or lipids or on the modulation of the conditions which predispose people to cardiovascular events, such as obesity, metabolic syndrome or type 2 diabetes mellitus. In the current review, we will mainly focus on reviewing the current evidence about the effects that EVOO exerts on alternative factors, including postprandial lipemia or coagulation, among others, discussing the underlying mechanism by which it exerts its effect, as well as providing a short review on future directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Solfrizzi V, Panza F, et al. Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother. 2011;11:677–708.

    CAS  PubMed  Google Scholar 

  2. 2.

    Lopez-Miranda J, Perez-Jimenez F, et al. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovasc Dis. 2010;20:284–94.

    CAS  PubMed  Google Scholar 

  3. 3.

    D’Alessandro A, De Pergola G. Mediterranean Diet and Cardiovascular Disease: A Critical Evaluation of A Priori Dietary Indexes. Nutrients. 2015;7:7863–88.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Trichopoulou A. Mediterranean diet, traditional foods, and health: evidence from the Greek EPIC cohort. Food Nutr Bull. 2007;28:236–40.

    PubMed  Google Scholar 

  5. 5.

    Tripoli E, Giammanco M, et al. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18:98–112.

    CAS  PubMed  Google Scholar 

  6. 6.

    Owen RW, Mier W, et al. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem Toxicol. 2000;38:647–59.

    CAS  PubMed  Google Scholar 

  7. 7.

    Lercker G, Rodriguez-Estrada MT. Chromatographic analysis of unsaponifiable compounds of olive oils and fat-containing foods. J Chromatogr A. 2000;881:105–29.

    CAS  PubMed  Google Scholar 

  8. 8.

    Fito M, Cladellas M, et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis. 2005;181:149–58.

    CAS  PubMed  Google Scholar 

  9. 9.

    Covas MI, Konstantinidou V, et al. Olive oil and cardiovascular health. J Cardiovasc Pharmacol. 2009;54:477–82.

    CAS  PubMed  Google Scholar 

  10. 10.

    Perez-Jimenez F, Ruano J, et al. The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res. 2007;51:1199–208.

    CAS  PubMed  Google Scholar 

  11. 11.

    Lucas L, Russell A, et al. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. Curr Pharm Des. 2011;17:754–68.

    CAS  PubMed  Google Scholar 

  12. 12.

    Estruch R. Anti-inflammatory effects of the Mediterranean diet: the experience of the PREDIMED study. Proc Nutr Soc. 2010;69:333–40.

    CAS  PubMed  Google Scholar 

  13. 13.

    Mena MP, Sacanella E, et al. Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89:248–56.

    CAS  PubMed  Google Scholar 

  14. 14.

    Esposito K, Marfella R, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–6.

    CAS  PubMed  Google Scholar 

  15. 15.

    Scoditti E, Massaro M. et al. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic Acid and hydroxytyrosol in human adipocytes. PLoS ONE. 2015;10:e0128218

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Loued S, Berrougui H, et al. Extra-virgin olive oil consumption reduces the age-related decrease in HDL and paraoxonase 1 anti-inflammatory activities. Br J Nutr. 2013;110:1272–84.

    CAS  PubMed  Google Scholar 

  17. 17.

    Llorente-Cortes V, Estruch R, et al. Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk. Atherosclerosis. 2010;208:442–50.

    CAS  PubMed  Google Scholar 

  18. 18.

    Cruz-Teno C, Perez-Martinez P, et al. Dietary fat modifies the postprandial inflammatory state in subjects with metabolic syndrome: the LIPGENE study. Mol Nutr Food Res. 2012;56:854–65.

    CAS  PubMed  Google Scholar 

  19. 19.

    Jimenez-Gomez Y, Lopez-Miranda J, et al. Olive oil and walnut breakfasts reduce the postprandial inflammatory response in mononuclear cells compared with a butter breakfast in healthy men. Atherosclerosis. 2009;204:e70–6.

    CAS  PubMed  Google Scholar 

  20. 20.

    Camargo A, Delgado-Lista J, et al. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br J Nutr. 2012;108:500–8.

    CAS  PubMed  Google Scholar 

  21. 21.

    Camargo A, Ruano J, et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom. 2010;11:253.

    Google Scholar 

  22. 22.

    Salas-Salvado J, Garcia-Arellano A, et al. Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr. 2008;62:651–9.

    CAS  PubMed  Google Scholar 

  23. 23.

    Carluccio MA, Siculella L, et al. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol. 2003;23:622–9.

    CAS  PubMed  Google Scholar 

  24. 24.

    Scoditti E, Calabriso N, et al. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys. 2012;527:81–9.

    CAS  PubMed  Google Scholar 

  25. 25.

    Ryu SJ, Choi HS, et al. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish. J Agric Food Chem. 2015;63:2098–105.

    CAS  PubMed  Google Scholar 

  26. 26.

    Covas MI, Nyyssonen K, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med. 2006;145:333–41.

    CAS  PubMed  Google Scholar 

  27. 27.

    Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86:515–81.

    CAS  PubMed  Google Scholar 

  28. 28.

    Meisinger C, Baumert J, et al. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation. 2005;112:651–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    de la Torre-Carbot K, Chavez-Servin JL, et al. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J Nutr. 2010;140:501–8.

    PubMed  Google Scholar 

  30. 30.

    Bogani P, Galli C, et al. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis. 2007;190:181–6.

    CAS  PubMed  Google Scholar 

  31. 31.

    Visioli F, Poli A, et al. Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev. 2002;22:65–75.

    CAS  PubMed  Google Scholar 

  32. 32.

    Visioli F, Caruso D, et al. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem Biophys Res Commun. 2000;278:797–9.

    CAS  PubMed  Google Scholar 

  33. 33.

    Weinbrenner T, Fito M, et al. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J Nutr. 2004;134:2314–21.

    CAS  PubMed  Google Scholar 

  34. 34.

    Perez-Martinez P, Garcia-Quintana JM, et al. Postprandial oxidative stress is modified by dietary fat: evidence from a human intervention study. Clin Sci (Lond). 2010;119:251–61.

    CAS  Google Scholar 

  35. 35.

    Loffredo L, Perri L, et al. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra virgin olive oil and cocoa. Br J Clin Pharmacol. 2017;83:96–102.

    CAS  PubMed  Google Scholar 

  36. 36.

    Yubero-Serrano EM, Garcia-Rios A, et al. Postprandial effects of the Mediterranean diet on oxidant and antioxidant status in elderly men and women. J Am Geriatr Soc. 2011;59:938–40.

    PubMed  Google Scholar 

  37. 37.

    Moreno JJ. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radic Biol Med. 2003;35:1073–81.

    CAS  PubMed  Google Scholar 

  38. 38.

    Martin MA, Ramos S, et al. Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol Nutr Food Res. 2010;54:956–66.

    CAS  PubMed  Google Scholar 

  39. 39.

    Giordano E, Davalos A, et al. Chronic hydroxytyrosol feeding modulates glutathione-mediated oxido-reduction pathways in adipose tissue: a nutrigenomic study. Nutr Metab Cardiovasc Dis. 2014;24:1144–50.

    CAS  PubMed  Google Scholar 

  40. 40.

    Yubero-Serrano EM, Gonzalez-Guardia L, et al. Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q(10) in elderly men and women. Age (Dordr). 2013;35:159–70.

    CAS  Google Scholar 

  41. 41.

    Zrelli H, Matsuoka M, et al. Hydroxytyrosol induces proliferation and cytoprotection against oxidative injury in vascular endothelial cells: role of Nrf2 activation and HO-1 induction. J Agric Food Chem. 2011;59:4473–82.

    CAS  PubMed  Google Scholar 

  42. 42.

    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–32.

    PubMed  Google Scholar 

  43. 43.

    Borissoff JI, Spronk HM, et al. The hemostatic system as a modulator of atherosclerosis. N Engl J Med. 2011;364:1746–60.

    CAS  PubMed  Google Scholar 

  44. 44.

    Gleissner CA, von Hundelshausen P, et al. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol. 2008;28:1920–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lievens D, Eijgelaar WJ, et al. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost. 2009;102:206–14.

    CAS  PubMed  Google Scholar 

  46. 46.

    Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–7.

    CAS  Google Scholar 

  47. 47.

    Brunner H, Cockcroft JR, et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23:233–46.

    CAS  PubMed  Google Scholar 

  48. 48.

    Berry SE, Tucker S, et al. Impaired postprandial endothelial function depends on the type of fat consumed by healthy men. J Nutr. 2008;138:1910–4.

    CAS  PubMed  Google Scholar 

  49. 49.

    Fuentes F, Lopez-Miranda J, et al. Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with alpha-linolenic acid on postprandial endothelial function in healthy men. Br J Nutr. 2008;100:159–65.

    CAS  PubMed  Google Scholar 

  50. 50.

    Fuentes F, Lopez-Miranda J, et al. Mediterranean and low-fat diets improve endothelial function in hypercholesterolemic men. Ann Intern Med. 2001;134:1115–9.

    CAS  PubMed  Google Scholar 

  51. 51.

    Yubero-Serrano EM, Delgado-Casado N, et al. Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women. Age (Dordr). 2011;33:579–90.

    CAS  Google Scholar 

  52. 52.

    Yubero-Serrano EM, Gonzalez-Guardia L, et al. Mediterranean diet supplemented with coenzyme Q10 modifies the expression of proinflammatory and endoplasmic reticulum stress-related genes in elderly men and women. J Gerontol A Biol Sci Med Sci. 2012;67:3–10.

    PubMed  Google Scholar 

  53. 53.

    Marin C, Ramirez R, et al. Mediterranean diet reduces endothelial damage and improves the regenerative capacity of endothelium. Am J Clin Nutr. 2011;93:267–74.

    CAS  PubMed  Google Scholar 

  54. 54.

    Gutierrez-Mariscal FM, Perez-Martinez P, et al. Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age (Dordr). 2012;34:389–403.

    CAS  Google Scholar 

  55. 55.

    Calabriso N, Massaro M, et al. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. J Nutr Biochem. 2016;28:19–29.

    CAS  PubMed  Google Scholar 

  56. 56.

    Storniolo CE, Rosello-Catafau J, et al. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol. 2014;2:971–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Lockyer S, Rowland I, et al. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial. Eur J Nutr. 2017;56:1421–32.

    CAS  PubMed  Google Scholar 

  58. 58.

    Expert Panel on Detection EaToHBCIAEsottrotNCEPNepod. JAMA. 2001;285:2486–97.

  59. 59.

    Rader DJ, Alexander ET, et al. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50:Suppl:S189–94.

    PubMed  Google Scholar 

  60. 60.

    Ramirez-Tortosa MC, Suarez A, et al. Effect of extra-virgin olive oil and fish-oil supplementation on plasma lipids and susceptibility of low-density lipoprotein to oxidative alteration in free-living spanish male patients with peripheral vascular disease. Clin Nutr. 1999;18:167–74.

    CAS  PubMed  Google Scholar 

  61. 61.

    Venturini D, Simao AN, et al. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome. Nutrition. 2015;31:834–40.

    CAS  PubMed  Google Scholar 

  62. 62.

    Estruch R, Martinez-Gonzalez MA, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145:1–11.

    PubMed  Google Scholar 

  63. 63.

    Kolovou GD, Mikhailidis DP, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol. 2011;9:258–70.

    CAS  PubMed  Google Scholar 

  64. 64.

    Mihas C, Kolovou GD, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Curr Vasc Pharmacol. 2011;9:271–80.

    CAS  PubMed  Google Scholar 

  65. 65.

    Bayturan O, Tuzcu EM, et al. The metabolic syndrome, its component risk factors, and progression of coronary atherosclerosis. Arch Intern Med. 2010;170:478–84.

    CAS  PubMed  Google Scholar 

  66. 66.

    Langsted A, Freiberg JJ, et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med. 2011;270:65–75.

    CAS  PubMed  Google Scholar 

  67. 67.

    Sanders TA, de Grassi T, et al. Influence of fatty acid chain length and cis/trans isomerization on postprandial lipemia and factor VII in healthy subjects (postprandial lipids and factor VII). Atherosclerosis. 2000;149:413–20.

    CAS  PubMed  Google Scholar 

  68. 68.

    Buchholz T, Melzig MF. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Med. 2015;81:771–83.

    CAS  PubMed  Google Scholar 

  69. 69.

    Smith RD, Kelly CN, et al. Long-term monounsaturated fatty acid diets reduce platelet aggregation in healthy young subjects. Br J Nutr. 2003;90:597–606.

    CAS  PubMed  Google Scholar 

  70. 70.

    Pignatelli P, Pastori D, et al. Mediterranean diet reduces thromboxane A2 production in atrial fibrillation patients. Clin Nutr. 2015;34:899–903.

    CAS  PubMed  Google Scholar 

  71. 71.

    Misikangas M, Freese R, et al. High linoleic acid, low vegetable, and high oleic acid, high vegetable diets affect platelet activation similarly in healthy women and men. J Nutr. 2001;131:1700–5.

    CAS  PubMed  Google Scholar 

  72. 72.

    Karantonis HC, Fragopoulou E, et al. Effect of fast-food Mediterranean-type diet on type 2 diabetics and healthy human subjects’ platelet aggregation. Diabetes Res Clin Pract. 2006;72:33–41.

    CAS  PubMed  Google Scholar 

  73. 73.

    Vicario IM, Malkova D, et al. Olive oil supplementation in healthy adults: effects in cell membrane fatty acid composition and platelet function. Ann Nutr Metab. 1998;42:160–9.

    CAS  PubMed  Google Scholar 

  74. 74.

    Karantonis HC, Antonopoulou S, et al. Antithrombotic lipid minor constituents from vegetable oils. Comp olive oils Others J Agric Food Chem. 2002;50:1150–60.

    CAS  Google Scholar 

  75. 75.

    Larsen LF, Jespersen J, et al. Are olive oil diets antithrombotic? Diets enriched with olive, rapeseed, or sunflower oil affect postprandial factor VII differently. Am J Clin Nutr. 1999;70:976–82.

    CAS  PubMed  Google Scholar 

  76. 76.

    Silva KD, Kelly CN, et al. Chylomicron particle size and number, factor VII activation and dietary monounsaturated fatty acids. Atherosclerosis. 2003;166:73–84.

    CAS  PubMed  Google Scholar 

  77. 77.

    Delgado-Lista J, Lopez-Miranda J, et al. Chronic dietary fat intake modifies the postprandial response of hemostatic markers to a single fatty test meal. Am J Clin Nutr. 2008;87:317–22.

    CAS  PubMed  Google Scholar 

  78. 78.

    Kelly CM, Smith RD, et al. Dietary monounsaturated fatty acids and haemostasis. Proc Nutr Soc. 2001;60:161–70.

    CAS  PubMed  Google Scholar 

  79. 79.

    Larsen LF, Bladbjerg EM, et al. Effects of dietary fat quality and quantity on postprandial activation of blood coagulation factor VII. Arterioscler Thromb Vasc Biol. 1997;17:2904–9.

    CAS  PubMed  Google Scholar 

  80. 80.

    Hunter KA, Crosbie LC, et al. Effect of diets rich in oleic acid, stearic acid and linoleic acid on postprandial haemostatic factors in young healthy men. Br J Nutr. 2001;86:207–15.

    CAS  PubMed  Google Scholar 

  81. 81.

    Sanders TA, Oakley FR, et al. High intakes of trans monounsaturated fatty acids taken for 2 weeks do not influence procoagulant and fibrinolytic risk markers for CHD in young healthy men. Br J Nutr. 2003;89:767–76.

    CAS  PubMed  Google Scholar 

  82. 82.

    Motton DD, Mackman N, et al. Postprandial elevation of tissue factor antigen in the blood of healthy adults. Thromb Haemost. 2005;94:504–9.

    CAS  PubMed  Google Scholar 

  83. 83.

    Tremoli E, Eligini S, et al. Effects of omega 3 fatty acid ethyl esters on monocyte tissue factor expression. World Rev Nutr Diet. 1994;76:55–9.

    CAS  PubMed  Google Scholar 

  84. 84.

    Bravo-Herrera MD, Lopez-Miranda J, et al. Tissue factor expression is decreased in monocytes obtained from blood during Mediterranean or high carbohydrate diets. Nutr Metab Cardiovasc Dis. 2004;14:128–32.

    CAS  PubMed  Google Scholar 

  85. 85.

    Perez-Jimenez F, Castro P, et al. Circulating levels of endothelial function are modulated by dietary monounsaturated fat. Atherosclerosis. 1999;145:351–8.

    CAS  PubMed  Google Scholar 

  86. 86.

    Kozima Y, Urano T, et al. Impaired fibrinolytic activity induced by ingestion of butter: effect of increased plasma lipids on the fibrinolytic activity. Thromb Res. 1993;70:191–202.

    CAS  PubMed  Google Scholar 

  87. 87.

    Poppitt SD, Keogh GF, et al. Effect of moderate changes in dietary fatty acid profile on postprandial lipaemia, haemostatic and related CVD risk factors in healthy men. Eur J Clin Nutr. 2004;58:819–27.

    CAS  PubMed  Google Scholar 

  88. 88.

    Perez-Martinez P, Garcia-Rios A, et al. Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr Pharm Des. 2011;17:769–77.

    CAS  PubMed  Google Scholar 

  89. 89.

    Ser. WHOTR. Diet, nutrition and the prevention of chronic diseases. 2003;916:i-viii:1-149, backcover.

  90. 90.

    Bullo M, Lamuela-Raventos R, et al. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem. 2011;11:1797–810.

    CAS  PubMed  Google Scholar 

  91. 91.

    Esposito K, Kastorini CM, et al. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9:1–12.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Schwartz GJ, Fu J, et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008;8:281–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Panagiotakos DB, Pitsavos C, et al. Impact of lifestyle habits on the prevalence of the metabolic syndrome among Greek adults from the ATTICA study. Am Heart J. 2004;147:106–12.

    PubMed  Google Scholar 

  94. 94.

    Tortosa A, Bes-Rastrollo M, et al. Mediterranean diet inversely associated with the incidence of metabolic syndrome: the SUN prospective cohort. Diabetes Care. 2007;30:2957–9.

    PubMed  Google Scholar 

  95. 95.

    Esmaillzadeh A, Kimiagar M, et al. Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am J Clin Nutr. 2007;85:910–8.

    CAS  PubMed  Google Scholar 

  96. 96.

    Lutsey PL, Steffen LM, et al. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation. 2008;117:754–61.

    PubMed  Google Scholar 

  97. 97.

    Diaz-Lopez A, Babio N, et al. Mediterranean Diet, Retinopathy, Nephropathy, and Microvascular Diabetes Complications: A Post Hoc Analysis of a Randomized Trial. Diabetes Care. 2015;38:2134–41.

    PubMed  Google Scholar 

  98. 98.

    Giugliano F, Maiorino MI, et al. Adherence to Mediterranean diet and erectile dysfunction in men with type 2 diabetes. J Sex Med. 2010;7:1911–7.

    PubMed  Google Scholar 

  99. 99.

    Martinez-Gonzalez MA, de la Fuente-Arrillaga C, et al. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. BMJ. 2008;336:1348–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Elhayany A, Lustman A, et al. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study. Diabetes Obes Metab. 2010;12:204–9.

    CAS  PubMed  Google Scholar 

  101. 101.

    Hodge AM, English DR, et al. Does a Mediterranean diet reduce the mortality risk associated with diabetes: evidence from the Melbourne Collaborative Cohort Study. Nutr Metab Cardiovasc Dis. 2011;21:733–9.

    CAS  PubMed  Google Scholar 

  102. 102.

    Reisin E. The benefit of the Mediterranean-style diet in patients with newly diagnosed diabetes. Curr Hypertens Rep. 2010;12:56–8.

    PubMed  Google Scholar 

  103. 103.

    Paniagua JA, Gallego de la Sacristana A, et al. Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care. 2007;30:1717–23.

    CAS  PubMed  Google Scholar 

  104. 104.

    Blanco-Rojo R, Alcala-Diaz JF, et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia. 2015.

  105. 105.

    Konstantinidou V, Khymenets O, et al. Time course of changes in the expression of insulin sensitivity-related genes after an acute load of virgin olive oil. OMICS. 2009;13:431–8.

    CAS  PubMed  Google Scholar 

  106. 106.

    Lopez S, Bermudez B, et al. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids. Am J Clin Nutr. 2008;88:638–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by CITOLIVA, Center for Excellence in Research on Olive Oil and Health (CEAS). The work is also cofinanced by the European Regional Development Fund (FEDER). The Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN) is an initiative of the Carlos III Health Institute, Madrid, Spain.

Funding Information

Supported in part by research grants from the Ministry of Science and Innovation (AGL2004–07907, AGL2006–01979, AGL2009–12270), Ministry of Science and Competitiveness (AGL2012–39615, AGL2015–67896-P), Training in health research Proyects by Carlos III Health Institute (FIS) (PIE14/00031 and PIE14/00005), Ministry of Economy, Innovation, Science and Employment (CVI-7450). This article is published as part of a supplement sponsored by the Mediterranean Diet Foundation and the Diputació de Barcelona.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose Lopez-Miranda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yubero-Serrano, E.M., Lopez-Moreno, J., Gomez-Delgado, F. et al. Extra virgin olive oil: More than a healthy fat. Eur J Clin Nutr 72, 8–17 (2019). https://doi.org/10.1038/s41430-018-0304-x

Download citation

Further reading

Search

Quick links