Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology

Plasma concentrations of anserine, carnosine and pi-methylhistidine as biomarkers of habitual meat consumption

Abstract

Background/Objectives

Dietary intake of red and processed meat has been associated with disease risk. Since dietary intake assessment methods are prone to measurement errors, identifying biomarkers of meat intake in bio-samples could provide more valid intake estimates. We examined associations of habitual red and processed meat, poultry, fish, and dairy products consumption with plasma concentrations of anserine, carnosine, pi-methylhistidine (Π-MH), tau-methylhistidine (T-MH), and the ratio of T-MH to Π-MH in a cross-sectional study.

Subjects/Methods

Plasma anserine, carnosine, Π-MH, and T-MH concentrations were measured using ion-pair LC–MS/MS in 294 participants in the second Bavarian Food Consumption Survey (BVS II). Habitual food consumption was assessed using three 24-h dietary recalls. Associations between plasma metabolites concentrations and meat, fish, eggs, and dairy products consumption were assessed by fitting generalized linear model, adjusted for age, sex, and BMI.

Results

Total meat intake was associated with plasma concentrations of anserine, carnosine, Π-MH and, the ratio of T-MH to Π-MH. Red meat intake was related to carnosine (p-trend = 0.0028) and Π-MH plasma levels (p-trend = 0.0493). Poultry (p-trend = 0.0006) and chicken (p-trend = 0.0003) intake were associated with Π-MH. The highest anserine concentrations were observed in individuals consuming processed meat or turkey. For T-MH we did not observe any association with meat intake.

Conclusions

Our results indicate an association between habitual meat consumption and plasma concentrations of anserine, carnosine, Π-MH and the ratio of T-MH to Π-MH. Intervention studies should clarify whether the analyzed plasma metabolites are indicative for a specific type of meat before proposing them as biomarkers of habitual meat intake in epidemiologic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abete I, Romaguera D, Vieira AR, Lopez de Munain A, Norat T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr. 2014;112:762–75. https://doi.org/10.1017/S000711451400124X

    Article  CAS  PubMed  Google Scholar 

  2. Chen GC, Lv DB, Pang Z, Liu QF. Red and processed meat consumption and risk of stroke: a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2013;67:91–95. https://doi.org/10.1038/ejcn.2012.180

    Article  PubMed  Google Scholar 

  3. Dragsted LO. Biomarkers of meat intake and the application of nutrigenomics. Meat Sci. 2010;84:301–7. https://doi.org/10.1016/j.meatsci.2009.08.028

    Article  CAS  PubMed  Google Scholar 

  4. Micha R, Wallace SK, Mozaffarian D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation. 2010;121:2271–83. https://doi.org/10.1161/CIRCULATIONAHA.109.924977

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 2011;6:e20456 https://doi.org/10.1371/journal.pone.0020456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rohrmann S, Linseisen J. Processed meat: the real villain? Proc Nutr Soc. 2016;75:233–41. https://doi.org/10.1017/S0029665115004255

    Article  CAS  PubMed  Google Scholar 

  7. Rohrmann S, Overvad K, Bueno-de-Mesquita HB, Jakobsen MU, Egeberg R, Tjonneland A, et al. Meat consumption and mortality–results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013;11:63 https://doi.org/10.1186/1741-7015-11-63

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014;36:e2014009 https://doi.org/10.4178/epih/e2014009

    Article  PubMed  PubMed Central  Google Scholar 

  9. Biro G, Hulshof KF, Ovesen L, Amorim Cruz JA, Group E. Selection of methodology to assess food intake. Eur J Clin Nutr. 2002;56:S25–32. https://doi.org/10.1038/sj.ejcn.1601426

    Article  PubMed  Google Scholar 

  10. Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, et al. Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol. 2003;158:14–21.

    Article  PubMed  Google Scholar 

  11. Turunen AW, Mannisto S, Kiviranta H, Marniemi J, Jula A, Tiittanen P, et al. Dioxins, polychlorinated biphenyls, methyl mercury and omega-3 polyunsaturated fatty acids as biomarkers of fish consumption. Eur J Clin Nutr. 2010;64:313–23. https://doi.org/10.1038/ejcn.2009.147

    Article  CAS  PubMed  Google Scholar 

  12. Sjolin J, Hjort G, Friman G, Hambraeus L. Urinary excretion of 1-methylhistidine: a qualitative indicator of exogenous 3-methylhistidine and intake of meats from various sources. Metabolism. 1987;36:1175–84.

    Article  CAS  PubMed  Google Scholar 

  13. Potischman N. Biologic and methodologic issues for nutritional biomarkers. J Nutr. 2003;133:875S–80S.

    Article  CAS  PubMed  Google Scholar 

  14. Altorf-van der Kuil W, Brink EJ, Boetje M, Siebelink E, Bijlsma S, Engberink MF, et al. Identification of biomarkers for intake of protein from meat, dairy products and grains: a controlled dietary intervention study. Br J Nutr. 2013;110:810–22. https://doi.org/10.1017/S0007114512005788

    Article  CAS  PubMed  Google Scholar 

  15. International Union of Pure and Applied Chemists. IUPAC Gold Book [cited August 2017].

  16. Himmerich SGK, Karg G. Bayerische Verzehrsstudie (BVS) II-Abschlussbericht [Second Bavarian Food Consumption Survey- Final report], Bayerisches Staastministerium fuer Umwelt, Gesundheit und Verbrauchschutz (in German); 2003.

  17. Slimani N, Deharveng G, Charrondiere RU, van Kappel AL, Ocke MC, Welch A, et al. Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Prog Biomed. 1999;58:251–66.

    Article  CAS  Google Scholar 

  18. Voss S, Charrondiere UR, Slimani N, Kroke A, Riboli E, Wahrendorf J, et al. EPIC-SOFT a European computer program for 24-hour dietary protocols. Z Ernahr. 1998;37:227–33.

    Article  CAS  Google Scholar 

  19. Himmerich H, Fulda S, Linseisen J, Seiler H, Wolfram G, Himmerich S, et al. TNF-alpha, soluble TNF receptor and interleukin-6 plasma levels in the general population. Eur Cytokine Netw. 2006;17:196–201.

    CAS  PubMed  Google Scholar 

  20. Harder U, Koletzko B, Peissner W. Quantification of 22 plasma amino acids combining derivatization and ion-pair LC–MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:495–504. https://doi.org/10.1016/j.jchromb.2011.01.010

    Article  CAS  Google Scholar 

  21. Gucciardi A, Pirillo P, Di Gangi IM, Naturale M, Giordano G. A rapid UPLC-MS/MS method for simultaneous separation of 48 acylcarnitines in dried blood spots and plasma useful as a second-tier test for expanded newborn screening. Anal Bioanal Chem. 2012;404:741–51. https://doi.org/10.1007/s00216-012-6194-1

    Article  CAS  PubMed  Google Scholar 

  22. Gil-Agusti M, Esteve-Romero J, Carda-Broch S. Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J Chromatogr A. 2008;1189:444–50. https://doi.org/10.1016/j.chroma.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  23. Yeum KJ, Orioli M, Regazzoni L, Carini M, Rasmussen H, Russell RM, et al. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids. 2010;38:847–58. https://doi.org/10.1007/s00726-009-0291-2

    Article  CAS  PubMed  Google Scholar 

  24. Abe H, Okuma E, Sekine H, Maeda A, Yoshiue S. Human urinary excretion of L-histidine-related compounds after ingestion of several meats and fish muscle. Int J Biochem. 1993;25:1245–9.

    Article  CAS  PubMed  Google Scholar 

  25. Cross AJ, Major JM, Sinha R. Urinary biomarkers of meat consumption. Cancer Epidemiol Biomark Prev. 2011;20:1107–11. https://doi.org/10.1158/1055-9965.EPI-11-0048

    Article  CAS  Google Scholar 

  26. Datta SP, Harris H. Dietary origin of urinary methylhistidine. Nature. 1951;168:296–7.

    Article  CAS  PubMed  Google Scholar 

  27. Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW. Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol. 2000;152:752–5.

    Article  CAS  PubMed  Google Scholar 

  28. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105:600–8. https://doi.org/10.3945/ajcn.116.146639

    Article  CAS  PubMed  Google Scholar 

  29. Rohrmann S, Linseisen J, Allenspach M, von Eckardstein A, Muller D. Plasma concentrations of Trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German Adult Population. J Nutr. 2016;146:283–9. https://doi.org/10.3945/jn.115.220103

    Article  CAS  PubMed  Google Scholar 

  30. Park YJ, Volpe SL, Decker EA. Quantitation of carnosine in humans plasma after dietary consumption of beef. J Agric Food Chem. 2005;53:4736–9. https://doi.org/10.1021/jf047934h

    Article  CAS  PubMed  Google Scholar 

  31. Gardner ML, Illingworth KM, Kelleher J, Wood D. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol. 1991;439:411–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wawro N, Kleiser C, Himmerich S, Gedrich K, Boeing H, Knueppel S, et al. Estimating Usual Intake in the 2nd Bavarian Food Consumption Survey: Comparison of the Results Derived by the National Cancer Institute Method and a Basic Individual Means Approach. Ann Nutr Metab. 2017;71:164–74. https://doi.org/10.1159/000481148

    Article  CAS  PubMed  Google Scholar 

  33. Yin X, Gibbons H, Rundle M, Frost G, McNulty BA, Nugent AP et al. Estimation of chicken intake by adults using metabolomics-derived markers. J Nutr. 2017. https://doi.org/10.3945/jn.117.252197

  34. Thompson FE, Kirkpatrick SI, Subar AF, Reedy J, Schap TE, Wilson MM, et al. The National Cancer Institute’s Dietary Assessment Primer: a resource for diet research. J Acad Nutr Diet. 2015;115:1986–95. https://doi.org/10.1016/j.jand.2015.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  35. Slimani N, Bingham S, Runswick S, Ferrari P, Day NE, Welch AA, et al. Group level validation of protein intakes estimated by 24-hour diet recall and dietary questionnaires against 24-hour urinary nitrogen in the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study. Cancer Epidemiol Biomark Prev. 2003;12:784–95.

    Google Scholar 

  36. Crispim SP, de Vries JH, Geelen A, Souverein OW, Hulshof PJ, Lafay L, et al. Two non-consecutive 24 h recalls using EPIC-Soft software are sufficiently valid for comparing protein and potassium intake between five European centres--results from the European Food Consumption Validation (EFCOVAL) study. Br J Nutr. 2011;105:447–58. https://doi.org/10.1017/S0007114510003648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The second Bavarian Food Consumption survey (Bayerische Verzehrsstudie II) study was supported by funds of the Bavarian Ministry of Environment, Health and Consumer Protection and the Kurt-Eberhard-Bode-Stiftung. Support for this specific project was provided by The Food Biomarkers Alliance Project FOODBALL (German Ministry for Education and Research, FK 2814ERA02E), a project in the context of the EU Joint Programming Initiative “A Healthy Diet for a Healthy Life”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Linseisen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitry, P., Wawro, N., Rohrmann, S. et al. Plasma concentrations of anserine, carnosine and pi-methylhistidine as biomarkers of habitual meat consumption. Eur J Clin Nutr 73, 692–702 (2019). https://doi.org/10.1038/s41430-018-0248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0248-1

This article is cited by

Search

Quick links