Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Protein: what’s on in research on clinical nutrition

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bröer S, Bröer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J. 2017;474:1935–63.

    PubMed  Google Scholar 

  2. WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. Geneva: World Health Organization; 2007. p. 1–265.

  3. Kimball SR, Jefferson LS. Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem. 2010;285:29027–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 50-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Borack MS, Volpi E. Efficacy and safety of leucine supplementation in the elderly. J Nutr. 2016;146:2625S–2629S.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vary TC, Jefferson LS, Kimball SR. Amino acid-induced stimulation of translation initiation in rat skeletal muscle. Am J Physiol. 1999;277(6 Pt 1):E1077–86.

    CAS  PubMed  Google Scholar 

  7. Drummond MJ, Glynn EL, Fry CS, Timmerman KL, Volpi E, Rasmussen BB. An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J Physiol Endocrinol Metabol. 2010;298:E1011–8.

    CAS  Google Scholar 

  8. Bond P. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr. 2016;13:8.

    PubMed  PubMed Central  Google Scholar 

  9. Naito T, Kuma A, Mizushima N. Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. J Biol Chem. 2013;288:21074–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev. 2008;88:249–86.

    PubMed  Google Scholar 

  11. Fairweather S, Bröer A, O’Mara ML, Bröer S. Intestinal peptidases form functional complexes with the neutral amino acid transporter B0 AT1. Biochem J. 2012;446:135–48.

    CAS  PubMed  Google Scholar 

  12. FAO. Dietary protein quality evaluation in human nutrition. Report of an FAO expert consulatation: FAO food and nutrition paper 92. Rome: FAO; 2013.

  13. FAO. Research approaches and methods for evaluating the protein quality of human foods. Report of a FAO Expert Working Group. FAO; 2014.

  14. Tome D. Criteria and markers for protein quality assessment—a review. Br J Nutr. 2012;108(Suppl 2):S222–9.

    CAS  PubMed  Google Scholar 

  15. Lee WT, Weisell R, Albert J, Tomé D, Kurpad AV, Uauy R. Research Approaches and Methods for Evaluating the Protein Quality of Human Foods Proposed by an FAO Expert Working Group in 2014. J Nutr. 2016;146:929–32.

    CAS  PubMed  Google Scholar 

  16. Azzout-Marniche D, Gaudichon C, Tomé D. Dietary protein and blood glucose control. Curr Opin Clin Nutr Metab Care. 2014;17:349–54.

    CAS  PubMed  Google Scholar 

  17. Fromentin C, Tomé D, Nau F, Flet L, Luengo C, Azzout-Marniche D, Sanders P, Fromentin G, Gaudichon C. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes. 2013;62:1435–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85:4481–90.

    CAS  PubMed  Google Scholar 

  19. Guillet C, Zangarelli A, Gachon P, Morio B, Giraudet C, Rousset P, Boirie Y. Whole body protein breakdown is less inhibited by insulin, but still responsive to amino acid, in nondiabetic elderly subjects. J Clin Endocrinol Metab. 2004;89:6017–24.

    CAS  PubMed  Google Scholar 

  20. Liu M, Chan CP, Yan BP, Zhang Q, Lam YY, Li RJ, Sanderson JE, Coats AJ, Sun JP, Yip GW, Yu CM. Albumin levels predict survival in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2012;14:39–44.

    CAS  PubMed  Google Scholar 

  21. Aquilani R, Opasic C, Dossena M, Iadarola P, Gualco A, Arcidiaco P, Viglio S, Boschi F, Verri M, Pasini E. Increased skeletal muscle amino acid release with light exercise in deconditioned patients with heart failure. J Am Coll Cardiol. 2005;45:154–64.

    Google Scholar 

  22. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, Harrington D, Kox WJ, Poole-Wilson PA, Coats AJ. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–3.

    CAS  PubMed  Google Scholar 

  23. Anker SD, Chaua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, Poole-Wilson PA, Coats AJ. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96:526–34.

    CAS  PubMed  Google Scholar 

  24. Pasini E, Corsetti G, Aquilani R, Romano C, Picca A, Calvani R, Dioguardi FS. Protein-Amino acid metabolism disarrangements: the hidden enemy of chronic age-related conditions. Nutrients. 2018;10:E391. https://doi.org/10.3390/nu10040391.

    Article  PubMed  Google Scholar 

  25. Tremblay F, Lavigne C, Jacques H, Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr. 2007;27:293–310.

    CAS  PubMed  Google Scholar 

  26. Santarpia L, Contaldo F, Pasanisi F. Dietary protein content for an optimal diet: a clinical view. J Cachex Sarcopenia Muscle. 2017;8:345–8.

    Google Scholar 

  27. Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24:400–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goberdhan DCI, Wilson C, Harris AL. Amino acid sensing by mTORC1: intracellular transporters mark the spot. Cell Metab. 2016;23:580–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng L, Zhang W, Zhou Y, Li F, Wei H, Peng J. Recent advances in understanding amino acid sensing mechanisms that regulate mTORC1. Int J Mol Sci. 2016;17:1636.

    PubMed Central  Google Scholar 

  30. Jewell JL, Russell RC, Guan K-L. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14:133–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dennis MD, Jefferson LS, Kimball SR. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem. 2012;287:42890–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan VP, Miyamoto S. Nutrient-sensing mTORC1: integration of metabolic and autophagic signals. J Mol Cell Cardiol. 2016;95:31–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunlop EA, Tee AR. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 2014;36:121–9.

    CAS  PubMed  Google Scholar 

  34. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15:555–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Layman DK, Anthony TG, Rasmussen BB, Adams SH, Lynch CJ, Brinkworth GD, Davis TA. Defining meal requirements for protein to optimize metabolic roles of aminoacids. Am J Clin Nutr. 2015;101:1330S–8S.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal transducing kinases GCN2 and TOR. Biochem J. 2013;449:1–10.

    CAS  PubMed  Google Scholar 

  38. Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab. 2013;304:E789–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010;29:2082–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gausserès N, Steiler T, Gaudichon C, Tomé D. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am J Physiol Endocrinol Metab. 2009;297:E1313–23.

    CAS  PubMed  Google Scholar 

  41. Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gaudichon C, Tomé D. Down-regulation of the ubiquitin-proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes. Amino Acids. 2011;41:457–68.

    CAS  PubMed  Google Scholar 

  42. Chalvon-Demersay T, Even PC, Tomé D, Chaumontet C, Piedcoq J, Gaudichon C, Azzout-Marniche D. Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes. J Nutr Biochem. 2016;36:60–67.

    CAS  PubMed  Google Scholar 

  43. Yao Y, Jones E, Inoki K. Lysosomal regulation of mTORC1 by amino acids in mammalian cells. Biomolecules. 2017;7:51.

    PubMed Central  Google Scholar 

  44. Rabanal-Ruiz Y, Korolchuk VI. mTORC1 and nutrient homeostasis: the central role of the lysosome. Int J Mol Sci. 2018;19:818.

    PubMed Central  Google Scholar 

  45. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47:349–58.

    CAS  PubMed  Google Scholar 

  47. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL. Differential regulation of mTORC1 by leucine and glutamine. Science. 2015;347:194–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Klasener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, et al. Inhibition of mTORC1 by Astrin and stress granules prevents apoptosis in cancer cells. Cell. 2013;154:859–74.

    CAS  PubMed  Google Scholar 

  50. Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DURK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell. 2013;152:791–805.

    CAS  PubMed  Google Scholar 

  51. Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, Clark J, Ktistakis NT. Dynamics of mTORC1 activation in response to amino acids. eLife. 2016;5:e19960.

    PubMed  PubMed Central  Google Scholar 

  52. Settembre C, Ballabio A. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harb Perspect Biol. 2014;6:a016907.

    PubMed  PubMed Central  Google Scholar 

  53. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA. 2017;114:11818–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(þ)-ATPase. Science. 2011;334:678–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dickinson JM, Rasmussen BB. Amino acid transporters in the regulation of human skeletal muscle protein metabolism. Curr Opin Clin Nutr Metab Care. 2013;16:638–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, Cho US, Wang W, Guan KL, Karin M, et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep. 2015;5:9502.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reeds PJ. Dispensable and indispensable amino acids for humans. J Nutr. 2000;130:1835S–40S.

    CAS  PubMed  Google Scholar 

  60. Leidy HJ, Clifton PM, Astrup A, Wycherley TP, Westerterp-Plantenga MS, Luscombe-Marsh ND, Woods SC, Mattes RD. The role of protein in weight loss and maintenance. Am J Clin Nutr. 2015;101:1320S–9S.

    CAS  PubMed  Google Scholar 

  61. Binder E, Berm ´ udez-Silva FJ, Andr´e C, Elie M, Romero-Zerbo SY, Leste-Lasserre T, Belluomo I, Duchampt A, Clark S, Aubert A, et al. Leucine supplementation protects from insulin resistance by regulating adiposity levels. PLoS ONE. 2013;8:e74705.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schoenfeld BJ, Aragon AA. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J Int Soc Sports Nutr. 2018;27:15:10.

    Google Scholar 

  64. Chalvon-Demersay T, Azzout-Marniche D, Arfsten J, Egli L, Gaudichon C, Karagounis LG, Tomé D. A systematic review of the effects of plant compared with animal protein sources on features of metabolic syndrome. J Nutr. 2017;147:281–92.

    CAS  PubMed  Google Scholar 

  65. Stepien M, Azzout-Marniche D, Even PC, Khodorova N, Fromentin G, Tomé D, Gaudichon C. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats. Am J Physiol Regul Integr Comp Physiol. 2016;311:R771–8.

    PubMed  Google Scholar 

  66. Chaumontet C, Even PC, Schwarz J, Simonin-Foucault A, Piedcoq J, Fromentin G, Azzout-Marniche D, Tomé D. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats. Br J Nutr. 2015;114:1132–42.

    CAS  PubMed  Google Scholar 

  67. Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr. 2014;68:973–9.

    CAS  PubMed  Google Scholar 

  68. Rietman A, Schwarz J, Blokker BA, Siebelink E, Kok FJ, Afman LA, Tomé D, Mensink M. Increasing protein intake modulates lipid metabolism in healthy young men and women consuming a high-fat hypercaloric diet. J Nutr. 2014;144:1174–80.

    CAS  PubMed  Google Scholar 

  69. Schwarz J, Tomé D, Baars A, Hooiveld GJ, Müller M. Dietary protein affects gene expression and prevents lipid accumulation in the liver in mice. PLoS ONE. 2012;7:e47303.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gannon MC, Nuttall F. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes. 2004;53:2375–82.

    CAS  PubMed  Google Scholar 

  71. Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR. Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 2009;29:21–41.

    CAS  PubMed  Google Scholar 

  72. Kim IY, Deutz NEP, Wolfe RR. Update on maximal anabolic response to dietary protein. Clin Nutr. 2018;37:411–8.

    CAS  PubMed  Google Scholar 

  73. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12:86–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Layman DK. Dietary guidelines should reflect new understandings about adult protein needs. Nutr Metab. 2009;6:12.

    Google Scholar 

  75. Hartman JW, Tang J, Wilkinson S, Tarnopolsky M, Lawrence R, Fullerton A, Phillips S. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weight-lifters. Am J Clin Nutr. 2007;86:373–81.

    CAS  PubMed  Google Scholar 

  76. Paddon-Jones D, Campbell WW, Jacques PF, Kritchevsky SB, Moore LL, Rodriguez NR, van Loon LJC. Protein and healthy aging. Am J Clin Nutr. 2015;101(Suppl):1339S–45S.

    CAS  PubMed  Google Scholar 

  77. Wandrag L, Brett SJ, Frost G, Hickson M. Impact of supplementation with amino acids or their metabolites on muscle wasting in patients with critical illness or other muscle wasting illness: a systematic review. J Hum Nutr Diet. 2015;28:313–30.

    CAS  PubMed  Google Scholar 

  78. Ham DJ, Caldow MK, Lynch GS, Koopman R. Leucine as a treatment for muscle wasting: a critical review. Clin Nutr. 2014;33:937–45.

    CAS  PubMed  Google Scholar 

  79. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96:1454–64.

    CAS  PubMed  Google Scholar 

  80. Deer RR, Volpi E. Protein requirements in critically Ill older adults. Nutrients. 2018;10:E378.

    PubMed  Google Scholar 

  81. Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. J Parenter Enter Nutr. 2016;40:795–805.

    CAS  Google Scholar 

  82. Dickinson JM, Gundermann DM, Walker DK, Reidy PT, Borack MS, Drummond MJ, Arora M, Volpi E, Rasmussen BB. Leucine-enriched amino acid ingestion after resistance exercise prolongs myofibrillar protein synthesis and amino acid transporter expression in older men. J Nutr. 2014;144:1694–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zeanandin G, Balage M, Schneider SM, Dupont J, Hebuterne X, Mothe-Satney I, Dardevet D. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. Age (Dordr). 2012;34:371–87.

    CAS  Google Scholar 

  84. Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113:25–34.

    CAS  PubMed  Google Scholar 

  85. Martone AM, Marzetti E, Calvani R, Picca A, Tosato M, Santoro L, Di Giorgio A, Nesci A, Sisto A, Santoliquido A, Landi F. Exercise and protein intake: a synergistic approach against sarcopenia. Biomed Res Int. 2017;2017:2672435

    PubMed  PubMed Central  Google Scholar 

  86. Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19:E954.

    PubMed  Google Scholar 

  87. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr. 2005;82:1065–73.

    CAS  PubMed  Google Scholar 

  88. Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NEP, Doehner W, Fearon KCH, Ferrucci L, Hellerstein MK, et al. Society for Sarcopenia, Cachexia, and Wasting Disease. Nutritional recommendations for the management of Sarcopenia. J Am Med Dir Assoc. 2010;11:391–6.

    PubMed  PubMed Central  Google Scholar 

  89. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14:542–59.

    PubMed  Google Scholar 

  90. Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008;87:1562S–6S.

    CAS  PubMed  Google Scholar 

  91. Lainscak M, von Haehling S, Doehner W, Anker SD. The obesity paradox in chronic disease: facts and numbers. J Cachex- Sarcopenia Muscle. 2012;3:1–4.

    Google Scholar 

  92. Gunst J, Vanhorebeek I, Thiessen SE, Van den Berghe G. Amino acid supplements in critically ill patients. Pharmacol Res. 2018;130:127–31.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tomé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomé, D. Protein: what’s on in research on clinical nutrition. Eur J Clin Nutr 72, 1215–1220 (2018). https://doi.org/10.1038/s41430-018-0240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0240-9

This article is cited by

Search

Quick links