Body composition and insulin resistance in children

Abstract

Insulin resistance is a condition of gluco-metabolic sufferance that may hesitate in the further development of type 2 diabetes and cardiovascular disease. The development of insulin resistance is mostly associated with the accumulation of excessive fat in the body. The epidemic impact of obesity in the youngest promoted an increase of the prevalence of insulin resistance also in children and adolescents. Increased fat accumulation in the peri-visceral area of the abdomen, occurring preferably at and after puberty, and in the liver, as non-alcoholic fatty liver disease, plays a role in the process. After puberty, males are at higher risk than females to develop insulin resistance. Also ethnicity contributes to sensitivity of children to develop insulin resistance, where Hispanics, South-Asians, and Indians are at higher risk than Whites and Blacks.

In spite of the research progress in the field, several questions on the relationship between body composition and insulin resistance are still unanswered. Multiomics approach, combined with nutrition as well as imaging techniques might contribute to unravel the role of body composition on insulin resistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Chiarelli F, Marcovecchio ML. Insulin resistance and obesity in childhood. Eur J Endocrinol. 2008;159(Suppl 1):S67–74.

    CAS  Article  Google Scholar 

  2. 2.

    Litwin SE. Childhood obesity and adulthood cardiovascular disease: quantifying the lifetime cumulative burden of cardiovascular risk factors. J Am Coll Cardiol. 2014;64:1588–90.

    Article  Google Scholar 

  3. 3.

    Caprio S, Perry R, Kursawe R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation. Gastroenterology. 2017;152:1638–46.

    CAS  Article  Google Scholar 

  4. 4.

    Travers SH, Jeffers BW, Bloch CA, Hill JO, Eckel RH. Gender and Tanner stage differences in body composition and insulin sensitivity in early pubertal children. J Clin Endocrinol Metab. 1995;80:172–8.

    CAS  PubMed  Google Scholar 

  5. 5.

    Arslanian S, Suprasongsin C. Insulin sensitivity, lipids, and body composition in childhood: is “syndrome X” present. J Clin Endocrinol Metab. 1996;81:1058–62.

    CAS  Article  Google Scholar 

  6. 6.

    Clausen JO, Ibsen H, Ibsen KK, Borch-Johnsen K. Association of body mass index, blood pressure and serum levels of triglycerides and high-density lipoprotein cholesterol in childhood with the insulin sensitivity index in young adulthood: a 13-year follow-up. J Cardiovasc Risk. 1996;3:427–33.

    CAS  Article  Google Scholar 

  7. 7.

    Caprio S, Hyman LD, Limb C, McCarthy S, Lange R, Sherwin RS, et al. Central adiposity and its metabolic correlates in obese adolescent girls. Am J Physiol. 1995;269(1 Pt 1):E118–26.

    CAS  PubMed  Google Scholar 

  8. 8.

    Caprio S, Bronson M, Sherwin RS, Rife F, Tamborlane WV. Co-existence of severe insulin resistance and hyperinsulinaemia in pre-adolescent obese children. Diabetologia. 1996;39:1489–97.

    CAS  Article  Google Scholar 

  9. 9.

    Caprio S. Insulin resistance in childhood obesity. J Pediatr Endocrinol Metab. 2002;15(Suppl 1):487–92.

    CAS  PubMed  Google Scholar 

  10. 10.

    Gower BA, Nagy TR, Trowbridge CA, Dezenberg C, Goran MI. Fat distribution and insulin response in prepubertal African American and white children. Am J Clin Nutr. 1998;67:821–7.

    CAS  Article  Google Scholar 

  11. 11.

    Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB. Body mass index as a measure of adiposity among children and adolescents: a validation study. J Pediatr. 1998;132:204–10.

    CAS  Article  Google Scholar 

  12. 12.

    Roemmich JN, Clark PA, Lusk M, Friel A, Weltman A, Epstein LH, et al. Pubertal alterations in growth and body composition. VI. Pubertal insulin resistance: relation to adiposity, body fat distribution and hormone release. Int J Obes Relat Metab Disord. 2002;26:701–9.

    CAS  Article  Google Scholar 

  13. 13.

    Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care. 2006;29:2427–32.

    Article  Google Scholar 

  14. 14.

    Reinehr T, Kiess W, Kapellen T, Andler W. Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics. 2004;114:1569–73.

    Article  Google Scholar 

  15. 15.

    Nguyen QM, Srinivasan SR, Xu JH, Chen W, Kieltyka L, Berenson GS. Utility of childhood glucose homeostasis variables in predicting adult diabetes and related cardiometabolic risk factors: the Bogalusa Heart Study. Diabetes Care. 2010;33:670–5.

    Article  Google Scholar 

  16. 16.

    Maffeis C, Silvagni D, Bonadonna R, Grezzani A, Banzato C, Tatò L. Fat cell size, insulin sensitivity, and inflammation in obese children. J Pediatr. 2007;151:647–52.

    CAS  Article  Google Scholar 

  17. 17.

    Sbarbati A, Osculati F, Silvagni D, Benati D, Galiè M, Camoglio FS, et al. Obesity and inflammation: evidence for an elementary lesion. Pediatrics. 2006;117:220–3.

    Article  Google Scholar 

  18. 18.

    Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes. 2015;64:1249–61.

    CAS  Article  Google Scholar 

  19. 19.

    Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013;339:172–7.

    CAS  Article  Google Scholar 

  20. 20.

    Perry RJ, Camporez JG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160:745–58.

    CAS  Article  Google Scholar 

  21. 21.

    Goran MI, Bergman RN, Gower BA. Influence of total vs. visceral fat on insulin action and secretion in African American and white children. Obes Res. 2001;9:423–31.

    CAS  Article  Google Scholar 

  22. 22.

    Gower BA. Syndrome X in children: influence of ethnicity and visceral fat. Am J Hum Biol. 1999;11:249–57.

    Article  Google Scholar 

  23. 23.

    Klein DJ, Aronson Friedman L, Harlan WR, Barton BA, Schreiber GB, Cohen RM, et al. Obesity and the development of insulin resistance and impaired fasting glucose in black and white adolescent girls: a longitudinal study. Diabetes Care. 2004;27:378–83.

    Article  Google Scholar 

  24. 24.

    Bacha F, Saad R, Gungor N, Janosky J, Arslanian SA. Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: race differential in diabetogenic and atherogenic risk factors. J Clin Endocrinol Metab. 2003;88:2534–40.

    CAS  Article  Google Scholar 

  25. 25.

    Misra A, Vikram NK, Arya S, Pandey RM, Dhingra V, Chatterjee A, et al. High prevalence of insulin resistance in postpubertal Asian Indian children is associated with adverse truncal body fat patterning, abdominal adiposity and excess body fat. Int J Obes Relat Metab Disord. 2004;28:1217–26.

    CAS  Article  Google Scholar 

  26. 26.

    Nightingale CM, Rudnicka AR, Owen CG, Wells JC, Sattar N, Cook DG, et al. Influence of adiposity on insulin resistance and glycemia markers among U.K. Children of South Asian, black African-Caribbean, and white European origin: child heart and health study in England. Diabetes Care. 2013;36:1712–9.

    CAS  Article  Google Scholar 

  27. 27.

    Neeland IJ, Poirier P, Després JP. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Diabetes Care. 2013;36:1712–9.

    Article  Google Scholar 

  28. 28.

    Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet. 2003;362:951–7.

    CAS  Article  Google Scholar 

  29. 29.

    Cruz ML, Bergman RN, Goran MI. Unique effect of visceral fat on insulin sensitivity in obese Hispanic children with a family history of type 2 diabetes. Diabetes Care. 2002;25:1631–6.

    Article  Google Scholar 

  30. 30.

    Bacha F, Saad R, Gungor N, Arslanian SA. Are obesity-related metabolic risk factors modulated by the degree of insulin resistance in adolescents? Diabetes Care. 2006;29:1599–604.

    Article  Google Scholar 

  31. 31.

    Bennett B, Larson-Meyer DE, Ravussin E, Volaufova J, Soros A, Cefalu WT, et al. Impaired insulin sensitivity and elevated ectopic fat in healthy obese vs. nonobese prepubertal children. Obesity (Silver Spring). 2012;20:371–5.

    CAS  Article  Google Scholar 

  32. 32.

    Hershkop K, Besor O, Santoro N, Pierpont B, Caprio S, Weiss R. Adipose insulin resistance in obese adolescents across the spectrum of glucose tolerance. J Clin Endocrinol Metab. 2016;101:2423–31.

    CAS  Article  Google Scholar 

  33. 33.

    Maffeis C, Manfredi R, Trombetta M, Sordelli S, Storti M, Benuzzi T, et al. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab. 2008;93:2122–8.

    CAS  Article  Google Scholar 

  34. 34.

    Hübers M, Geisler C, Plachta-Danielzik S, Müller MJ. Association between individual fat depots and cardio-metabolic traits in normal- and overweight children, adolescents and adults. Nutr Diabetes. 2017;7:e267.

    Article  Google Scholar 

  35. 35.

    Goran MI, Nagy TR, Treuth MS, Trowbridge C, Dezenberg C, McGloin A, et al. Visceral fat in white and African American prepubertal children. Am J Clin Nutr. 1997;65:1703–8.

    CAS  Article  Google Scholar 

  36. 36.

    Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, et al. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr. 2017;88:371–95.

    Article  Google Scholar 

  37. 37.

    Katzmarzyk PT, Shen W, Baxter-Jones A, Bell JD, Butte NF, Demerath EW, et al. Adiposity in children and adolescents: correlates and clinical consequences of fat stored in specific body depots. Pediatr Obes. 2012;7:e42–61.

    CAS  Article  Google Scholar 

  38. 38.

    Owens S, Litaker M, Allison J, Riggs S, Ferguson M, Gutin B. Prediction of visceral adipose tissue from simple anthropometric measurements in youths with obesity. Obes Res. 1999;7:16–22.

    CAS  Article  Google Scholar 

  39. 39.

    Goodwin K, Syme C, Abrahamowicz M, Leonard GT, Richer L, Perron M, et al. Routine clinical measures of adiposity as predictors of visceral fat in adolescence: a population-based magnetic resonance imaging study. PLoS One. 2013;8:e79896.

    CAS  Article  Google Scholar 

  40. 40.

    Barreira TV, Broyles ST, Gupta AK, Katzmarzyk PT. Relationship of anthropometric indices to abdominal and total body fat in youth: sex and race differences. Obesity (Silver Spring). 2014;22:1345–50.

    Article  Google Scholar 

  41. 41.

    Aristizabal JC, Barona J, Hoyos M, Ruiz M, Marín C. Association between anthropometric indices and cardiometabolic risk factors in pre-school children. BMC Pediatr. 2015;15:170.

    Article  Google Scholar 

  42. 42.

    Qi Q, Hua S, Perreira KM, Cai J, Van Horn L, Schneiderman N, et al. Sex differences in associations of adiposity measures and insulin resistance in US Hispanic/Latino Youth: The Hispanic community children’s health study/study of latino youth (SOL Youth). J Clin Endocrinol Metab. 2017;102:185–94.

    PubMed  Google Scholar 

  43. 43.

    Kondaki K, Grammatikaki E, Pavón DJ, Manios Y, González-Gross M, Sjöstrom M, et Al.. Comparison of several anthropometric indices with insulin resistance proxy measures among European adolescents: The Helena Study. Eur J Pediatr. 2011;170:731–9.

    Article  Google Scholar 

  44. 44.

    Morandi A, Miraglia Del Giudice E, Martino F, Martino E, Bozzola M, et al. Anthropometric indices are not satisfactory predictors of metabolic comorbidities in obese children and adolescents. J Pediatr. 2014;165:1178–83.

    Article  Google Scholar 

  45. 45.

    Maffeis C, Banzato C, Talamini G. Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J Pediatr. 2008;152:207–13.

    Article  Google Scholar 

  46. 46.

    Khoury M, Manlhiot C, McCrindle BW. Role of the waist/height ratio in the cardiometabolic risk assessment of children classified by body mass index. J Am Coll Cardiol. 2013;62:742–51.

    Article  Google Scholar 

  47. 47.

    Santoro N, Amato A, Grandone A, Brienza C, Savarese P, Tartaglione N, et al. Predicting metabolic syndrome in obese children and adolescents: look, measure and ask. Obes Facts. 2013;6:48–56.

    CAS  Article  Google Scholar 

  48. 48.

    Valenti L, Bugianesi E, Pajvani U, Targher G. Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver Int. 2016;36:1563–79.

    CAS  Article  Google Scholar 

  49. 49.

    Li Z, Lin M, Liu C, Wang D, Shi X, Chen Z, et al. Fetuin-B links nonalcoholic fatty liver disease to type 2 diabetes via inducing insulin resistance: association and path analyses. Cytokine. 2018;108:145–50.

    CAS  Article  Google Scholar 

  50. 50.

    Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: a meta-analysis. Diabetes Care. 2018;41:372–82.

    CAS  Article  Google Scholar 

  51. 51.

    Staiano AE, Katzmarzyk PT. Ethnic and sex differences in body fat and visceral and subcutaneous adiposity in children and adolescents. Int J Obes (Lond). 2012;36:1261–9.

    CAS  Article  Google Scholar 

  52. 52.

    Linder K, Springer F, Machann J, Schick F, Fritsche A, Häring HU, et al. Relationships of body composition and liver fat content with insulin resistance inobesity-matched adolescents and adults. Obesity (Silver Spring). 2014;22:1325–31.

    CAS  Article  Google Scholar 

  53. 53.

    Maffeis C, Banzato C, Rigotti F, Nobili V, Valandro S, Manfredi R, et al. Biochemical parameters and anthropometry predict NAFLD in obese children. J Pediatr Gastroenterol Nutr. 2011;53:590–3.

    CAS  PubMed  Google Scholar 

  54. 54.

    D’Adamo E, Cali AM, Weiss R, Santoro N, Pierpont B, Northrup V, et al. Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents. Diabetes Care. 2010;33:1817–22.

    Article  Google Scholar 

  55. 55.

    Ayonrinde OT, Olynyk JK, Beilin LJ, Mori TA, Pennell CE, de Klerk N, et al. Gender-specific differences in adipose distribution and adipocytokines influence adolescent nonalcoholic fatty liver disease. Hepatology. 2011;53:800–9.

    CAS  Article  Google Scholar 

  56. 56.

    Wolfgram PM, Connor EL, Rehm JL, Eickhoff JC, Reeder SB, Allen DB. Ethnic differences in the effects of hepatic fat deposition on insulin resistance in nonobese middle school girls. Obesity (Silver Spring). 2014;22:243–8.

    CAS  Article  Google Scholar 

  57. 57.

    Larson-Meyer DE, Newcomer BR, Ravussin E, Volaufova J, Bennett B, Chalew S, et al. Intrahepatic and intramyocellular lipids are determinants of insulin resistance in prepubertal children. Diabetologia. 2011;54:869–75.

    CAS  Article  Google Scholar 

  58. 58.

    Mazur A, Ostański M, Telega G, Malecka-Tendera E. Is epicardial fat tissue a marker of metabolic syndrome in obese children? Atherosclerosis. 2010;211:596–600.

    CAS  Article  Google Scholar 

  59. 59.

    Manco M, Morandi A, Marigliano M, Rigotti F, Manfredi R, Maffeis C. Epicardial fat, abdominal adiposity and insulin resistance in obese pre-pubertal and early pubertal children. Atherosclerosis. 2013;226:490–5.

    CAS  Article  Google Scholar 

  60. 60.

    Schusterova I, Leenen FH, Jurko A, Sabol F, Takacova J. Epicardial adipose tissue and cardiometabolic risk factors in overweight and obese children and adolescents. Pediatr Obes. 2014;9:63–70.

    CAS  Article  Google Scholar 

  61. 61.

    Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, et al. A role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents. Diabetes. 2016;65:610–8.

    CAS  Article  Google Scholar 

  62. 62.

    Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–96.

    CAS  Article  Google Scholar 

  63. 63.

    Hong YH, Chung S. Small for gestational age and obesity related comorbidities. Ann Pediatr Endocrinol Metab. 2018;23:4–8.

    Article  Google Scholar 

  64. 64.

    Marzuillo P, Del Giudice EM, Santoro N. Pediatric non-alcoholic fatty liver disease: new insights and future directions. World J Hepatol. 2014;6:217–25.

    Article  Google Scholar 

  65. 65.

    Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism. 2016;65:1026–37.

    CAS  Article  Google Scholar 

  66. 66.

    Mancina RM, Matikainen N, Maglio C, Söderlund S, Lundbom N, Hakkarainen A, et al. J Clin Endocrinol Metab. 2015;100:E821–5.

    Article  Google Scholar 

  67. 67.

    Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol. 2017;8:1159.

    Article  Google Scholar 

  68. 68.

    Santoro N, Savoye M, Kim G, Marotto K, Shaw MM, Pierpont B, et al. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary omega6/omega3 PUFA intake. PLoS One. 2012;7:e37827.

    CAS  Article  Google Scholar 

  69. 69.

    Ranucci G, Spagnuolo MI, Iorio R. Obese children with fatty liver: between reality and disease mongering. World J Gastroenterol. 2017;23:8277–82.

    Article  Google Scholar 

  70. 70.

    Weber DR, Leonard MB, Shults J, Zemel BS. A comparison of fat and lean body mass index to BMI for the identification of metabolic syndrome in children and adolescents. J Clin Endocrinol Metab. 2014;99:3208–16.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudio Maffeis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maffeis, C., Morandi, A. Body composition and insulin resistance in children. Eur J Clin Nutr 72, 1239–1245 (2018). https://doi.org/10.1038/s41430-018-0239-2

Download citation

Further reading

Search