Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Resting energy expenditure and body composition: critical aspects for clinical nutrition

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Ravussin E, Bogardus C. Relationship of genetics, age, and physical fitness to daily energy expenditure and fuel utilization. Am J Clin Nutr. 1989;49:968–75.

    Article  CAS  Google Scholar 

  2. Heymsfield SB. Heat and life: the ongoing scientific odyssey. J Parenter Enteral Nutr. 2002;26:319–32.

    Article  Google Scholar 

  3. Müller MJ, Bosy-Westphal A. Adaptive thermogenesis with weight loss. Obesity. 2013;21:218–28.

    Article  Google Scholar 

  4. Levine JA, Eberhardt NL, Jensen MD. Role of non-exercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283:212–4.

    Article  CAS  Google Scholar 

  5. Kingma B, Frijns A, van Marken, Lichtenbelt W. The thermoneutral zone: implications for metabolic studies. Front Biosci. 2012;E4:1975–85.

    Article  CAS  Google Scholar 

  6. van Marken-Lichtenbelt WD, Schrauwen P, van de Kerkhove S, Westerterp-Platenga MS. Individual variation in body temperature and energy expenditure in response to mild cold. Am J Physiol Endocrinol Metab. 2001;282:E1077–83.

    Article  Google Scholar 

  7. van Marken Lichtenbelt WD, Hanssen M, Pallubinsky H, Kingma B, Schellen L. Healthy excursions outside the thermal comfort zone. Build Res Inf. 2017;45:819–27. https://doi.org/10.1080/09613218.2017.1307647

    Article  Google Scholar 

  8. van Marken Lichtenbelt WD, Klingma B, van der Lans A, Schellen L. Cold exposure—an approach to increase energy expenditure. Trends Endocrinol Metab. 2014;25:165–7.

    Article  Google Scholar 

  9. Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A, et al. Familial dependence of the resting metabolic rate. N Engl J Med. 1986;315:96–100.

    Article  CAS  Google Scholar 

  10. Bouchard C, Deriaz O, Perusse L, Tremblay A. Genetics of energy expenditure in humans. In: Bouchard C, ed The genetics of obesity. Boca Raton, FL: CRC Press; 1994. p. 135–146.

    Google Scholar 

  11. Bosy-Westphal A, Wolf A, Bührends F, Hitze B, Czech N, Mönig H, et al. Familial influences and obesity-associated metabolic risk factors contribute to the variation in resting energy expenditure: the Kiel Obesity Prevention Study. Am J Clin Nutr. 2008;87:1695–701.

    Article  CAS  Google Scholar 

  12. Calton EK, Pathak K, Soares MJ, Alfonso H, Keane KN, Newsholme P, et al. Vitamin D status and insulin sensitivity are novel predictors of resting metabolic rate: a cross-sectional analysis in Australian adults. Eur J Nutr. 2016;55:2075–80.

    Article  CAS  Google Scholar 

  13. Wimpfheimer K, Saville E, Voirol MJ, Danforth E, Burger AG. Starvation-induced decreased sensitivity of resting energy rate to triiodothyronine. Science. 1979;205:1272–3.

    Article  CAS  Google Scholar 

  14. Al Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab. 1997;82:1118–25.

    CAS  PubMed  Google Scholar 

  15. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr. 2005;82:941–8.

    Article  CAS  Google Scholar 

  16. Kleiber M. The fire of life. An introduction to animal energetics. New York: John Wiley & Sons; 1961.

    Google Scholar 

  17. Harris JA, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci USA. 1918;4:370–3.

    Article  CAS  Google Scholar 

  18. Owen OE, Kavle E, Owen RS, Polansky M, Caprio S, Mozzoli MA, et al. A reappraisal of caloric requirements in healthy women. Am J Clin Nutr. 1986;44:1–19.

    Article  CAS  Google Scholar 

  19. Owen OE, Holup JL, Dalessio DA, Craig ES, Polansky M, Smalley JK, et al. A reappraisal of the caloric requirements of men. Am J Clin Nutr. 1987;46:875–85.

    Article  CAS  Google Scholar 

  20. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–7.

    Article  CAS  Google Scholar 

  21. FAO/WHO/UNU. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985;724:1–206..

  22. Muller MJ, Bosy-Westphal A, Klaus S, Kreymann G, Luhrmann PM, Neuhauser-Berthold M, et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am J Clin Nutr. 2004;80:1379–90.

    Article  Google Scholar 

  23. Henry CJK. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 2005;8:1133–52.

    Article  CAS  Google Scholar 

  24. Cunningham J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am J Clin Nutr. 1980;33:2372–4.

    Article  CAS  Google Scholar 

  25. Weinsier RL, Schutz Y, Bracco D. Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans. Am J Clin Nutr. 1992;55:790–4.

    Article  CAS  Google Scholar 

  26. Garby L, Lammert O. Between-subject variation in energy expenditure: estimation of the effect of variation in organ size. Eur J Clin Nutr. 1994;48:376–8.

    CAS  PubMed  Google Scholar 

  27. Illner K, Brinkmann G, Heller M, Bosy-Westphal A, Müller MJ. Metabolically active components of fat free mass and resting energy expenditure in non-obese adults. Am J Physiol Endocrinol Metab. 2000;278:E308–15.

    Article  CAS  Google Scholar 

  28. Müller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev. 2002;3:113–22.

    Article  Google Scholar 

  29. Heymsfield SB, Thomas D, Bosy-Westphal A, Shen W, Petersen CM, Müller MJ. Evolving concepts on adjusting human resting energy expenditure measurements for body size. Obes Rev. 2012;13:1001–14.

    Article  CAS  Google Scholar 

  30. Bosy-Westphal A,Reinecke U,Schlörke T,Illner K,Kutzner D,Heller M, et al. Effect of organ and tissue masses on resting energy expenditure in underweight, normal weight and obese adults. Int J Obes. 2004;28:72–79.

    Article  CAS  Google Scholar 

  31. Soares MJ, Shetty PS. Basal metabolic rates and metabolic economy in chronic undernutrition. Eur J Clin Nutr. 1991;45:363–73.

    CAS  PubMed  Google Scholar 

  32. Kaiyala KJ, Schwartz MW. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes. 2011;60:17–23.

    Article  CAS  Google Scholar 

  33. Bosy-Westphal A, Schautz B, Later W,Kehayias JJ,Gallagher D, Müller MJ, What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013;67:S14–21.

    Article  Google Scholar 

  34. Bosy-Westphal A, Jensen B, Braun W, Pourhassan M, Gallagher D, Müller MJ. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr. 2017;71:1061–7.

    Article  CAS  Google Scholar 

  35. Müller MJ, Geisler C, Hübers M, Pourhassan M, Braun W, Bosy-Westphal A. Normalizing resting energy expenditure across life course in humans: challenges and hopes. Eur J Clin Nutr. 2018;72:628–637.

    Article  Google Scholar 

  36. Müller MJ, Langemann D, Gehrke I, Later W, Heller M, Glüer CC, et al. Effect of constitution on mass of individual organs and their association with metabolic rate in humans—a detailed view on allometric scaling. PLoS One. 2011;7:e22732.

    Article  Google Scholar 

  37. Müller MJ. From BMI to functional body composition. Eur J Clin Nutr. 2013;67:1119–21.

    Article  Google Scholar 

  38. Müller MJ, Braun W, Enderle J, Bosy-Westphal A. Beyond BMI: conceptual issues related to overweight and obese patients. Obes Facts. 2016;9:193–205.

    Article  Google Scholar 

  39. Rosenbaum M,Leibel RL, Adaptive thermogenesis in humans. Int J Obes. 2010;34(Suppl 1):S47–55.

    Article  Google Scholar 

  40. Müller MJ, Bosy-Westphal. A. Adaptive thermogenesis with weight loss in humans. Obesity. 2013;21:218–28.

    Article  Google Scholar 

  41. Rosenbaum M,Leibel RL, Models of energy homeostasis in response to maintenance of reduced body weight. Obesity. 2016;24:1620–29.

    Article  Google Scholar 

  42. Müller MJ. Adaptive thermogenesis: do we need new thinking? Obesity. 201625:610–11.

    Google Scholar 

  43. Müller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, et al. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015;102:807–19.

    Article  Google Scholar 

  44. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, et al. Low dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005;115:3579–86.

    Article  CAS  Google Scholar 

  45. Müller MJ, Enderle J, Bosy Westphal A. Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep. 2016. https://doi.org/10.1007/s13679-016-0237-4. pub. Oct 13, 2016.

    Article  Google Scholar 

  46. Acheson KJ. Indirect calorimetry: a case for improved standard operating procedures. Eur J Clin Nutr. 2014;68:1 https://doi.org/10.1038/ejcn.2013.211

    Article  CAS  PubMed  Google Scholar 

  47. Schadewaldt P, Nowotny B, Straßburger K, Kotzka J, Roden M. Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability. Am J Clin Nutr. 2013;97:763–73.

    Article  CAS  Google Scholar 

  48. Galgani JE, Castro-Sepulveda MA. Influence of a gas exchange correction procedure on resting metabolic rate and respiratory quotient in humans. Obesity (Silver Spring). 2017;25:1941–7.

    Article  CAS  Google Scholar 

  49. Pathak K, Calton EK, Soares MJ, Zhao Y, James AP, Keane K, et al. Forearm to fingertip skin temperature gradients in the thermoneutral zone were significantly related to resting metabolic rate: potential implications for nutrition research. Eur J Clin Nutr. 2017;71:1074–1079.

    Article  CAS  Google Scholar 

  50. Hall KD, Chen KD, Guo J, Lam YY, Leibel RL, Mayer LES, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104:324–33.

    Article  CAS  Google Scholar 

  51. Peters A. The selfish brain: competition for energy resources. Am J Hum Biol. 2011;23:29–34.

    Article  Google Scholar 

  52. Achamrah N, Jésus P, Grigioni S, Rimbert A, Petit A, Déchelotte P, et al. Validity of predictive equations for resting energy expenditure developed for obese patients: impact of body composition method. Nutrients. 2018;10:63.

    Article  Google Scholar 

  53. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123:3404–8.

    Article  CAS  Google Scholar 

  54. Larsen FJ, Schiffer TA, Sahlin K, Ekblom B, Weitzberg E, Lundberg JO. Mitochondrial oxygen affinity predicts basal metabolic rate in humans. FASEB J. 2011;25:2843–52.

    Article  CAS  Google Scholar 

  55. Schiffer TA, Peleli M, Sundqvist ML, Ekblom B, Lundberg JO, Weitzberg E, et al. Control of human energy expenditure by cytochrome c oxidase subunit IV-2. Am J Physiol Cell Physiol. 2006;311:C452–61.

    Article  Google Scholar 

  56. Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C, et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One. 2011;6:e18317.

    Article  CAS  Google Scholar 

  57. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Soares.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, M.J., Müller, M.J. Resting energy expenditure and body composition: critical aspects for clinical nutrition. Eur J Clin Nutr 72, 1208–1214 (2018). https://doi.org/10.1038/s41430-018-0220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0220-0

This article is cited by

Search

Quick links